《8.6 空间直线、平面的垂直》直线与平面垂直的判定公开课优秀教案教学设计(高中必修第二册)
- 格式:docx
- 大小:268.69 KB
- 文档页数:7
课题:直线与平面垂直的判定(一)【教学目标】知识与技能目标:通过本节课的学习,使学生理解直线与平面垂直的定义和判定定理,并能对它们进行简单的应用;过程与方法目标:通过对定义的总结和对判定定理的探究,不断提高学生的抽象概括和逻辑思维能力;情感态度与价值观目标:通过学习,使学生在认识到数学源于生活的同时,体会到数学中的严谨细致之美,简洁朴实之美,和谐自然之美,从而使学生更加热爱数学,热爱生活.【教学重点及难点】教学重点:直线与平面垂直的定义、判定定理以及它们的初步应用.教学难点:对直线与平面垂直的定义的理解和对判定定理的探究.【教学方法】教法:启发诱导式学法:合作交流、动手试验【教具准备】计算机、多媒体课件、三角形卡纸【教学过程】一、直线与平面垂直定义的构建1、联系生活——提出问题在复习了直线与平面的三种位置关系后,给出几幅现实生活中常见的图片,让学生思考其中旗杆与地面、竖直的墙角线与地面、大桥的桥柱与水面之间的位置关系属于这三种情况中的那一种,它们还给我们留下了什么印象?从而提出问题:什么是直线与平面垂直?设计意图:使学生意识到直线与平面垂直是直线与平面相交中的一种特殊情况并引出本节课的课题.另外这样设计也吸引了学生的注意力,激发了学生的好奇心,使其主动参与到本节课的学习中来.2、创设情境——分析感知播放动画,引导学生观察旗杆和它在地面上影子的位置关系,使其发现:旗杆所在直线l与地面所在平面α内经过点B的直线都是垂直的.进而提出问题:那么直线l与平面α内不经过点B的直线垂直吗?设计意图:在具体的情境中,让学生去体会和感知直线与平面垂直的定义. 3、总结定义——形成概念 由学生总结出直线与平面垂直的定义,即如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直.引导学生用符号语言将它表示出来.然后提出问题:如果将定义中的“任意一条直线”改成“无数条直线”,结论还成立吗?设计意图:让学生通过思考和操作(用三角板和笔在桌面上比试),加深对定义的认识.二、直线与平面垂直判定定理的构建1、类比猜想——提出问题 根据线面平行的判定定理进行类比,通过不断的猜想和分析,最终提出问题:如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直吗?设计意图:不少老师都在本环节中进行了一些有益的尝试,但考虑到学生的认知水平,我仍然决定采用类比猜想的方法,从学生已有的知识出发,进行分析. 2、动手试验——分析探究 演示试验过程:过△ABC 的顶点A 翻折纸片,得到折痕AD ,再将翻折后的纸片竖起放置在桌面上(BD 、DC 与桌面接触).问题一:同学们看,此时的折痕AD 与桌面垂直吗? 又问:为什么说此时的折痕AD 与桌面不垂直?设计意图:让学生从另一个角度来理解直线与平面垂直的定义——只要直线l 与平面α内有一条直线不垂直,那么直线l 就与平面α不垂直.问题二:如何翻折才能让折痕AD 与桌面所在平面α垂直呢?﹙学生分组试验﹚设计意图:通过分组讨论增强数学学习氛围,让学生在交流中互相学习,共同进步.问题三:通过试验,你能得到什么结论?在回答此问题时大部分学生都会直ABDCαBADC接给出结论:如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.此时注意引导学生观察,直线AD 还经过BD 、CD 的交点.请他们思考在增加了这个条件后,试验的结论更准确的说应该是什么?又问:如果直线l 与平面α内的两条相交直线m 、n 都垂直,但不经过它们的交点,那么直线l 还与平面α垂直吗?设计意图:提高学生抽象概括的能力,同时也培养他们严谨细致的作风. 3、提炼定理——形成概念 给出线面垂直的判定定理,请学生用符号语言把这个定理表示出来,并由此向学生指明,判定定理的实质就是通过线线垂直来证明线面垂直,它体现了降维这种重要的数学思想.判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.符号语言: m l ⊥,n l ⊥,α⊂m ,α⊂n ,A n m = ⇒l α⊥. 三、初步应用——深化认识 1、例题剖析:例1 已知:b a //,α⊥a .求证:α⊥b . 分析过程:(①②③表示分析的顺序)证明:在平面α内作两条相交直线m ,n . 因为直线a α⊥,aαbmnα⊥a ⎩⎨⎧⊥⊥na m a ⎩⎨⎧⊥nb b b a //⇒⇒①② ③ ABD Cα根据直线与平面垂直的定义知,a m a n⊥⊥.又因为b∥a所以mb⊥,nb⊥.又因为α⊂m,α⊂n,m,n是两条相交直线,所以α⊥b.设计意图:不仅让学生学会使用判定定理,而且要让他们掌握分析此类问题的方法和步骤.本题也可以使用直线与平面垂直的定义来证明,这可以让学生在课下完成.另外,例1向我们透漏了一个非常重要的信息,这里可以请学生用文字语言将例1表示出来——如果两条平行线中的一条直线与一个平面垂直,那么另外一条直线也与此平面垂直.2、随堂练习练习1 如图,在三棱锥V-ABC中,V A=VC,AB=BC.求证:VB⊥AC.证明:取AC中点为K,连接VK、BK,∵在△V AC中,V A=VC,且K是AC中点,∴VK⊥AC.同理BK⊥AC.又VK⊂平面VKB,BK⊂平面VKB ,VK∩BK=K,∴AC⊥平面VKB.∵VB⊂平面VKB,∴VB ⊥AC.设计意图:用展台展示部分学生的答案,督促学生规范化做题.变式引申如图,在三棱锥V-ABC中,V A=VC,AB=BC,K是AC的中点.若E、F分别是AB、BC 的中点,试判断直线EF与平面VKB的位置关系.解:直线EF与平面VKB互相垂直.∵在△V AC中,V A=VC,且K是AC中点,∴VK⊥AC.A CE FKVBAVBCK同理BK⊥AC.又VK⊂平面VKB,BK⊂平面VKB ,VK∩BK=K,∴AC ⊥平面VKB.又E、F分别是AB、BC的中点,∴EF∥AC∴EF⊥平面VKB.设计意图:在定义和判定定理之外,例1又给出了第三种证明直线与平面垂直的方法,构造这道变式引申题的目的就是让学生在用中将其内化.练习2 如图,PA垂直圆O所在平面,AC是圆O的直径,B是圆周上一点,问三棱锥P-ABC中有几个直角三角形?解:在三棱锥P-ABC中有四个直角三角形,分别是:△ABC、△PAB、△PAC和△PBC.设计意图:通过练习1和练习2培养学生熟练地进行线线垂直和线面垂直之间的转化,从而使他们能够对定义和判定定理进行灵活应用.四、总结回顾——提升认识五、布置作业——巩固认识必做题:习题2.3 B组2,4.选做题:如图SA⊥平面ABC,AB⊥BC,过A作SB 的垂线,垂足为E,过E作SC的垂线,垂足为F.求证:AF⊥SC.探究题:课本66页的探究题.SBA CFEBC。
教学设计直线与平面垂直的判定一.教材分析直线与平面垂直是直线和平面相交中的一种特殊情况,它是空间中直线与直线垂直位置关系的拓展,又是平面与平面垂直的根底,是空间中垂直关系转化的重心,同时它又是直线和平面所成的角、直线与平面、平面与平面距离等内容的根底,因而它是空间点、直线、平面间位置关系中的核心概念之一。
二.学情分析学生已经学习了直线、平面平行的判定及性质,学习了两直线〔共面或异面〕互相垂直的位置关系,有了“通过观察、操作并抽象概括等活动获得数学结论〞的体会,有了一定的空间想象能力、几何直观能力和推理论证能力。
三.教学目标根据新课标要求和和教学内容的构造特征,学生获得知识、技能、方法及情感、态度、价值观等方面的要求,结合学生的实际水平,制定本节课的教学目标如下:〔1〕使学生掌握直线和平面垂直的定义及判定定理;〔2〕使学生掌握判定直线和平面垂直的方法;〔3〕引导学生学会观察、发现问题、提炼结论,使他们在直观感知,操作确认的根底上学会归纳、概括结论。
〔1〕通过教学活动,使学生了解,感受直线和平面垂直的定义的形成过程;〔2〕通过学生动手实践,亲身经历数学知识的形成过程,体验探究的乐趣,增强学习数学的兴趣。
培养学生学会从“感性认识〞到“理性认识〞过程中获取新知。
培养学生认真参与积极交流的主观意识;勇于探索新知的精神。
渗透由具体到抽象的思想及事物间相互转化和理论联系实际的辩证唯物主义观点。
四.教学重点、难点依据新课标要求及本节课在高中数学中的地位和作用确定以下重点和难点教学重点:直线与平面垂直的定义和判定定理。
教学难点:直线与平面垂直定义的正确理解;判定定理的探究和线线垂直与线面垂直关系的灵活相互转化。
五.教法和学法教法:讲授法;探究法;多媒体辅助教学法。
学法:本节课注重让学生认真观察分析、积极思考、主动探索、合作交流,尽可能增加学生参与课堂的时间;通过练习使学生稳固知识,熟练应用知识解决简单问题。
六.教学环境和教学用具教学环境:多媒体教室;教学用具:利用计算机多媒体课件辅助教学,黑板、三角板,自制三角形纸片,正方体模型,课本〔表示平面、书脊表示直线〕。
8.6.2 直线与平面垂直——直线与平面垂直的判定一、教学目标1.探索直线与平面垂直的判定定理,能应用判定定理证明直线和平面垂直的简单问题2.在探索直线与平面垂直判定定理的过程中发展合情推理能力、感悟和体验“空间问题转化为平面问题”“线面垂直转化为线线垂直”,进一步感悟数学中以“化繁为简”的转化思想.二、教学重难点重点:直线与平面垂直的判定定理的理解难点:直线和平面垂直的判定定理及其应用三、教学过程1.复习回顾直线与平面垂直的定义:一般地,如果直线 l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直,记作l ⊥α.直线l 叫做平面α的垂线,平面α 叫做直线l 的垂面.直线与平面垂直时,它们唯一的公共点P 叫做垂足.注:通过解读直线与平面垂直的定义,得出下面这个结论:,.l a l a αα⊥⊂⇒⊥简记为:线面垂直,则线线垂直.2.探究新知下面我们来研究直线与平面垂直的判定,即探究直线与平面垂直的充分条件.根据定义可以进行判断,但无法验证一条直线与一个平面内的所有直线都垂直.那么,有没有可行的方法?【探究活动】引导学生动手操作;如图准备一块三角形纸片ABC,过顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上,并请学生思考;(1)折痕AD与桌面垂直吗?不一定(2)如何翻折才能得到使折痕AD与桌面垂直?为什么?折痕AD是BC边上的高根据基本事实推论2可知:两条相交直线可以确定一个平面,两条平行直线也可以确定一个平面。
猜想:如果一条直线和一个平面内的两条相交直线都垂直,这条直线就和这个平面垂直.直线与平面垂直的判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.图形语言:符号语言:简记为:线线垂直⇒线面垂直思考 两条相交直线可以确定一个平面,两条平行直线也可以确定一个平面,那么定理中的“两条相交直线”可以改为“两条平行直线”吗?你能从向量的角度解释原因吗?如果改为“无数条直线”呢?平面内的两条相交直线代表两个不共线向量,而平面内的任意向量都可以以它们为基底进行线性表示,从而平面内的两条相交直线可以“代表”这个平面上的任意一条直线;而两条平行直线所表示的向量是共线的,它们不能作为平面内的任意向量的基底,用它们不能“代表”这个平面上的任意一条直线.如果将上述问题中的“”两条相交直线“”改为“无数条直线”的话,答案也是否定的。
《8.6.2 直线与平面垂直》教案第1课时直线与平面垂直的判定【教材分析】在直线与平面的位置关系中,垂直是一种非常重要的关系,本节内容既是直线与直线垂直关系的延续和提高,也是后续研究平面与平面垂直的基础,既巩固了前面所学的内容,又为后面内容的学习做了知识上和方法上的准备,在教材中起着承前启后的作用。
【教学目标与核心素养】课程目标1.理解直线和平面垂直的判定定理并能运用其解决相关问题.2.理解直线与平面所成角的概念,并会求一些简单的直线与平面所成角.数学学科素养1.逻辑推理:探究归纳直线和平面垂直的判定定理,找垂直关系;2.数学运算:求直线与平面所成角;3.直观想象:题中几何体的点、线、面的位置关系.【教学重点和难点】重点:①直线和平面垂直的判定定理及其应用;②求直线与平面所成角.难点:直线与平面垂直的判定定理的应用,找垂直关系.【教学过程】一、情景导入问题1.在现实生活中,我们经常看到一些直线与平面垂直的现象,例如:“旗杆与地面,大桥的桥柱和水面等的位置关系”,你能举出一些类似的例子吗?问题2. 易知旗杆与它在地面上的射影是垂直关系,那么一条直线与一个平面垂直的意义是什么?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本149-152页,思考并完成以下问题1、直线与平面垂直的意义是什么?2、直线与平面垂直的判定定理是什么?用符号语言怎样表示?3、什么是直线与平面所成角?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.直线与平面垂直的概念如果直线l与平面α内的任意一条直线都垂直,就说直线l与平面α互相垂直,记作l⊥α ,直线l叫做平面α的垂线,平面α叫做直线l的垂面,直线与平面垂直时,它们唯一的公共点叫做垂足.2.直线与平面垂直的判定定理3.直线与平面所成的角(1)如图,一条直线PA和一个平面α相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A叫做斜足,过斜线上斜足以外的一点向平面引垂线PO,过垂足O和斜足A的直线AO叫做斜线在这个平面上的射影,平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.(2)一条直线垂直于平面,称它们所成的角是直角;一条直线在平面内或一条直线和平面平行,称它们所成的角是0°的角,于是,直线与平面所成的角θ的范围是0°≤θ≤90°.四、典例分析、举一反三题型一线面垂直的概念与定理的理解例1 下列说法中正确的个数是( )①若直线l与平面α内一条直线垂直,则l⊥α;②若直线l与平面α内两条直线垂直,则l⊥α;③若直线l与平面α内两条相交直线垂直,则l⊥α;④若直线l与平面α内任意一条直线垂直,则l⊥α;⑤若直线l与平面α内无数条直线垂直,则l⊥α.A.1B.2C.3D.4【答案】B【解析】由直线与平面垂直的判定定理和定义知正确的是③④,故选B.解题技巧(判定定理理解的注意事项)线面垂直的判定定理中,直线垂直于平面内的两条相交直线,“相交”两字必不可少,否则,就是换成无数条直线,这条直线也不一定与平面垂直.跟踪训练一1、下列命题中,正确命题的序号是.①如果直线l与平面α内的无数条直线垂直,那么l⊥α;②如果直线l与平面α内的两条直线垂直,那么l⊥α;③若l不垂直于α,则在α内没有与l垂直的直线;④过一点和已知平面垂直的直线有且只有一条;⑤若a∥α,b⊥α,则a⊥b;⑥若a∥b,a⊥α,则b⊥α.【答案】④⑤⑥.【解析】根据线面垂直的定义,当直线l与平面α内的任意一条直线垂直时,l⊥α,如果α内的无数条直线互相平行,l与α不一定垂直,故①不正确;根据直线与平面垂直的判定定理可知,如果平面α内的两条直线不相交时,l与α不一定垂直,故②不正确;当l与α不垂直时,l可能与α内的无数条互相平行的直线垂直,故③不正确;由于过一点有且只有一条直线与已知平面垂直.故④正确;⑤,⑥显然正确.题型二直线与平面垂直的判定例2 在三棱锥P-ABC中,H为△ABC的垂心,AP⊥BC,PC⊥AB,求证: PH⊥平面ABC.【答案】证明见解析【解析】如图,连接AH,因为H为△ABC的垂心,所以AH⊥BC,又AP⊥BC,AH∩AP=A,所以BC⊥平面AHP,又PH⊂平面AHP,所以PH⊥BC.同理可证PH⊥AB,又AB∩BC=B,所以PH⊥平面ABC.解题技巧 (应用判定定理的注意事项)利用直线与平面垂直的判定定理证明线面垂直的关键是在这个平面内找到两条相交直线,证明它们都和这条直线垂直.跟踪训练二1、如图,Rt△ABC所在平面外一点S,且SA=SB=SC.点D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.【答案】证明见解析【解析】:(1)如图,取AB中点E,连接SE,DE,在Rt △ABC 中,D,E 分别为AC,AB 的中点,所以DE ∥BC,且DE ⊥AB.在△SAB 中,因为SA=SB,所以SE ⊥AB.又SE∩DE=E,所以AB ⊥平面SDE. 因为SD ⊂平面SDE,所以AB ⊥SD.在△SAC 中,因为SA=SC,D 为AC 的中点,所以SD ⊥AC.因为SD ⊥AC,SD ⊥AB,AC∩AB=A,所以SD ⊥平面ABC.(2)因为AB=BC,D 为斜边AC 的中点,所以BD ⊥AC.由(1)可知,SD ⊥平面ABC.而BD ⊂平面ABC,所以SD ⊥BD.因为SD ⊥BD,BD ⊥AC,SD∩AC=D,所以BD ⊥平面SAC.题型三 直线与平面所成角例3 在正方体中,求直线与平面所成的角?【答案】30°(或)【解析】 连接,交于点O ,再连接,因为是在正方体中,所以平面,所以是直线与平面所成的角.设正方体的边长为1,所以在△A 1BO 中,,,1111ABCD A B C D -1BA 11A B CD 6π1BC 1B C 1AO 1111ABCD A B C D -BO ⊥11A B CD 1BA O ∠1A B 11A B CD 1111ABCD A B C D-1A B=OB =所以,所以直线与平面所成的角的大小等于30°. 解题技巧(求平面的斜线与平面所成的角的一般步骤)(1)确定斜线与平面的交点(斜足);(2)通过斜线上除斜足以外的某一点作平面的垂线,连接垂足和斜足即为斜线在平面上的射影,则斜线和射影所成的锐角即为所求的角;(3)求解由斜线、垂线、射影构成的直角三角形.跟踪训练三1、已知正三棱锥S-ABC 的所有棱长都相等,则SA 与平面ABC 所成角的余弦值为 .【解析】 因为S-ABC 为正三棱锥,所以点S在底面ABC 上的射影为△ABC 的中心O,连接SO,AO,则∠SAO 为SA 与底面ABC所成的角,设正三棱锥的棱长为a,在Rt △SOA 中,AO=a,SA=a,所以cos ∠SAO=.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计11sin 2BAO ∠=1A B 11A B CD 23AO SA七、作业课本152页练习,162页习题8.6的1、2、4、5题.【教学反思】本节课,学生基本掌握判定定理和线面角,但是在应用中,书写证明过程不太规范,需提高学生的逻辑思维能力.另一方面,求线面角时,找线面角有一定的困难,需给学生强调找垂线的方法.《8.6.2 直线与平面垂直》导学案第1课时直线与平面垂直的判定【学习目标】知识目标1.理解直线和平面垂直的判定定理并能运用其解决相关问题.2.理解直线与平面所成角的概念,并会求一些简单的直线与平面所成角.核心素养1.逻辑推理:探究归纳直线和平面垂直的判定定理,找垂直关系;2.数学运算:求直线与平面所成角;3.直观想象:题中几何体的点、线、面的位置关系.【学习重点】:①直线和平面垂直的判定定理及其应用;②求直线与平面所成角.【学习难点】:直线与平面垂直的判定定理的应用,找垂直关系.【学习过程】一、预习导入阅读课本149-152页,填写。
8.6.2《直线与平面垂直》教案一、教学目标1.理解直线与平面垂直的定义。
2.理解直线与平面垂直的判定定理。
3.理解直线与平面垂直的性质定理,并能够证明。
4.能运用判定定理证明直线与平面垂直的简单命题。
5.能运用性质定理证明一些空间位置关系的简单命题。
二、教学重难点1.教学重点直观感知、操作确认,概括出直线与平面垂直的判定定理、性质定理。
2.教学难点直线与平面垂直的判定定理的应用、性质定理的证明。
黑色是讲话内容,红色是回答内容,蓝色是课件内容,紫色是动作内容上课,同学们好!请坐!三、教学准备1.《直线与平面垂直》PPT2.每人发一张三角形纸片四、教学过程黑色是讲话内容,红色是回答内容,蓝色是课件内容,紫色是动作内容上课,同学们好!请坐!【提问】有同学认识它吗?(手指着日晷)(学生:认识)(学生:不认识)可能有同学不认识,它叫日晷。
【PPT演示】日晷日晷是中国古代用来测定时间的仪器,日晷通常由晷针指到和晷盘组成(手指着部位)。
如果我们把晷针看成一条直线,晷面看成一个平面,这里就体现了直线与平面的一种非常特殊的位置关系。
同学们知道是什么位置关吗?(学生:垂直)对,直线与平面重直,这就是我们今天所要学习的内容——《直线与平面垂直》【PPT演示图片】课题《8.6.2直线与平面垂直》【板书】8.6.2直线与平面垂直在我们的实际生活中,有许多场景都能给我们以直线与平面重直的直观形象。
同学们你能举出几个例子吗?(让学生多举几个)如:①把老师我看成一条直线,把讲台看成一个平面;②教室里相邻墙面的交线与地面的位置关系【PPT演示图片】③旗杆所在直线与地面的位置关系④港珠澳大桥雄伟壮观,桥墩所在直线与海面所在平面的位置关系⑤美丽的上海东方明珠塔,如果把塔身看成一条直线,海面看成一个平面。
这些都能给我们以直线与平面重直的形象。
⑥意大利萨斜塔,它能体现直线与平面垂直的形象吗?(学生:不能)对,不能,塔身所在直线与地面所在平面是不重直的。
直线与平面垂直的判定教案一、教学目标:1. 让学生理解直线与平面垂直的概念。
2. 让学生掌握直线与平面垂直的判定方法。
3. 培养学生运用几何知识解决实际问题的能力。
二、教学内容:1. 直线与平面垂直的定义。
2. 直线与平面垂直的判定方法。
3. 直线与平面垂直的性质。
三、教学重点与难点:1. 教学重点:直线与平面垂直的判定方法。
2. 教学难点:如何运用判定方法判断直线与平面是否垂直。
四、教学方法:1. 采用讲授法,讲解直线与平面垂直的定义、判定方法和性质。
2. 利用几何模型和实物道具,直观展示直线与平面垂直的关系。
3. 开展小组讨论,让学生互相交流、合作解决问题。
4. 布置适量练习题,巩固所学知识。
五、教学过程:1. 导入新课:通过提问方式引导学生回顾直线、平面垂直的相关概念。
2. 讲解直线与平面垂直的定义:直线与平面垂直是指直线在平面上的投影为一点。
3. 讲解直线与平面垂直的判定方法:(1)利用垂直线段判定法:若直线与平面内一条线段垂直,则该直线与平面垂直。
(2)利用垂线判定法:若直线与平面内任意一条直线都垂直,则该直线与平面垂直。
4. 讲解直线与平面垂直的性质:(1)直线与平面垂直的线段长度相等。
(2)直线与平面垂直的线段构成的角为直角。
5. 课堂练习:让学生运用判定方法判断给出的直线与平面是否垂直。
6. 总结与拓展:对本节课的内容进行总结,并提出一些拓展问题,激发学生的学习兴趣。
7. 布置作业:布置一些有关直线与平面垂直的练习题,让学生巩固所学知识。
六、教学评价:1. 通过课堂讲解、练习和作业,评价学生对直线与平面垂直的定义、判定方法和性质的理解程度。
2. 观察学生在解决问题时是否能灵活运用所学知识,判断其运用能力。
3. 鼓励学生参与课堂讨论,评价其合作与交流能力。
七、教学反馈:1. 收集学生作业,分析其对直线与平面垂直知识的掌握情况。
2. 听取学生对教学内容的建议和意见,不断调整教学方法。
2.3.1《直线与平面垂直的判定》教学设计【学习目标】知识与技能:理解直线与平面垂直的定义, 掌握直线与平面垂直判定的定理,并能运用判定定理证明一些空间位置关系的简单命题.过程与方法:培养几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论。
情感态度与价值观:亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣,同时培养从“感性认识”到“理性认识”过程中获取新知的能力。
【重点难点】学习重点:操作确认并概括出直线与平面垂直的定义和判定定理。
学习难点:操作确认并概括出直线与平面垂直的判定定理及判定定理的初步运用【教学工具】:希沃白板5、希沃授课助手等。
【教学方法】:问答法、合作学习【复习引入】:直线与直线、直线与平面、平面与平面的位置关系。
线线平行、线面平行、面面平行之间的转化关系。
(教师采用希沃白板5做思维导图、利用蒙尘等功能引导学生复习旧知)【学习过程】自主探究一、直线与平面垂直的判定展示地理学科关于太阳光照射物体的Flash动画吸引学生注意力1、线面垂直的定义问题1、结合对下列问题的思考,试着给出直线和平面垂直的定义.(1)阳光下,直立于地面的旗杆AB与它在地面上的影子BC所成的角度是多少?(2)随着太阳的移动,影子BC的位置也会移动,而旗杆AB与影子BC所成的角度是否会发生改变?(3)旗杆AB与地面上任意一条不过点B的直线B1C1的位置关系如何?依据是什么?直线与平面垂直的定义如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直,记作:l⊥α.直线 l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做垂足。
(教师板书概念、让学生尝试从定义的文字语言中,归纳符号语言)(教师板书完后,走下讲台巡视,采用手机将学生所写拍照利用希沃授课助手投屏并进行点评)符号语言: a l a l αα⊂⎫⇒⊥⎬⊥⎭任意 图形语言:思想: 直线与直线垂直 ⇒直线与平面垂直思考:(1)如果一条直线垂直于一个平面内的无数条直线,那么这条直线是否与这个平面垂直?(教师提问学生为什么?举反例,在黑板上画正方体模型,借用底面无数条平行线与正方体一条棱垂直,但这条棱在平面内)(2)如果一条直线垂直于一个平面,那么这条直线是否垂直于这个平面内的所有直线?即若αα⊂⊥a l ,,则a l ⊥2、直线与平面垂直的判定定理问题2:请同学们拿出一块三角形纸片,我们一起做一个试验:过三角形的顶点A 翻折纸片,得到折痕AD (如图1),将翻折后的纸片竖起放置在桌面上(BD 、DC 与桌面接触)(图1)(图2)(1)折痕AD 与桌面垂直吗?(2)如何翻折才能使折痕AD 与桌面所在的平面垂直?(教师让学生提前准备好三角形纸片自己动手折纸,并且与同桌交流,教师利用希沃授课助手投屏功能将不同学生折纸的结果投屏到屏幕上,并且让学生通过对比观察得到相αl P D C A D BAC关信息)直线与平面垂直的判定定理。
《直线与平面垂直的判定》说课稿一、教材分析直线与平面垂直是直线与平面相交中的一种特殊情况.它既是线线垂直的拓展,也是学习面面垂直的基础,同时它也为研究线面角、二面角、点到平面的距离、直线到平面的距离、两个平行平面间的距离等内容进行了必要的知识准备.因此它不仅是连接线线垂直和面面垂直的纽带,也是空间中点、线、面位置关系的核心内容.本节课主要研究了直线与平面垂直的定义、判定定理以及它们初步应用,并在此过程中渗透了类比、猜想、归纳等方法,让学生从中体会将空间问题转化为平面问题,将无限转化为有限,将线面垂直转化为线线垂直的化归思想.二、教学目标分析根据新课标的教学要求和学生的认知水平,确定如下的教学目标:在知识与技能方面:通过本节课的学习,使学生理解直线与平面垂直的定义和判定定理,并能对它们进行简单的应用;在过程与方法方面:通过对定义总结和对判定定理的探究,不断提高学生的抽象概括和逻辑思维能力;在情感态度与价值观方面:通过学习,使学生在认识到数学源于生活的同时,体会到数学中的严谨细致之美,简洁朴实之美,和谐自然之美,从而使学生更加热爱数学,热爱生活.三、教学分析及相应教学策略分析1、学生对直线与平面垂直的现象是很容易有“感觉”的,但是如果你要问他们什么是直线与平面垂直,他们却往往不知道怎么回答.所以如何让学生对线面垂直的认识由感性上升到理性是本节课的一个教学难点.这里我没有直接告诉学生定义的内容,而是把它放到了具体的情境中让学生自己去感受和体会.按说定义是不需要这样的分析和探究的,但是通过对旗杆和它在地面内影子的位置关系的观察,通过对旗杆所在直线l和地面所在平面α内不经过点B﹙点B 是直线l和平面α的交点﹚的直线的位置关系的思考,让学生亲自参与定义的构建,就使原本干巴巴的定义在学生心中变得具体生动,有血有肉.再通过对定义中的“任意一条直线”能否换成“无数条直线”问题的探讨,使学生对定义的认识经一步深化.考虑到学生的空间想象能力和语言表达能力的参差不齐,这里可以根据学生在课堂上的反应进行适当的启发引导,也对到讲台上进行演示讲解同学的答案进行补充和完善.2、虽然在新课程中对判定定理是通过试验确认并不需要严格证明的,但如何将线面垂直转化成线线垂直,如何提出“如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面是否垂直的问题”是本节课的另一个教学难点.不少老师在这里都进行了有益的尝试.但是考虑到学生的认知水平,我并没有采取通过引导观察现实生活中的实例,进行猜想,从而提出问题的方法.因为一百个人心中就有一百个哈姆雷特,不同的人看同一幅图的感受可能是千差万别的,采用这种方法可能更多的时候是老师在进行引导,对学生认知的帮助不大.所以这里我仍然采用了类比猜想的方法,从学生已有的知识出发,通过合情推理最终提出上面的问题.然后通过试验探究总结出线面垂直的判定定理.其实通过试验并不能直接得出直线与平面垂直的判定定理,这里我会引导学生对“如果直线l与平面α内的两条相交直线m、n都垂直,但不经过它们的交点,那么直线l还与平面α垂直吗?”这个问题进行探究.一方面是因为这个问题难度并不大,与新课程中的降低判定定理部分的难度并不违背,另一方面通过对这个问题的研究也培养了学生严谨细致的作风,提高了学生的抽象概括能力和逻辑思维能力.3、在直线与平面垂直的判定这部分的题目中往往要进行多次线面垂直和线线垂直之间的转化而且有时还需要添加辅助线,而这些都是学生感觉比较棘手的问题.所以本节课中我会对例1进行透彻的分析,从而让学生掌握分析此类问题的方法和步骤,然后通过几道有梯度的练习题让学生逐步对定义和判定定理能够进行灵活运用,并不断增强学生的空间感.四、教学方法分析法无定法,本节并没有简单的只使用某一种教学方法,而是根据学生情况和教材特点同时进行了多方面的尝试.在定义的构建中通过创设情景,使学生对定义的总结水到渠成.在判定定理的构建中,通过小组合作增强了数学学习的氛围,也使学生在交流中互相学习共同进步.对直线与平面垂直的画法这样会用就行的问题直接传授,而对折纸试验中提出的问题却给学生留出充足的时间进行讨论,并根据情况进行适时的启发引导.总之一句话,所有的教学活动都要以学生的可持续发展为根本出发点,以学生在知识、能力和情感的提高和进步为根本出发点.《直线与平面垂直的判定》教学设计【教学目标】知识与技能目标:通过本节课的学习,使学生理解直线与平面垂直的定义和判定定理,并能对它们进行简单的应用;过程与方法目标:通过对定义的总结和对判定定理的探究,不断提高学生的抽象概括和逻辑思维能力;情感态度与价值观目标:通过学习,使学生在认识到数学源于生活的同时,体会到数学中的严谨细致之美,简洁朴实之美,和谐自然之美,从而使学生更加热爱数学,热爱生活.【教学重点及难点】教学重点:直线与平面垂直的定义、判定定理以及它们的初步应用.教学难点:对直线与平面垂直的定义的理解和对判定定理的探究.【教学方法】教法:启发诱导式学法:合作交流、动手试验【教具准备】计算机、多媒体课件、三角形卡纸【教学过程】一、直线与平面垂直定义的构建1、联系生活——提出问题在复习了直线与平面的三种位置关系后,给出几幅现实生活中常见的图片,让学生思考其中旗杆与地面、竖直的墙角线与地面、大桥的桥柱与水面之间的位置关系属于这三种情况中的那一种,它们还给我们留下了什么印象?从而提出问题:什么是直线与平面垂直?设计意图:使学生意识到直线与平面垂直是直线与平面相交中的一种特殊情况并引出本节课的课题.另外这样设计也吸引了学生的注意力,激发了学生的好奇心,使其主动参与到本节课的学习中来.2、创设情境——分析感知 播放动画,引导学生观察旗杆和它在地面上影子的位置关系,使其发现:旗杆所在直线l 与地面所在平面α内经过点B 的直线都是垂直的.进而提出问题:那么直线l 与平面α内不经过点B 的直线垂直吗?设计意图:在具体的情境中,让学生去体会和感知直线与平面垂直的定义.3、总结定义——形成概念 由学生总结出直线与平面垂直的定义,即如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直.引导学生用符号语言将它表示出来.然后提出问题:如果将定义中的“任意一条直线”改成“无数条直线”,结论还成立吗?设计意图:让学生通过思考和操作(用三角板和笔在桌面上比试),加深对定义的认识.二、直线与平面垂直判定定理的构建1、类比猜想——提出问题 根据线面平行的判定定理进行类比,通过不断的猜想和分析,最终提出问题:如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直吗?设计意图:不少老师都在本环节中进行了一些有益的尝试,但考虑到学生的认知水平,我仍然决定采用类比猜想的方法,从学生已有的知识出发,进行分析.2、动手试验——分析探究 演示试验过程:过△ABC 的顶点A 翻折纸片,得到折痕AD ,再将翻折后的纸片竖起放置在桌面上(BD 、DC 与桌面接触).问题一:同学们看,此时的折痕AD 与桌面垂直吗?又问:为什么说此时的折痕AD 与桌面不垂直?设计意图:让学生从另一个角度来理解直线与平面垂直的定义——只要直线A BD C αB A D Cl 与平面α内有一条直线不垂直,那么直线l 就与平面α不垂直.问题二:如何翻折才能让折痕AD 与桌面所在平面α垂直呢?﹙学生分组试验﹚设计意图:通过分组讨论增强数学学习氛围,让学生在交流中互相学习,共同进步.问题三:通过试验,你能得到什么结论?在回答此问题时大部分学生都会直接给出结论:如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.此时注意引导学生观察,直线AD 还经过BD 、CD 的交点.请他们思考在增加了这个条件后,试验的结论更准确的说应该是什么?又问:如果直线l 与平面α内的两条相交直线m 、n 都垂直,但不经过它们的交点,那么直线l 还与平面α垂直吗?设计意图:提高学生抽象概括的能力,同时也培养他们严谨细致的作风.3、提炼定理——形成概念 给出线面垂直的判定定理,请学生用符号语言把这个定理表示出来,并由此向学生指明,判定定理的实质就是通过线线垂直来证明线面垂直,它体现了降维这种重要的数学思想.判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.符号语言: m l ⊥,n l ⊥,α⊂m ,α⊂n ,A n m = ⇒l α⊥.三、初步应用——深化认识1、 例题剖析: 例1 已知:b a //,α⊥a .求证:α⊥b .分析过程:AB DC α(①②③表示分析的顺序)证明:在平面α内作两条相交直线m ,n .因为直线a α⊥,根据直线与平面垂直的定义知,a m a n ⊥⊥.又因为b ∥a所以m b ⊥,n b ⊥.又因为α⊂m ,α⊂n ,m ,n 是两条相交直线,所以α⊥b . 设计意图:不仅让学生学会使用判定定理,而且要让他们掌握分析此类问题的方法和步骤.本题也可以使用直线与平面垂直的定义来证明,这可以让学生在课下完成. 另外,例1向我们透漏了一个非常重要的信息,这里可以请学生用文字语言将例1表示出来——如果两条平行线中的一条直线与一个平面垂直,那么另外一条直线也与此平面垂直.2、随堂练习练习1 如图,在三棱锥V-ABC 中,VA=VC ,AB=BC .求证:VB⊥AC.证明:取AC 中点为K ,连接VK 、BK ,∵ 在△VAC 中,VA =VC ,且K 是AC 中点,∴ VK ⊥AC . A VB C K a αbm nα⊥a α⊥b ⎩⎨⎧⊥⊥n a m a ⎩⎨⎧⊥⊥n b m b b a //⇒⇒⇒①②同理 BK ⊥AC .又 VK ⊂平面VKB ,BK ⊂平面VKB ,VK∩BK=K,∴ AC⊥平面VKB .∵ VB ⊂平面VKB ,∴ VB ⊥ AC .设计意图:用展台展示部分学生的答案,督促学生规范化做题. 变式引申 如图,在三棱锥V-ABC 中,VA=VC ,AB=BC ,K是AC 的中点.若E 、F 分别是AB 、BC 的中点,试判断直线EF与平面VKB 的位置关系.解:直线EF 与平面VKB 互相垂直.∵ 在△VAC 中,VA=VC ,且K 是AC 中点,∴ VK ⊥AC .同理 BK ⊥AC .又 VK ⊂平面VKB ,BK ⊂平面VKB ,VK ∩BK=K ,∴ AC ⊥平面VKB .又 E 、F 分别是AB 、BC 的中点,∴ EF ∥AC∴ EF ⊥平面VKB .设计意图:在定义和判定定理之外,例1又给出了第三种证明直线与平面垂直的方法,构造这道变式引申题的目的就是让学生在用中将其内化.练习2 如图,PA 垂直圆O 所在平面,AC 是圆O 的直径,B 是圆周上一点,问三棱锥P-ABC 中有几个直角三角形?解:在三棱锥P-ABC 中有四个直角三角形,分别是:△ABC 、△PAB 、△PAC 和△PBC .设计意图:通过练习1和练习2培养学生熟练地进行线线垂直和线面垂直之间的转化,从而使他们能够对定义和判定定理进行灵活应用.四、总结回顾——提升认识线面垂直的定义 A C E F K V BB C五、布置作业——巩固认识必做题:习题2.3 B组2,4.选做题:如图SA⊥平面ABC,AB⊥BC,过A作SB的垂线,垂足为E,过E作SC的垂线,垂足为F.求证:AF⊥SC.探究题:课本66页的探究题.SBA CFE。
《直线与垂直平面垂直的性质》教学设计直线与垂直平面垂直的性质教学设计教学目标- 了解直线与垂直平面之间的垂直关系- 能够判断直线与垂直平面之间是否垂直- 能够应用垂直关系解决几何问题教学内容1. 介绍直线与垂直平面的定义和性质2. 讨论直线与垂直平面垂直的条件3. 提供实际生活中的例子,展示垂直关系的应用4. 解决几何问题,强化学生对垂直关系的理解教学步骤1. 引入直线与垂直平面的概念,并给出示意图,让学生对垂直关系有一个初步的了解。
2. 通过示例讲解直线与垂直平面垂直的条件,例如两条直线的斜率相乘为-1,或者两条直线的方向向量垂直。
3. 与学生一起探讨垂直关系在实际生活中的应用,例如建筑物的垂直墙面、垂直树干等。
4. 给学生提供一些几何问题,要求他们判断直线与垂直平面之间的垂直关系,并解决问题。
这样可以让学生通过实际操作巩固所学知识。
教学资源- PowerPoint演示文稿:包括直线与垂直平面的定义、性质以及示例图片- 实物例子:例如直线、垂直平面的示意图、建筑物或物体的照片等- 练题:包括判断直线与垂直平面垂直关系的题目和解答教学评估1. 在课堂上观察学生对直线与垂直平面垂直关系的理解情况,并提供即时反馈和指导。
2. 给学生布置作业,包括判断直线与垂直平面垂直关系的问题,并要求他们解答并解释答案的依据。
3. 对学生的作业进行评分和讲评,以评估他们对垂直关系的掌握程度。
教学延伸- 引导学生观察并发现更多实际生活中的垂直关系的例子。
- 引导学生自己设计问题,并交换解答,以提高他们对垂直关系的应用能力。
参考资料- 高中数学教材- 几何学相关参考书籍。
8.6.2 直线与平面垂直第1课时 直线与平面垂直的判定本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A 版)第八章《立体几何初步》,本节课主要学习直线与平面垂直的判定定理及其应用。
线面垂直是空间中线线垂直位置关系的拓展,又是面面垂直的基础,是空间中垂直关系转化的关键。
同时,它又是学习直线和平面所成的角、平面与平面的距离等后续知识的基础。
因此,这部分内容在教材中起着承上启下的作用。
本节课的学习,可以培养学生提出猜想、验证猜想、作出数学发现的意识,增强“平面化”和“降维”的转化思想,以及发展空间想象能力。
课程目标学科素养证明.1.教学重点:直线与平面垂直的定义,用直线与平面垂直的判定定理和性质定理进行证明;2.教学难点:直线与平面垂直的判定定理,并会用其判断直线与平面垂直.多媒体一、复习回顾,温故知新空间中直线与平面有几种位置关系? 【答案】在面内、平行、相交 二、探索新知1.观察下面实例,你能否给出直线与平面垂直的定义?1.直线与平面垂直的定义:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直。
记作α⊥l 。
直线l 叫做平面α的垂线,平面α叫做直线l 的垂面。
唯一公共点P 叫做垂足。
2.直线与平面垂直的画法:通常把直线画成与表示平面的平行四边形的一边垂直。
思考:在同一平面内,过一点有且只有一条直线与已知直线垂直,将这一结论推广到空间,过一点垂直于已知平面的直线有几条?为什么?【答案】过一点垂直于已知平面的直线有且只有一条。
3.过一点作垂直于已知平面的直线,则该点与垂足间的线段,叫做这个点到该平面的垂线段,垂线段的长度叫做这个点到该平面的距离。
探究: 如图,准备一块三角形的硬纸片,做一个试验:过ABC ∆的顶点A 翻折纸片,得到折痕AD ,将翻折后的纸片竖起放置在桌面上(BD 、DC 与桌面接触). 问题:(1)折痕AD 与桌面垂直吗?(2)如何翻折才能使折痕 AD 与桌面所在平面垂直? 【答案】(1)不垂直 (2)三角形BC 边上的高AD4.线面垂直的判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
直线与平面垂直优秀教案
经过这样的教学过程,学生能够更好地掌握直线与平面垂直的概念和判定定理,提升空间想象能力,培养学生勤于思考、乐于探究的研究惯,养成严谨与求实的研究作风。
在概念辨析环节,学生讨论后通过数学实验加以验证。
在定理探究环节,教师引导学生对直线与平面内一条直线垂直、
两条平行线垂直、两条相交直线垂直三种情况进行分类探究,并建立理性思维。
学生通过折纸实验,获得直观感知,提升空间想象能力。
在最后的练环节,教师展示例题和练,并引导学生完成解答,并对照答案进行自我检测。
通过这样的教学方式,学生可以获得理性认识,培养科学严谨的研究态度。
在课堂小结时,教师布置了三项作业,包括登陆研究网站巩固本节内容、完成学案的相应练和以小组为单位设计作品,要求用到本节课研究的线面垂直。
教师组织学生进行研究反思评价,让学生在电脑上完成反思评价测试,系统予以反馈,促进学生的研究反思能力。
通过教学组织形式的多样化、教学内容的数字化、教学手段的信息化,本节课突破了教学难点。
直线与平面垂直的判定教案教案标题:直线与平面垂直的判定教案教学目标:1. 理解直线与平面垂直的概念,并能判断给定直线与平面是否垂直。
2. 掌握判定直线与平面垂直的条件。
3. 运用所学知识解决相关问题并拓展思维。
教学内容:1. 直线与平面垂直的概念2. 判定直线与平面垂直的条件3. 相关问题的解决和应用教学步骤:Step 1: 引入新概念在课堂一开始,通过问题或实例引入直线与平面垂直的概念。
可以使用身边的物体作为例子,如直线与桌面的垂直关系等,引起学生的兴趣。
Step 2: 讲解直线与平面垂直的概念通过讲解和示意图,向学生明确直线与平面垂直的定义。
强调直线与平面的交角为90度。
Step 3: 判定直线与平面垂直的条件详细讲解判定直线与平面垂直的条件,并提供示例进行讲解和演示。
可通过几何性质、垂直投影等方法探讨。
Step 4: 练习与巩固让学生进行一些练习,巩固所学内容。
可以包括选择题、判断题、填空题和应用题等多种形式,以检验学生的理解和掌握。
Step 5: 拓展思维针对学生思维的扩展,提供一些拓展问题,让学生运用所学知识解决更复杂的问题,激发学生的思考和创造力。
Step 6: 总结与归纳对直线与平面垂直的判定条件进行总结和归纳,让学生对所学知识形成更加清晰的概念框架。
Step 7: 实例分析选择一个实际问题,如垂直过马路的斑马线设计等,引导学生运用所学知识分析并解决该问题,培养学生应用知识解决实际问题的能力。
Step 8: 作业布置布置相关作业,包括练习题和思考题,让学生巩固所学内容,并鼓励他们在课外积极拓展学习。
Step 9: 教学反思回顾教学过程,总结教学效果,尝试找出不足之处,以便今后的教学改进。
教学资源:1. 手绘的直线与平面垂直示意图2. 相关练习题和答案3. 讲义和教学课件(可选择性使用)教学评估:通过课堂练习、问题解答以及作业的批改等方式进行学生的教学评估。
评估可以分为定性和定量评估,以全面了解学生对直线与平面垂直判定的掌握情况。
空间直线平面的垂直教案主题:空间直线平面的垂直关系教学目标:1. 理解空间中直线、平面的定义及其特点。
2. 理解什么是直线与平面的垂直关系。
3. 能够判断直线与平面是否垂直,并举例说明。
教学重点:1. 直线与平面的定义及特点。
2. 直线与平面的垂直关系。
教学难点:1. 判断直线与平面是否垂直。
教学准备:1. 教师准备黑板、彩色粉笔或白板、标杆等教具。
教学过程:Step 1:导入新知识教师可以利用日常生活中的实例,引导学生思考两个平面相交于一根直线的情况,并提问学生如何判断这根直线与两个平面的关系。
Step 2:直线与平面的定义及特点教师简单明了地给出直线与平面的定义,并介绍直线与平面的特点,如直线无始无终、平面无边无角等。
Step 3:直线与平面的垂直关系教师引导学生思考直线与平面的垂直关系,并给出垂直的定义。
然后从两者的定义入手,解释直线与平面垂直的条件。
Step 4:判断直线与平面的垂直关系教师通过具体的实例,展示判断直线与平面垂直关系的方法。
同时,引导学生参与讨论,并解答他们的疑问。
Step 5:例题练习教师以练习题的形式进行针对直线与平面垂直关系的测试。
鼓励学生积极思考,独立完成。
Step 6:总结归纳教师对直线与平面的垂直关系进行总结归纳,并强调学生在实际问题中的应用。
Step 7:拓展延伸根据学生的学习情况,教师可以引导学生思考直线与平面的垂直关系在实际生活中的应用,如建筑、几何建模等领域。
Step 8:作业布置教师布置相关的习题作为课后作业,鼓励学生独立解答,并批改作业,及时给予反馈。
教学资源:黑板、彩色粉笔或白板、标杆等教具。
评估方式:教师通过观察学生的回答、讨论和作业的完成情况,评估学生对于直线与平面垂直关系的理解与应用能力。
延伸活动:教师可以组织学生进行小组讨论,挑选一些实际问题,引导他们应用直线与平面垂直关系的知识,一起尝试解决问题。
注意事项:在教学过程中,教师需要引导学生思考,并鼓励他们提出问题和分享观点。
直线与平面垂直、平面与平面垂直的性质(一)教学目标1.知识与技能(1)使学生掌握直线与平面垂直,平面与平面垂直的性质定理;(2)能运用性质定理解决一些简单问题;(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互关系.2.过程与方法(1)让学生在观察物体模型的基础上,进行操作确认,获得对性质定理正确性的认识;3.情感、态度与价值观通过“直观感知、操作确认、推理证明” ,培养学生空间概念、空间想象能力以及逻辑推理能力.(二)教学重点、难点两个性质定理的证明.(三)教学方法学生依据已有知识和方法,在教师指导下,自主地完成定理的证明、问题的转化.1.问题:已知直线a、b 和平面,如果a ,b ,那么直线a、b 一定平行吗?已知 a ,b 求证:b∥a.证明:假定b 不平行于a,设b =0 b′是经过O与直线a 平行的直线∵a∥b′,a∴b′⊥a即经过同一点O 的两线b、b′都与垂直这是不可能的,因此b∥a.2.直线与平面垂直的性质定理垂直于同一个平面的两条直线平行简化为:线面垂直线线平行AA′、BB′、CC′、DD′ 所在直线都垂直于平面ABCD,它们之间相互平行,所以结论成立.师:怎么证明呢?由于无法把两条直线a、b 归入到一个平面内,故无法应用平行直线的判定知识,也无法应用公理4,有这种情况下,我们采用“反证法” 师生边分析边板书.学,培养几何直观能力. ,反证法证题是一个难点,采用以教师为主,能起到一个示范作用,并提高上课效率.探索新知二、平面与平面平行的性质定理1.问题黑板所在平面与地面所在平面垂直,你能否在黑板上画一条直线与地面垂直?2.例1 设,=CD,AB ,教师投影问题,学生思考、观察、讨论,然后回答问题生:借助长方体模型,在长方体ABCD–A′B′C′D′中,面A′ADD′⊥面本例题的难点是构造辅助线,采用分析综合法能较好地解决这个问题.2.平面和平面垂直的性质补充完善 .归纳知识提高3.面面垂直 线面垂直 线线垂直自我整合知识的能力. 课后作业2.3 第三课时 习案 学生独立完成固化知识提升能力备选例题例 1 把直角三角板 ABC 的直角边 BC 放置桌面,另一条直 桌面所在的平面 垂直,a 是 内一条直线,若斜边 AB 与 a 垂 是否与 a 垂直?a AC 解析】 ACa AB aAC AB A评析】若 BC 与 垂直,同理可得 AB 与 也垂直,其实质是三垂线定理及逆定理,证明过程体现了一种重要的数学转化思想方法: “线线垂直→线面垂直→线线垂直”例 2 求证:如果两个平面都垂直于第三个平面,则它们的交线垂直于第三个平面.已 知 ⊥r , ⊥r , ∩ = l ,求证: l ⊥r .【分析】根据直线和平面垂直的判定定理可在 r 内构造两相交直线分别与平面 、 垂 直.或由面面垂直的性质易在 、 内作出平面 r 的垂线,再设法证明 l 与其平行即可.【证明】法一:如图,设 ∩r = a , ∩r = b ,在 r P .过点 P 在r 内作直线 m ⊥ a ,n ⊥b .∵ ⊥r , ⊥r ,∴ m ⊥ a ,n ⊥ (面面垂直的性质) 又 ∩ = l ,a 平面 ABC BC 平面 ABCa BC角边 AC 与 直,则 BC内任取一点∴ l ⊥ m ,l ⊥n .又 m ∩n = P ,m ,n r ∴l ⊥r .法二:如图,设 ∩r = a , ∩r ∵ ⊥r , ⊥r , ∴m ⊥r ,n ⊥r . ∴ m ∥ n ,又 n ,m , ∴ m ∥ ,又 ∩ = l ,m ,b ,在 内作 m ⊥a ,在 内作 n ⊥ b .∴ m ∥ l , 又 m ⊥r ,∴l ⊥r .【评析】充分利用面面垂直的性质构造线面垂直是解决本题的关键.证法 面垂直、线面垂直、线线垂直相互转化;证法二涉及垂直关系与平行关系之间的转化.此题是线线、面面垂直转化的典型题,通过一题多解,对沟通知识和方法,开拓解题思路是有益 的.充分利用面。
《直线与平面垂直的判定》教学设计课题直线与平面垂直的判定课型新课课时第一课时教材分析本节课是在学习者学习了空间点、直线、平面之间的位置关系和直线、平面平行的判定及其性质之后进行的,其主要内容是直线与平面垂直的定义、直线与平面垂直的判定定理及其初步应用。
其中,线面垂直的定义是线面垂直最基本的判定方法和性质,它是探究线面垂直判定定理的基础;线面垂直的判定定理充分体现了线线垂直与线面垂直之间的转化,它既是后面学习面面垂直的基础,又是研究空间中的线线关系和线面关系的桥梁。
(如图)直线与平面垂直是通过直线和平面内的任意一条直线(无一例外)都垂直来定义的,定义本身也表明了直线与平面垂直的意义,即如果一条直线垂直于一个平面,那么这条直线就垂直于这个平面内的所有直线,这也可以看成是线线垂直的一个判定方法;直线与平面垂直的判定定理本节是通过折纸试验来感悟的,即一条直线只要与平面内的两条相交直线垂直就可以判定直线与平面垂直了,它把原来定义中要求与任意一条(无限)垂直转化为只要与两条(有限)相交直线垂直就行了。
直线与平面垂直的判定方法除了定义法、判定定理外,还有如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面,这是直线与平面垂直判定的一种间接方法,也是十分重要的。
本节学习内容蕴含了“空间问题转化为平面问题”,“无限转化为有限”“线线垂直与线面垂直互相转化”等数学思想。
精彩文档精彩文档教学环节教学过程师生活动设计意图一、复习回顾(1)直线和平面的位置关系:直线在平面内、直线与平面平行、直线与平面垂直(2)直线和平面平行的判定定理:∂⇒∂⊂∂⊄a//a//b,,且ba教师提问,学生一起回答,并演示PPT ,题写板书通过回顾旧知识,感悟新知识之间的联系二、创设情境,感知概念 (1)判断:平面外一条直线与此平面内的一条直线垂直,则该直线与此平面垂直?(2)展示图片:①让同学们观察图片,说出旗杆与地面、柱子与地面的位置有什么关系?请同学们将图片中旗杆与影子、柱子与影子的关系ⅰ)阳光下,旗杆与它在地面上的影子所成的角度是多少?ⅱ)随着太阳的移动,影子的位置也会移动,而旗杆与影子所成的角度是否发生改变?让学习者发现旗杆所在直线始终与地面上任意一条直线垂直线面垂直定义比较抽象,若直接给出,学生只能死记硬背,因此,在教学中,先安排学生课前收集大量图片进行感知,然后再通过多媒体课件演示,设计这样的问题情景贴近学生生活,使得学生对直线与平面垂直的概念获得一定的感性认识,为归纳出直线与平面垂直的概念作准备。
直线与平面垂直的判定教学设计教学设计:直线与平面垂直的判定一、教学目标:1.理解直线与平面垂直的定义及性质。
2.能够正确判断直线与平面是否垂直。
3.能够运用垂直的定义和性质解决实际问题。
二、教学准备:1.教师准备:投影仪、计算机、白板、平面图形、线段模型等教具。
2.学生准备:课本、笔、纸。
三、教学过程:1.导入新知识(5分钟)教师提出一个问题:当我们说一条直线与一个平面垂直时,我们是基于什么条件进行判断的?请同学们思考并回答。
2.引入新知识(15分钟)a)利用平面图形和线段模型向学生展示直线与平面垂直的情况,并解释垂直的定义和性质。
b)教师针对不同情况,引导学生思考如何判断直线与平面垂直,并总结出判断的方法和条件。
3.学生操作与讨论(30分钟)a)学生独立或分组完成教师所布置的题目。
b)学生相互讨论,并互相提供判断直线与平面垂直的理由。
c)学生到讲台上做板书,展示自己的解题过程和判断方法。
4.深入拓展(20分钟)教师结合实际生活中的问题,引导学生运用垂直的定义和性质解决问题。
例如:a)如果一个直线与地面上的一块平板垂直,如何确定这个直线的斜率?b)如果一个房子的屋顶是平的,如何判断屋顶上的柱子与屋顶是否垂直?5.综合评价(10分钟)教师布置一些综合性的题目,要求学生独立完成,并进行评价。
例如:a)已知直线L经过平面P上的两点A和B,且垂直于平面P,求证直线L垂直于平面P。
b)已知平面P1和平面P2垂直,直线L1在平面P1上,直线L2在平面P2上,而且L2与P1垂直,求证L1与L2垂直。
四、课堂延伸:1.学生可自主选择更多直线与平面垂直的实际问题,并运用所学知识解决。
2.学生可通过实际测量或模拟实验,验证自己得出的判断结果。
五、教学反思:通过本节课的教学,学生能够理解直线与平面垂直的定义及性质,并能够正确判断直线与平面是否垂直。
同时,通过实际问题的引导,学生能够运用垂直的定义和性质解决问题。
在教学过程中,教师充分发挥学生的主体作用,通过合作讨论和展示,培养了学生的分析问题和解决问题的能力。
8.6.2 直线与平面垂直
第1课时直线与平面垂直的判定
本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A版)第八章《立体几何初步》,本节课主要学习直线与平面垂直的判定定理及其应用。
线面垂直是空间中线线垂直位置关系的拓展,又是面面垂直的基础,是空间中垂直关系转化的关键。
同时,它又是学习直线和平面所成的角、平面与平面的距离等后续知识的基础。
因此,这部分内容在教材中起着承上启下的作用。
本节课的学习,可以培养学生提出猜想、验证猜想、作出数学发现的意识,增强“平面化”和“降维”的转化思想,以及发展空间想象能力。
1.教学重点:直线与平面垂直的定义,用直线与平面垂直的判定定理和性质定理进行证明;
2.教学难点:直线与平面垂直的判定定理,并会用其判断直线与平面垂直.
多媒体
2.垂直于梯形两腰的直线与梯形所在平面的位置关系是() A.垂直B.相交但不垂直
C.平行D.不确定
【答案】A
【解析】因为梯形两腰所在直线为两条相交直线,所以由线面垂直的判定定理知,直线与平面垂直.选A.
3.如图所示,若斜线段AB是它在平面α上的射影BO的2倍,则AB与平面α所成的角是()
A.60° B.45°
C.30° D.120°
【答案】A
【解析】∠ABO即是斜线AB与平面α所成的角,在Rt△AOB中,
AB=2BO,所以cos∠ABO=1
2,即∠ABO=60°. 故选A.
4.在正方体ABCDA1B1C1D1中,求证:A1C⊥平面BC1D.
[证明]如图,连接AC,
∴AC⊥BD,
又∵BD⊥A1A,AC∩AA1=A,
AC,A1A⊂平面A1AC,
∴BD⊥平面A1AC,
∵A1C⊂平面A1AC,
∴BD⊥A1C.
同理可证BC1⊥A1C.
让学多观察直线与平面垂直的实例,更好的理解直线与平面的定义,证明直线与平面垂直,应强调关键是在平面内找两条相交直线与该直线垂直。