2020年高考数学(理数) 大题专项练习 导数的应用10题(含答案)
- 格式:pdf
- 大小:879.65 KB
- 文档页数:16
第2课时 导数与方程题型一 求函数零点个数例1 已知函数f (x )=2a 2ln x -x 2(a >0). (1)求函数f (x )的单调区间;(2)讨论函数f (x )在区间(1,e 2)上零点的个数(e 为自然对数的底数). 解 (1)∵f (x )=2a 2ln x -x 2,∴f ′(x )=2a 2x -2x =2a 2-2x 2x =-2(x -a )(x +a )x ,∵x >0,a >0,当0<x <a 时,f ′(x )>0, 当x >a 时,f ′(x )<0.∴f (x )的单调增区间是(0,a ),单调减区间是(a ,+∞). (2)由(1)得f (x )max =f (a )=a 2(2ln a -1). 讨论函数f (x )的零点情况如下:①当a 2(2ln a -1)<0,即0<a <e 时,函数f (x )无零点,在(1,e 2)上无零点;②当a 2(2ln a -1)=0,即a =e 时,函数f (x )在(0,+∞)内有唯一零点a ,而1<a =e<e 2,∴f (x )在(1,e 2)内有一个零点;③当a 2(2ln a -1)>0,即a >e 时,由于f (1)=-1<0,f (a )=a 2(2ln a -1)>0,f (e 2)=2a 2ln(e 2)-e 4=4a 2-e 4=(2a -e 2)(2a +e 2),当2a -e 2<0,即e<a <e 22时,1<e<a <e 22<e 2,f (e 2)<0,由函数f (x )的单调性可知,函数f (x )在(1,a )内有唯一零点x 1,在(a ,e 2)内有唯一零点x 2, ∴f (x )在(1,e 2)内有两个零点.当2a -e 2≥0,即a ≥e 22>e 时,f (e 2)≥0,而且f (e)=2a 2·12-e =a 2-e>0,f (1)=-1<0,由函数的单调性可知,无论a ≥e 2,还是a <e 2,f (x )在(1,e)内有唯一的零点,在(e ,e 2)内没有零点,从而f (x )在(1,e 2)内只有一个零点.综上所述,当0<a <e 时,函数f (x )在区间(1,e 2)上无零点;当a =e 或a ≥e 22时,函数f (x )在区间(1,e 2)上有一个零点;当e<a <e 22时,函数f (x )在区间(1,e 2)上有两个零点.思维升华 (1)可以通过构造函数,将两曲线的交点问题转化为函数零点问题.(2)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根的情况. 跟踪训练1 设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3的零点的个数.解 (1)由题设,当m =e 时,f (x )=ln x +ex ,则f ′(x )=x -ex2(x >0),由f ′(x )=0,得x =e.∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二 根据函数零点情况求参数范围例2 (2018·南京联合体调研)已知f (x )=12x 2-a ln x ,a ∈R .(1)求函数f (x )的单调增区间;(2)若函数f (x )有两个零点,求实数a 的取值范围,并说明理由. (参考求导公式:[f (ax +b )]′=af ′(ax +b ))解 (1)由题知f ′(x )=x -a x =x 2-ax,x >0,当a ≤0时,f ′(x )>0,函数f (x )的增区间为(0,+∞); 当a >0时,f ′(x )=(x +a )(x -a )x ,令f ′(x )>0,因为x >0,所以x +a >0,所以x >a , 所以函数f (x )的单调增区间为(a ,+∞). 综上,当a ≤0时,f (x )的单调增区间为(0,+∞); 当a >0时,f (x )的单调增区间为(a ,+∞).(2)由(1)知,若a ≤0,f (x )在(0,+∞)上为增函数,函数f (x )至多有一个零点,不合题意. 若a >0,当x ∈(0,a )时,f ′(x )<0,f (x )在(0,a )上为减函数; 当x ∈(a ,+∞)时,f ′(x )>0,f (x )在(a ,+∞)上为增函数, 所以f (x )min =f (a )=12a -12a ln a =12a (1-ln a ).要使f (x )有两个零点,则f (x )min =12a (1-ln a )<0,所以a >e. 下面证明:当a >e 时,函数f (x )有两个零点.因为a >e ,所以1∈(0,a ),而f (1)=12>0,所以f (x )在(0,a )上存在唯一零点.方法一 又f (e a )=12e a 2-a ⎝⎛⎭⎫12+ln a =12a (e a -1-2ln a ), 令h (a )=e a -1-2ln a ,a >e ,h ′(a )=e -2a >0,所以h (a )在(e ,+∞)上单调递增, 所以h (a )>h (e)=e 2-3>0,所以f (x )在(a ,+∞)上也存在唯一零点. 综上,当a >e 时,函数f (x )有两个零点.所以当f (x )有两个零点时,实数a 的取值范围为(e ,+∞). 方法二 先证x ∈(1,+∞)有ln x <x -1, 所以f (x )=12x 2-a ln x >12x 2-ax +a .因为a >e ,所以a +a 2-2a >a >a .因为12(a +a 2-2a )2-a (a +a 2-2a )+a =0.所以f (a +a 2-2a )>0,所以f (x )在(a ,+∞)上也存在唯一零点;综上,当a >e 时,函数f (x )有两个零点.所以当f (x )有两个零点时,实数a 的取值范围为(e ,+∞).思维升华 函数的零点个数可转化为函数图象的交点个数,确定参数范围时要根据函数的性质画出大致图象,充分利用导数工具和数形结合思想.跟踪训练2 已知函数f (x )=x ln x ,g (x )=-x 2+ax -3(a 为实数),若方程g (x )=2f (x )在区间⎣⎡⎦⎤1e ,e 上有两个不等实根,求实数a 的取值范围. 解 由g (x )=2f (x ),可得2x ln x =-x 2+ax -3,a =x +2ln x +3x ,设h (x )=x +2ln x +3x(x >0),所以h ′(x )=1+2x -3x 2=(x +3)(x -1)x 2.所以x 在⎣⎡⎦⎤1e ,e 上变化时,h ′(x ),h (x )的变化情况如下表:又h ⎝⎛⎭⎫1e =1e +3e -2,h (1)=4,h (e)=3e +e +2. 且h (e)-h ⎝⎛⎭⎫1e =4-2e +2e<0. 所以h (x )min =h (1)=4,h (x )max =h ⎝⎛⎭⎫1e =1e +3e -2, 所以实数a 的取值范围为4<a ≤e +2+3e ,即a 的取值范围为⎝⎛⎦⎤4,e +2+3e .1.已知函数f (x )=a +x ·ln x (a ∈R ),试求f (x )的零点个数. 解 f ′(x )=(x )′ln x +x ·1x =x (ln x +2)2x ,令f ′(x )>0,解得x >e -2, 令f ′(x )<0,解得0<x <e -2, 所以f (x )在(0,e -2)上单调递减, 在(e -2,+∞)上单调递增. f (x )min =f (e -2)=a -2e,显然当a >2e 时,f (x )min >0,f (x )无零点,当a =2e 时,f (x )min =0,f (x )有1个零点,当a <2e 时,f (x )min <0,f (x )有2个零点.2.已知f (x )=1x +e x e -3,F (x )=ln x +e xe -3x +2.(1)判断f (x )在(0,+∞)上的单调性; (2)判断函数F (x )在(0,+∞)上零点的个数.解 (1)f ′(x )=-1x 2+e x e =x 2e x-ee x 2,令f ′(x )>0,解得x >1,令f ′(x )<0,解得0<x <1, 所以f (x )在(0,1)上单调递减, 在(1,+∞)上单调递增. (2)F ′(x )=f (x )=1x +e xe -3,由(1)得∃x 1,x 2,满足0<x 1<1<x 2,使得f (x )在(0,x 1)上大于0,在(x 1,x 2)上小于0,在(x 2,+∞)上大于0, 即F (x )在(0,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增, 而F (1)=0,x →0时,F (x )→-∞, x →+∞时,F (x )→+∞, 画出函数F (x )的草图,如图所示.故F (x )在(0,+∞)上的零点有3个.3.已知函数f (x )=ax 2(a ∈R ),g (x )=2ln x ,且方程f (x )=g (x )在区间[2,e]上有两个不相等的解,求a 的取值范围.解 由已知可得方程a =2ln xx2在区间[2,e]上有两个不等解,令φ(x )=2ln xx 2,由φ′(x )=2(1-2ln x )x 3易知,φ(x )在(2,e)上为增函数,在(e ,e)上为减函数, 则φ(x )max =φ(e)=1e ,由于φ(e)=2e 2,φ(2)=ln 22,φ(e)-φ(2)=2e 2-ln 22=4-e 2ln 22e 2=24e 2ln e ln 22e-<ln 81-ln 272e 2<0, 所以φ(e)<φ(2). 所以φ(x )min =φ(e),如图可知φ(x )=a 有两个不相等的解时,需ln 22≤a <1e.即f (x )=g (x )在[2,e]上有两个不相等的解时,a 的取值范围为⎣⎡⎭⎫ln 22,1e .4.已知函数f (x )=(x -2)e x +a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.(1)解 f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ). ①设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点. ②设a >0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)内单调递减,在(1,+∞)内单调递增. 又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a2,则f (b )>a2(b -2)+a (b -1)2=a ⎝⎛⎭⎫b 2-32b >0, 故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ). 若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)内单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞)时,f ′(x )>0.因此f (x )在(1,ln(-2a ))内单调递减,在(ln(-2a ),+∞)内单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)证明 不妨设x 1<x 2,由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1), f (x )在(-∞,1)内单调递减, 所以x 1+x 2<2等价于f (x 1)>f (2-x 2), 即f (2-x 2)<0. 由于222222(2)e(1)x f x x a x --=-+-,而()22222(2)e (1)0xf x x a x =-+-=, 所以222222(2)e(2)e .x x f x x x --=---设g(x)=-x e2-x-(x-2)e x,则g′(x)=(x-1)(e2-x-e x).所以当x>1时,g′(x)<0.而g(1)=0,故当x>1时,g(x)<0.从而g(x2)=f(2-x2)<0,故x1+x2<2.5.(2018·南通模拟)已知函数f (x )=e x -|x -a |,其中a ∈R . (1)若f (x )在R 上单调递增,求实数a 的取值范围;(2)若函数有极大值点x 2和极小值点x 1,且f (x 2)-f (x 1)≥k (x 2-x 1)恒成立,求实数k 的取值范围.解 (1)因为f (x )=e x -|x -a |=⎩⎪⎨⎪⎧e x -x +a ,x ≥a ,e x+x -a ,x <a ,则f ′(x )=⎩⎪⎨⎪⎧e x-1,x ≥a ,e x +1,x <a .因为f (x )在R 上单调递增, 所以f ′(x )≥0恒成立,当x <a 时,f ′(x )=e x +1>1>0恒成立; 当x ≥a 时,要使f ′(x )=e x -1≥0恒成立, 所以f ′(a )≥0,即a ≥0.所以实数a 的取值范围为[0,+∞).(2)由(1)知,当a ≥0时,f (x )在R 上单调递增,不符合题意, 所以有a <0.此时,当x <a 时,f ′(x )=e x +1>1>0,f (x )单调递增; 当x ≥a 时,f ′(x )=e x -1,令f ′(x )=0,得x =0, 所以f ′(x )<0在(a,0)上恒成立,f (x )在(a,0)上单调递减, f ′(x )>0在(0,+∞)上恒成立,f (x )在(0,+∞)上单调递增. 所以f (x )极大值=f (a )=e a ,f (x )极小值=f (0)=1+a ,即a <0符合题意. 由f (x 2)-f (x 1)≥k (x 2-x 1)恒成立, 可得e a -a -1≥ka 对任意a <0恒成立.设g (a )=e a -(k +1)a -1,求导得g ′(a )=e a -(k +1).①当k ≤-1时,g ′(a )>0恒成立,g (a )在(-∞,0)上单调递增,又因为g (-1)=1e+k <0,与g (a )≥0矛盾. ②当k ≥0时,g ′(a )<0在(-∞,0)上恒成立,g (a )在(-∞,0)上单调递减, 又因为当a →0时,g (a )→0,所以此时g (a )>0恒成立,符合题意. ③当-1<k <0时,g ′(a )>0在(-∞,0)上的解集为(ln(k +1),0), 即g (a )在(ln(k +1),0)上单调递增,又因为当a →0时,g (a )→0,所以g (ln(k +1))<0,不合题意.综上,实数k 的取值范围为[0,+∞).。
全国通用2020_2022三年高考数学真题分项汇编:04 导数及其应用(解答题)(理科专用)1.【2022年全国甲卷】已知函数f(x)=e xx−lnx+x−a.(1)若f(x)≥0,求a的取值范围;(2)证明:若f(x)有两个零点x1,x2,则环x1x2<1.【答案】(1)(−∞,e+1](2)证明见的解析【解析】【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为e xx −xe1x−2[lnx−12(x−1x)]>0,再利用导数即可得证.(1)f(x)的定义域为(0,+∞),f′(x)=(1x −1x2)e x−1x+1=1x(1−1x)e x+(1−1x)=x−1x(e xx+1)令f(x)=0,得x=1当x∈(0,1),f′(x)<0,f(x)单调递减当x∈(1,+∞),f′(x)>0,f(x)单调递增f(x)≥f(1)=e+1−a,若f(x)≥0,则e+1−a≥0,即a≤e+1所以a的取值范围为(−∞,e+1](2)由题知,f(x)一个零点小于1,一个零点大于1不妨设x1<1<x2要证x1x2<1,即证x1<1x2因为x1,1x2∈(0,1),即证f(x1)>f(1x2)因为f(x1)=f(x2),即证f(x2)>f(1x2)即证e xx −lnx+x−xe1x−lnx−1x>0,x∈(1,+∞)即证e xx −xe1x−2[lnx−12(x−1x)]>0下面证明x>1时,e xx −xe1x>0,lnx−12(x−1x)<0设g(x)=e xx−xe1x,x>1,则g′(x)=(1x −1x2)e x−(e1x+xe1x⋅(−1x2))=1x(1−1x)e x−e1x(1−1x) =(1−1x)(e xx−e1x)=x−1x(e xx−e1x)设φ(x)=e xx (x>1),φ′(x)=(1x−1x2)e x=x−1x2e x>0所以φ(x)>φ(1)=e,而e1x<e所以e xx−e1x>0,所以g′(x)>0所以g(x)在(1,+∞)单调递增即g(x)>g(1)=0,所以e xx−xe1x>0令ℎ(x)=lnx−12(x−1x),x>1ℎ′(x)=1x−12(1+1x2)=2x−x2−12x2=−(x−1)22x2<0所以ℎ(x)在(1,+∞)单调递减即ℎ(x)<ℎ(1)=0,所以lnx−12(x−1x)<0;综上, e xx −xe1x−2[lnx−12(x−1x)]>0,所以x1x2<1.【点睛】关键点点睛:本题是极值点偏移问题,关键点是通过分析法,构造函数证明不等式ℎ(x)=lnx−12(x−1x)这个函数经常出现,需要掌握2.【2022年全国乙卷】已知函数f(x)=ln(1+x)+axe−x(1)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若f(x)在区间(−1,0),(0,+∞)各恰有一个零点,求a的取值范围.【答案】(1)y=2x(2)(−∞,−1)【解析】【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a分类讨论,对x分(−1,0),(0,+∞)两部分研究(1)f(x)的定义域为(−1,+∞)当a=1时,f(x)=ln(1+x)+xe x ,f(0)=0,所以切点为(0,0)f′(x)=11+x+1−xe x,f′(0)=2,所以切线斜率为2所以曲线y=f(x)在点(0,f(0))处的切线方程为y=2x (2)f(x)=ln(1+x)+ax e xf′(x)=11+x+a(1−x)e x=e x+a(1−x2)(1+x)e x设g(x)=e x+a(1−x2)1°若a>0,当x∈(−1,0),g(x)=e x+a(1−x2)>0,即f′(x)>0所以f(x)在(−1,0)上单调递增,f(x)<f(0)=0故f(x)在(−1,0)上没有零点,不合题意2°若−1⩽a⩽0,当x∈(0,+∞),则g′(x)=e x−2ax>0所以g(x)在(0,+∞)上单调递增所以g(x)>g(0)=1+a⩾0,即f′(x)>0所以f(x)在(0,+∞)上单调递增,f(x)>f(0)=0故f(x)在(0,+∞)上没有零点,不合题意3°若a<−1(1)当x∈(0,+∞),则g′(x)=e x−2ax>0,所以g(x)在(0,+∞)上单调递增g(0)=1+a<0,g(1)=e>0所以存在m∈(0,1),使得g(m)=0,即f′(m)=0当x∈(0,m),f′(x)<0,f(x)单调递减当x∈(m,+∞),f′(x)>0,f(x)单调递增所以当x∈(0,m),f(x)<f(0)=0当x→+∞,f(x)→+∞所以f(x)在(m,+∞)上有唯一零点又(0,m)没有零点,即f(x)在(0,+∞)上有唯一零点(2)当x∈(−1,0),g(x)=e x+a(1−x2)设ℎ(x)=g′(x)=e x−2axℎ′(x)=e x−2a>0所以g′(x)在(−1,0)单调递增g′(−1)=1e+2a<0,g′(0)=1>0所以存在n∈(−1,0),使得g′(n)=0当x∈(−1,n),g′(x)<0,g(x)单调递减当x∈(n,0),g′(x)>0,g(x)单调递增,g(x)<g(0)=1+a<0又g(−1)=1e>0所以存在t∈(−1,n),使得g(t)=0,即f′(t)=0当x∈(−1,t),f(x)单调递增,当x∈(t,0),f(x)单调递减有x→−1,f(x)→−∞而f(0)=0,所以当x∈(t,0),f(x)>0所以f(x)在(−1,t)上有唯一零点,(t,0)上无零点即f(x)在(−1,0)上有唯一零点所以a<−1,符合题意所以若f(x)在区间(−1,0),(0,+∞)各恰有一个零点,求a的取值范围为(−∞,−1)【点睛】方法点睛:本题的关键是对a的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.3.【2022年新高考1卷】已知函数f(x)=e x−ax和g(x)=ax−lnx有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【答案】(1)a=1(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当b>1时,e x−x=b的解的个数、x−lnx=b的解的个数均为2,构建新函数ℎ(x)=e x+lnx−2x,利用导数可得该函数只有一个零点且可得f(x),g(x)的大小关系,根据存在直线y=b与曲线y=f(x)、y=g(x)有三个不同的交点可得b的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)f(x)=e x−ax的定义域为R,而f′(x)=e x−a,若a≤0,则f′(x)>0,此时f(x)无最小值,故a>0.g(x)=ax−lnx的定义域为(0,+∞),而g′(x)=a−1x =ax−1x.当x<lna时,f′(x)<0,故f(x)在(−∞,lna)上为减函数,当x>lna时,f′(x)>0,故f(x)在(lna,+∞)上为增函数,故f(x)min=f(lna)=a−alna.当0<x<1a 时,g′(x)<0,故g(x)在(0,1a)上为减函数,当x>1a 时,g′(x)>0,故g(x)在(1a,+∞)上为增函数,故g(x)min=g(1a )=1−ln1a.因为f(x)=e x−ax和g(x)=ax−lnx有相同的最小值,故1−ln1a =a−alna,整理得到a−11+a=lna,其中a>0,设g(a)=a−11+a −lna,a>0,则g′(a)=2(1+a)2−1a=−a2−1a(1+a)2≤0,故g(a)为(0,+∞)上的减函数,而g(1)=0,故g(a)=0的唯一解为a=1,故1−a1+a=lna的解为a=1.综上,a=1.(2)由(1)可得f(x)=e x−x和g(x)=x−lnx的最小值为1−ln1=1−ln11=1.当b>1时,考虑e x−x=b的解的个数、x−lnx=b的解的个数.设S(x)=e x−x−b,S′(x)=e x−1,当x<0时,S′(x)<0,当x>0时,S′(x)>0,故S(x)在(−∞,0)上为减函数,在(0,+∞)上为增函数,所以S(x)min=S(0)=1−b<0,而S(−b)=e−b>0,S(b)=e b−2b,设u(b)=e b−2b,其中b>1,则u′(b)=e b−2>0,故u(b)在(1,+∞)上为增函数,故u(b)>u(1)=e−2>0,故S(b)>0,故S(x)=e x−x−b有两个不同的零点,即e x−x=b的解的个数为2.设T(x)=x−lnx−b,T′(x)=x−1x,当0<x<1时,T′(x)<0,当x>1时,T′(x)>0,故T(x)在(0,1)上为减函数,在(1,+∞)上为增函数,所以T(x)min=T(1)=1−b<0,而T(e−b)=e−b>0,T(e b)=e b−2b>0,T(x)=x −lnx −b 有两个不同的零点即x −lnx =b 的解的个数为2. 当b =1,由(1)讨论可得x −lnx =b 、e x −x =b 仅有一个零点, 当b <1时,由(1)讨论可得x −lnx =b 、e x −x =b 均无零点, 故若存在直线y =b 与曲线y =f(x)、y =g(x)有三个不同的交点, 则b >1.设ℎ(x)=e x +lnx −2x ,其中x >0,故ℎ′(x)=e x +1x −2,设s(x)=e x −x −1,x >0,则s ′(x)=e x −1>0,故s(x)在(0,+∞)上为增函数,故s(x)>s(0)=0即e x >x +1, 所以ℎ′(x)>x +1x−1≥2−1>0,所以ℎ(x)在(0,+∞)上为增函数,而ℎ(1)=e −2>0,ℎ(1e 3)=e 1e 3−3−2e 3<e −3−2e 3<0,故ℎ(x)在(0,+∞)上有且只有一个零点x 0,1e 3<x 0<1且: 当0<x <x 0时,ℎ(x)<0即e x −x <x −lnx 即f(x)<g(x), 当x >x 0时,ℎ(x)>0即e x −x >x −lnx 即f(x)>g(x),因此若存在直线y =b 与曲线y =f(x)、y =g(x)有三个不同的交点, 故b =f(x 0)=g(x 0)>1,此时e x −x =b 有两个不同的零点x 1,x 0(x 1<0<x 0), 此时x −lnx =b 有两个不同的零点x 0,x 4(0<x 0<1<x 4), 故e x 1−x 1=b ,e x 0−x 0=b ,x 4−lnx 4−b =0,x 0−lnx 0−b =0 所以x 4−b =lnx 4即e x 4−b =x 4即e x 4−b −(x 4−b)−b =0, 故x 4−b 为方程e x −x =b 的解,同理x 0−b 也为方程e x −x =b 的解又e x 1−x 1=b 可化为e x 1=x 1+b 即x 1−ln(x 1+b)=0即(x 1+b)−ln(x 1+b)−b =0, 故x 1+b 为方程x −lnx =b 的解,同理x 0+b 也为方程x −lnx =b 的解, 所以{x 1,x 0}={x 0−b,x 4−b},而b >1, 故{x 0=x 4−bx 1=x 0−b 即x 1+x 4=2x 0. 【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系. 4.【2022年新高考2卷】已知函数f(x)=xe ax −e x . (1)当a =1时,讨论f(x)的单调性;(2)当x >0时,f(x)<−1,求a 的取值范围;(3)设n ∈N ∗,证明:√12+1√22+2+⋯√n 2+n >ln(n +1).【答案】(1)f(x)的减区间为(−∞,0),增区间为(0,+∞). (2)a ≤12 (3)见解析 【解析】 【分析】(1)求出f ′(x),讨论其符号后可得f(x)的单调性.(2)设ℎ(x)=xe ax −e x +1,求出ℎ″(x),先讨论a >12时题设中的不等式不成立,再就0<a ≤12结合放缩法讨论ℎ′(x)符号,最后就a ≤0结合放缩法讨论ℎ(x)的范围后可得参数的取值范围.(3)由(2)可得2lnt <t −1t 对任意的t >1恒成立,从而可得ln(n +1)−lnn <√n 2+n 对任意的n ∈N ∗恒成立,结合裂项相消法可证题设中的不等式. (1)当a =1时,f(x)=(x −1)e x ,则f ′(x)=xe x , 当x <0时,f ′(x)<0,当x >0时,f ′(x)>0, 故f(x)的减区间为(−∞,0),增区间为(0,+∞). (2)设ℎ(x)=xe ax −e x +1,则ℎ(0)=0,又ℎ′(x)=(1+ax)e ax −e x ,设g(x)=(1+ax)e ax −e x , 则g ′(x)=(2a +a 2x)e ax −e x , 若a >12,则g ′(0)=2a −1>0, 因为g ′(x)为连续不间断函数,故存在x 0∈(0,+∞),使得∀x ∈(0,x 0),总有g ′(x)>0, 故g(x)在(0,x 0)为增函数,故g(x)>g(0)=0,故ℎ(x)在(0,x 0)为增函数,故ℎ(x)>ℎ(0)=−1,与题设矛盾. 若0<a ≤12,则ℎ′(x)=(1+ax)e ax −e x =e ax+ln(1+ax)−e x , 下证:对任意x >0,总有ln(1+x)<x 成立,证明:设S(x)=ln(1+x)−x ,故S ′(x)=11+x −1=−x1+x <0, 故S(x)在(0,+∞)上为减函数,故S(x)<S(0)=0即ln(1+x)<x 成立. 由上述不等式有e ax+ln(1+ax)−e x <e ax+ax −e x =e 2ax −e x ≤0, 故ℎ′(x)≤0总成立,即ℎ(x)在(0,+∞)上为减函数, 所以ℎ(x)<ℎ(0)=−1.当a ≤0时,有ℎ′(x)=e ax −e x +axe ax <1−1+0=0, 所以ℎ(x)在(0,+∞)上为减函数,所以ℎ(x)<ℎ(0)=−1. 综上,a ≤12. (3)取a =12,则∀x >0,总有xe 12x −e x +1<0成立, 令t =e 12x ,则t >1,t 2=e x ,x =2lnt ,故2tlnt <t 2−1即2lnt <t −1t 对任意的t >1恒成立. 所以对任意的n ∈N ∗,有2ln√n+1n <√n+1n−√nn+1,整理得到:ln(n +1)−lnn <√n 2+n ,故√12+1√22+2⋯√n 2+n >ln2−ln1+ln3−ln2+⋯+ln(n +1)−lnn =ln(n +1), 故不等式成立. 【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.5.【2021年甲卷理科】已知0a >且1a ≠,函数()(0)a x x f x x a =>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围. 【答案】(1)20,ln2⎛⎤⎥⎝⎦上单调递增;2,ln2⎡⎫+∞⎪⎢⎣⎭上单调递减;(2)()()1,,+∞e e .【解析】 【分析】(1)求得函数的导函数,利用导函数的正负与函数的单调性的关系即可得到函数的单调性; (2)方法一:利用指数对数的运算法则,可以将曲线()y f x =与直线1y =有且仅有两个交点等价转化为方程ln ln x ax a =有两个不同的实数根,即曲线()y g x =与直线ln a y a=有两个交点,利用导函数研究()g x 的单调性,并结合()g x 的正负,零点和极限值分析()g x 的图象,进而得到ln 10a a e<<,发现这正好是()()0g a g e <<,然后根据()g x 的图象和单调性得到a 的取值范围.【详解】(1)当2a =时,()()()()22222ln 2222ln 2,242xx x x x x x x x x x f x f x ⋅-⋅-⋅===', 令()'0f x =得2ln 2x =,当20ln 2x <<时,()0f x '>,当2ln 2x >时,()0f x '<, ∴函数()f x 在20,ln2⎛⎤⎥⎝⎦上单调递增;2,ln2⎡⎫+∞⎪⎢⎣⎭上单调递减; (2)[方法一]【最优解】:分离参数()ln ln 1ln ln a x a x x x af x a x x a a x a x a==⇔=⇔=⇔=,设函数()ln x g x x =, 则()21ln xg x x-'=,令()0g x '=,得x e =, 在()0,e 内()0g x '>,()g x 单调递增; 在(),e +∞上()0g x '<,()g x 单调递减;()()1max g x g e e∴==,又()10g =,当x 趋近于+∞时,()g x 趋近于0,所以曲线()y f x =与直线1y =有且仅有两个交点,即曲线()y g x =与直线ln ay a=有两个交点的充分必要条件是ln 10a a e<<,这即是()()0g a g e <<, 所以a 的取值范围是()()1,,+∞e e .[方法二]:构造差函数由()y f x =与直线1y =有且仅有两个交点知()1f x =,即a x x a =在区间(0,)+∞内有两个解,取对数得方程ln ln a x x a =在区间(0,)+∞内有两个解.构造函数()ln ln ,(0,)g x a x x a x =-∈+∞,求导数得ln ()ln a a x a g x a x x'-=-=. 当01a <<时,ln 0,(0,),ln 0,()0,()a x a x a gx g x '<∈+∞->>在区间(0,)+∞内单调递增,所以,()g x 在(0,)+∞内最多只有一个零点,不符合题意;当1a >时,ln 0a >,令()0g x '=得ln a x a =,当0,ln a x a ⎛⎫∈ ⎪⎝⎭时,()0g x '>;当,ln a x a ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<;所以,函数()g x 的递增区间为0,ln a a ⎛⎫ ⎪⎝⎭,递减区间为,ln a a ⎛⎫+∞ ⎪⎝⎭.由于1110e1,e 1e ln 0ln aaa a g a a ---⎛⎫<<<=--< ⎪⎝⎭,当x →+∞时,有ln ln a x x a <,即()0g x <,由函数()ln ln g x a x x a =-在(0,)+∞内有两个零点知ln 10ln ln a a g a a a ⎛⎫⎛⎫=->⎪ ⎪⎝⎭⎝⎭,所以e ln aa >,即eln 0a a ->.构造函数()eln h a a a =-,则e e()1a h a a a'-=-=,所以()h a 的递减区间为(1,e),递增区间为(e,)+∞,所以()(e)0h a h ≥=,当且仅当e a =时取等号,故()0>h a 的解为1a >且e a ≠.所以,实数a 的取值范围为(1,e)(e,)⋃+∞. [方法三]分离法:一曲一直曲线()y f x =与1y =有且仅有两个交点等价为1ax xa=在区间(0,)+∞内有两个不相同的解.因为a x x a =,所以两边取对数得ln ln a x x a =,即ln ln x ax a=,问题等价为()ln g x x =与ln ()x ap x a=有且仅有两个交点. ①当01a <<时,ln 0,()ap x a<与()g x 只有一个交点,不符合题意. ②当1a >时,取()ln g x x =上一点()()000011,ln ,(),,()x x g x g x g x xx ''==在点()00,ln x x 的切线方程为()0001ln y x x x x -=-,即0011ln y x x x =-+. 当0011ln y x x x =-+与ln ()x a p x a =为同一直线时有0ln 1,ln 10,a a x x ⎧=⎪⎨⎪-=⎩得0ln 1,e e.a a x ⎧=⎪⎨⎪=⎩ 直线ln ()x a p x a =的斜率满足:ln 1e0a a <<时,()ln g x x =与ln ()x ap x a =有且仅有两个交点.记2ln 1ln (),()a a h a h a a a'-==,令()0h a '=,有e a =.(1,e),()0,()a h a h a '∈>在区间(1,e)内单调递增;(e,),()0,()a h a h a '∈+∞<在区间(,)e +∞内单调递减;e a =时,()h a 最大值为1(e)eg =,所当1a >且e a ≠时有ln 1e0a a <<. 综上所述,实数a 的取值范围为(1,e)(e,)⋃+∞. [方法四]:直接法()112ln (ln )()(0),()a a x x a a x x x x ax a a a x x a x a f x x f x a a a --'⋅-⋅-=>==. 因为0x >,由()0f x '=得ln ax a=. 当01a <<时,()f x 在区间(0,)+∞内单调递减,不满足题意;当1a >时,0ln aa >,由()0f x '>得0,()ln a x f x a <<在区间0,ln a a ⎛⎫ ⎪⎝⎭内单调递增,由()0f x '<得,()ln ax f x a >在区间,ln a a ⎛⎫+∞⎪⎝⎭内单调递减. 因为lim ()0x f x →+∞=,且0lim ()0x f x +→=,所以1ln a f a ⎛⎫> ⎪⎝⎭,即ln ln ln 1(ln )aaa aa a aa a a a a -⎛⎫ ⎪⎝⎭=>,即11ln ln (ln ),ln a a aaaaa aa -->>,两边取对数,得11ln ln(ln )ln a a a ⎛⎫-> ⎪⎝⎭,即ln 1ln(ln )a a ->. 令ln a t =,则1ln t t ->,令()ln 1h x x x =-+,则1()1h x x'=-,所以()h x 在区间(0,1)内单调递增,在区间(1,)+∞内单调递减,所以()(1)0h x h ≤=,所以1ln t t -≥,则1ln t t ->的解为1t ≠,所以ln 1a ≠,即e a ≠.故实数a 的范围为(1,e)(e,)⋃+∞.] 【整体点评】本题考查利用导数研究函数的单调性,根据曲线和直线的交点个数求参数的取值范围问题,属较难试题,方法一:将问题进行等价转化,分离参数,构造函数,利用导数研究函数的单调性和最值,图象,利用数形结合思想求解.方法二:将问题取对,构造差函数,利用导数研究函数的单调性和最值. 方法三:将问题取对,分成()ln g x x =与ln ()x ap x a=两个函数,研究对数函数过原点的切线问题,将切线斜率与一次函数的斜率比较得到结论. 方法四:直接求导研究极值,单调性,最值,得到结论.6.【2021年乙卷理科】设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.【答案】(1)1a =;(2)证明见详解 【解析】 【分析】(1)由题意求出'y ,由极值点处导数为0即可求解出参数a ; (2)由(1)得()()ln 1()ln 1x x g x x x +-=-,1x <且0x ≠,分类讨论()0,1x ∈和(),0x ∈-∞,可等价转化为要证()1g x <,即证()()ln 1ln 1x x x x +->-在()0,1x ∈和(),0x ∈-∞上恒成立,结合导数和换元法即可求解 【详解】(1)由()()()n 1'l a f x a x f x x ⇒==--,()()'ln xy a x x ay xf x ⇒=-=+-, 又0x =是函数()y xf x =的极值点,所以()'0ln 0y a ==,解得1a =; (2)[方法一]:转化为有分母的函数 由(Ⅰ)知,ln(1)11()ln(1)ln(1)+-==+--x x g x x x x x,其定义域为(,0)(0,1)-∞.要证()1g x <,即证111ln(1)+<-x x ,即证1111ln(1)-<-=-x x x x.(ⅰ)当(0,1)x ∈时,10ln(1)<-x ,10x x -<,即证ln(1)1->-x x x .令()ln(1)1=---xF x x x ,因为2211()01(1)(1)--=-=>--'-x F x x x x ,所以()F x 在区间(0,1)内为增函数,所以()(0)0F x F >=.(ⅱ)当(,0)x ∈-∞时,10ln(1)>-x ,10x x ->,即证ln(1)1->-x x x ,由(ⅰ)分析知()F x 在区间(,0)-∞内为减函数,所以()(0)0F x F >=. 综合(ⅰ)(ⅱ)有()1g x <.[方法二] 【最优解】:转化为无分母函数 由(1)得()()ln 1f x x =-,()()ln 1()()()ln 1x x x f x g x xf x x x +-+==-,1x <且0x ≠,当 ()0,1x ∈时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x >-<, ()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->;同理,当(),0x ∈-∞时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x <->, ()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->; 令()()()1ln 1h x x x x =+--,再令1t x =-,则()()0,11,t ∈+∞,1x t =-,令()1ln t t t t ϕ=-+,()1ln 1ln t t t ϕ'=-++=,当()0,1t ∈时,()0t ϕ'<,()t ϕ单减,故()()10t ϕϕ>=; 当()1,t ∈+∞时,()0t ϕ'>,()t ϕ单增,故()()10t ϕϕ>=; 综上所述,()()ln 1()1ln 1x x g x x x +-=<-在()(),00,1x ∈-∞恒成立.[方法三] :利用导数不等式中的常见结论证明令()ln (1)ϕ=--x x x ,因为11()1x x x xϕ-'=-=,所以()ϕx 在区间(0,1)内是增函数,在区间(1,)+∞内是减函数,所以()(1)0x ϕϕ≤=,即ln 1≤-x x (当且仅当1x =时取等号).故当1x <且0x ≠时,101x >-且111x ≠-,11ln 111<---x x ,即ln(1)1--<-x x x ,所以ln(1)1->-x x x . (ⅰ)当(0,1)x ∈时,0ln(1)1>->-xx x ,所以1111ln(1)-<=--x x x x ,即111ln(1)+<-x x ,所以()1g x <.(ⅱ)当(,0)x ∈-∞时,ln(1)01->>-xx x ,同理可证得()1g x <. 综合(ⅰ)(ⅱ)得,当1x <且0x ≠时,ln(1)1ln(1)+-<-x x x x ,即()1g x <.【整体点评】(2)方法一利用不等式的性质分类转化分式不等式:当(0,1)x ∈时,转化为证明ln(1)1->-x x x ,当(,0)x ∈-∞时,转化为证明ln(1)1->-xx x ,然后构造函数,利用导数研究单调性,进而证得;方法二利用不等式的性质分类讨论分别转化为整式不等式:当()0,1x ∈时,()()1ln 10x x x +-->成立和当(),0x ∈-∞时,()()1ln 10x x x +-->成立,然后换元构造,利用导数研究单调性进而证得,通性通法,运算简洁,为最优解;方法三先构造函数()ln (1)ϕ=--x x x ,利用导数分析单调性,证得常见常用结论ln 1≤-x x (当且仅当1x =时取等号).然后换元得到ln(1)1->-xx x ,分类讨论,利用不等式的基本性质证得要证得不等式,有一定的巧合性.7.【2021年新高考1卷】已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见解析. 【解析】 【分析】(1) 首先确定函数的定义域,然后求得导函数的解析式,由导函数的符号即可确定原函数的单调性.(2)方法二:将题中的等式进行恒等变换,令11,m n a b==,命题转换为证明:2m n e <+<,然后构造对称差函数,结合函数零点的特征和函数的单调性即可证得题中的结论. 【详解】(1)()f x 的定义域为()0,∞+. 由()()1ln f x x x =-得,()ln f x x '=-,当1x =时,()0f x '=;当()0,1x ∈时()0f x >′;当()1,x ∈+∞时,()'0f x <. 故()f x 在区间(]0,1内为增函数,在区间[)1,+∞内为减函数, (2)[方法一]:等价转化由ln ln b a a b a b -=-得1111(1ln )(1ln )a a b b -=-,即11()()f f a b=.由a b ,得11a b≠. 由(1)不妨设11(0,1),(1,)b a ∈∈+∞,则1()0f a >,从而1()0f b >,得1(1,)e b∈,①令()()()2g x f x f x =--,则22()(2)()ln(2)ln ln(2)ln[1(1)]g x f x f x x x x x x ''=---'=-+=-=--, 当()0,1x ∈时,()0g x '<,()g x 在区间()0,1内为减函数,()()10g x g >=, 从而()()2f x f x ->,所以111(2)()()f f f a a b->=,由(1)得112a b -<即112a b<+.① 令()()h x x f x =+,则()()'11ln h x f x x '=+=-,当()1,x e ∈时,()0h x '>,()h x 在区间()1,e 内为增函数,()()h x h e e <=, 从而()x f x e +<,所以11()f e b b+<.又由1(0,1)a∈,可得11111(1ln )()()f f a a a a b<-==, 所以1111()f e a b b b+<+=.②由①②得112e a b<+<. [方法二]【最优解】:ln ln b a a b a b -=-变形为ln ln 11a b a b b a-=-,所以ln 1ln 1a b a b ++=. 令11,m n a b==.则上式变为()()1ln 1ln m m n n -=-, 于是命题转换为证明:2m n e <+<.令()()1ln f x x x =-,则有()()f m f n =,不妨设m n <. 由(1)知01,1m n e <<<<,先证2m n +>.要证:()()()222)2(m n n m f n f m f m f m +>⇔>-⇔<-⇔<-()()20f m f m ⇔--<.令()()()()2,0,1g x f x f x x =--∈,则()()()()()2ln ln 2ln 2ln10g x f x f x x x x x '='+'-=---=⎡⎤⎣≥-⎦--=, ()g x ∴在区间()0,1内单调递增,所以()()10g x g <=,即2m n +>. 再证m n e +<.因为()()1ln 1ln m n n m m -=⋅->,所以()1ln n n n e m n e -+<⇒+<. 令()()()1ln ,1,h x x x x x e =-+∈,所以()'1ln 0h x x =->,故()h x 在区间()1,e 内单调递增. 所以()()h x h e e <=.故()h n e <,即m n e +<. 综合可知112e a b<+<. [方法三]:比值代换证明112a b+>同证法2.以下证明12x x e +<.不妨设21x tx =,则211x t x =>, 由1122(1ln )(1ln )x x x x -=-得1111(1ln )[1ln()]x x tx tx -=-,1ln 1n 1l t x t t=--, 要证12x x e +<,只需证()11t x e +<,两边取对数得1ln(1)ln 1t x ++<, 即ln(1)1ln 11t t t t++-<-, 即证ln(1)1ln t t t t+<-. 记ln(1)(),(0,)s g s s s ∈=+∞+,则2ln(1)1()s s s g s s '-++=. 记()ln(1)1sh s s s=-++,则211()0(1)1h s s s '=-<++, 所以,()h s 在区间()0,∞+内单调递减.()()00h s h <=,则()'0g s <, 所以()g s 在区间()0,∞+内单调递减.由()1,t ∈+∞得()10,t -∈+∞,所以()()1g t g t <-, 即ln(1)1ln t t t t+<-. [方法四]:构造函数法由已知得ln ln 11a b a b b a-=-,令1211,x x a b ==,不妨设12x x <,所以()()12f x f x =.由(Ⅰ)知,1201x x e <<<<,只需证122x x e <+<. 证明122x x +>同证法2.再证明12x x e +<.令2ln 21()(0)()(ln ,)ex h x x e h x x e x xe x '-++-=<<=--. 令()ln 2(0)e x x x e x ϕ=+-<<,则221()0e x ex x x xϕ-'=-=<. 所以()()()0,0x e h x ϕϕ>='>,()h x 在区间()0,e 内单调递增. 因为120x x e <<<,所以122111ln ln x e x e x x --<--,即112211ln ln x x x ex e -->-- 又因为()()12f x f x =,所以12212112ln ln 1,1x x x ex x x ex x --=>--,即()()2222111212,0x ex x ex x x x x e -<--+->.因为12x x <,所以12x x e +<,即11e a b+<.综上,有112e a b<+<结论得证. 【整体点评】(2)方法一:等价转化是处理导数问题的常见方法,其中利用的对称差函数,构造函数的思想,这些都是导数问题必备的知识和技能.方法二:等价转化是常见的数学思想,构造对称差函数是最基本的极值点偏移问题的处理策略.方法三:比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.方法四:构造函数之后想办法出现关于120e x x +-<的式子,这是本方法证明不等式的关键思想所在.8.【2021年新高考2卷】已知函数2()(1)x f x x e ax b =--+. (1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 只有一个零点 ①21,222e a b a <≤>; ②10,22a b a <<≤.【答案】(1)答案见解析;(2)证明见解析. 【解析】 【分析】(1)首先求得导函数的解析式,然后分类讨论确定函数的单调性即可; (2)由题意结合(1)中函数的单调性和函数零点存在定理即可证得题中的结论. 【详解】(1)由函数的解析式可得:()()'2xf x x e a =-,当0a ≤时,若(),0x ∈-∞,则()()'0,f x f x <单调递减, 若()0,x ∈+∞,则()()'0,f x f x >单调递增;当102a <<时,若()(),ln 2x a ∈-∞,则()()'0,f x f x >单调递增, 若()()ln 2,0x a ∈,则()()'0,f x f x <单调递减, 若()0,x ∈+∞,则()()'0,f x f x >单调递增; 当12a =时,()()'0,f x f x ≥在R 上单调递增; 当12a >时,若(),0x ∈-∞,则()()'0,f x f x >单调递增, 若()()0,ln 2x a ∈,则()()'0,f x f x <单调递减, 若()()ln 2,x a ∈+∞,则()()'0,f x f x >单调递增; (2)若选择条件①:由于2122e a <,故212a e <≤,则()21,010b af b >>=->,而10f e b b ⎛⎛=--+< ⎝⎝,而函数在区间(),0-∞上单调递增,故函数在区间(),0-∞上有一个零点. ()()()()2ln 22ln 21ln 2f a a a a a b =--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 21ln 22a a a a a >--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 2ln 2a a a a =-⎡⎤⎣⎦()()ln 22ln 2a a a =-⎡⎤⎣⎦,由于2122e a <,212a e <≤,故()()ln 22ln 20a a a -≥⎡⎤⎣⎦,结合函数的单调性可知函数在区间()0,∞+上没有零点.综上可得,题中的结论成立. 若选择条件②:由于102a <<,故21a <,则()01210fb a =-≤-<, 当0b ≥时,24,42ea ><,()2240f e ab =-+>,而函数在区间()0,∞+上单调递增,故函数在区间()0,∞+上有一个零点.当0b <时,构造函数()1xH x e x =--,则()1x H x e '=-,当(),0x ∈-∞时,()()0,H x H x '<单调递减, 当()0,x ∈+∞时,()()0,H x H x '>单调递增,注意到()00H =,故()0H x ≥恒成立,从而有:1x e x ≥+,此时:()()()()22111x f x x e ax b x x ax b =---≥-+-+()()211a x b =-+-,当x >()()2110a x b -+->,取01x ,则()00f x >,即:()00,10f f ⎫<>⎪⎪⎭,而函数在区间()0,∞+上单调递增,故函数在区间()0,∞+上有一个零点. ()()()()2ln 22ln 21ln 2f a a a a a b =--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 21ln 22a a a a a ≤--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 2ln 2a a a a =-⎡⎤⎣⎦()()ln 22ln 2a a a =-⎡⎤⎣⎦,由于102a <<,021a <<,故()()ln 22ln 20a a a -<⎡⎤⎣⎦, 结合函数的单调性可知函数在区间(),0-∞上没有零点. 综上可得,题中的结论成立. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.9.【2020年新课标1卷理科】已知函数2()e x f x ax x =+-. (1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.【答案】(1)当(),0x ∈-∞时,()()'0,f x f x <单调递减,当()0,x ∈+∞时,()()'0,f x f x >单调递增.(2)27e ,4∞⎡⎫-+⎪⎢⎣⎭【解析】 【分析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可. (2)方法一:首先讨论x =0的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确定实数a 的取值范围. 【详解】(1)当1a =时,()2e x f x x x =+-,()e 21xf x x ='+-,由于()''e 20xf x =+>,故()'f x 单调递增,注意到()00f '=,故:当(),0x ∈-∞时,()()0,f x f x '<单调递减, 当()0,x ∈+∞时,()()0,f x f x '>单调递增. (2) [方法一]【最优解】:分离参数 由()3112f x x ≥+得,231e 12x ax x x +-+,其中0x ≥, ①.当x =0时,不等式为:11≥,显然成立,符合题意;②.当0x >时,分离参数a 得,321e 12x x x a x----, 记()321e 12x x x g x x ---=-,()()2312e 12x x x x g x x⎛⎫---- ⎪⎝⎭'=-, 令()()21e 102xh x x x x =---≥,则()e 1x h x x ='--,()''e 10xh x =-≥,故()'h x 单调递增,()()00h x h ''≥=, 故函数()h x 单调递增,()()00h x h ≥=,由()0h x ≥可得:21e 102xx x ---恒成立, 故当()0,2x ∈时,()0g x '>,()g x 单调递增;当()2,x ∈+∞时,()0g x '<,()g x 单调递减; 因此,()()2max7e 24g x g -⎡⎤==⎣⎦, 综上可得,实数a 的取值范围是27e ,4∞⎡⎫-+⎪⎢⎣⎭. [方法二]:特值探路当0x ≥时,31()12f x x ≥+恒成立27e (2)54-⇒⇒f a. 只需证当274e a -≥时,31()12f x x ≥+恒成立.当274e a -≥时,227e ()e e 4-=+-≥+x xf x ax x 2⋅-x x .只需证明2237e 1e 1(0)42-+-≥+≥xx x x x ⑤式成立.⑤式()223e74244e -+++⇔≤xx x x , 令()223e7424()(0)e-+++=≥xx x x h x x ,则()()222313e 2e 92()e -+--=='x xx x h x ()()222213e 2e 9e ⎡⎤-----⎣⎦=xx x x ()2(2)2e 9e⎡⎤--+-⎣⎦xx x x ,所以当29e 0,2⎡⎤-∈⎢⎥⎣⎦x 时,()0,()h x h x '<单调递减; 当29e ,2,()0,()2⎛⎫-∈> ⎪⎝⎭'x h x h x 单调递增; 当(2,),()0,()∈+∞<'x h x h x 单调递减.从而max [()]max{(0),(2)}4==h x h h ,即()4h x ≤,⑤式成立.所以当274e a -≥时,31()12f x x ≥+恒成立.综上274e a -≥.[方法三]:指数集中当0x ≥时,31()12f x x ≥+恒成立323211e1(1)e 122xx x ax x x ax x -⇒+-+⇒-++≤,记()32(1(1)e 0)2xg x x ax x x -=-++≥,()2231(1)e 22123xg x x ax x x ax -'=--+++--2(23)42]121)2)1[e ((22x x x x x x a x a a -=--+++=----,①.当210a +≤即12a ≤-时,()02g x x '=⇒=,则当(0,2)x ∈时,()0g x '>,()g x 单调递增,又()01g =,所以当(0,2)x ∈时,()1g x >,不合题意;②.若0212a <+<即1122a -<<时,则当(0,21)(2,)x a ∈+⋃+∞时,()0g x '<,()g x 单调递减,当(21,2)x a ∈+时,()0g x '>,()g x 单调递增,又()01g =,所以若满足()1g x ≤,只需()21g ≤,即()22(7e 14)g a --≤=27e 4a -⇒,所以当27e 142a -⇒≤<时,()1g x ≤成立;③当212a +≥即12a ≥时,()32311(1)e (1)e 22x xg x x ax x x x --=++≤-++,又由②可知27e 142a -≤<时,()1g x ≤成立,所以0a =时,31()(1)e 21xg x x x -=+≤+恒成立, 所以12a ≥时,满足题意. 综上,27e 4a -.【整体点评】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,本题主要考查利用导数解决恒成立问题,常用方法技巧有: 方法一,分离参数,优势在于分离后的函数是具体函数,容易研究;方法二,特值探路属于小题方法,可以快速缩小范围甚至得到结果,但是解答题需要证明,具有风险性;方法三,利用指数集中,可以在求导后省去研究指数函数,有利于进行分类讨论,具有一定的技巧性!10.【2020年新课标2卷理科】已知函数f (x )=sin 2x sin2x . (1)讨论f (x )在区间(0,π)的单调性;(2)证明:()f x ≤(3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22nx ≤34nn .【答案】(1)当0,3x π⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x >单调递增,当2,33x ππ⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x <单调递减,当2,3x ππ⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x >单调递增. (2)证明见解析; (3)证明见解析. 【解析】 【分析】(1)首先求得导函数的解析式,然后由导函数的零点确定其在各个区间上的符号,最后确定原函数的单调性即可;(2)[方法一]由题意将所给的式子进行变形,利用四元基本不等式即可证得题中的不等式; (3)[方法一]将所给的式子进行恒等变形,构造出(2)的形式,利用(2)的结论即可证得题中的不等式. 【详解】(1)由函数的解析式可得:()32sin cos f x x x =,则:()()224'23sin cos sin f x x x x =-()2222sin 3cos sin x x x =- ()222sin 4cos 1x x =-()()22sin 2cos 12cos 1x x x =+-,()'0f x =在()0,x π∈上的根为:122,33x x ππ==, 当0,3x π⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x >单调递增,当2,33x ππ⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x <单调递减, 当2,3x ππ⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x >单调递增. (2)[方法一]【最优解】:基本不等式法 由四元均值不等式可得24262[()]sin sin 24sin cos =⋅=⋅=f x x x x x 222244sin sin sin 3cos 33⋅⋅⋅≤⋅x x x x 42222sin sin sin 3cos 27464⎛⎫+++= ⎪⎝⎭x x x x ,当且仅当22sin 3cos =x x , 即3x k ππ=-或()3x k k ππ=+∈Z 时等号成立.所以|()|f x . [方法二]:构造新函数+齐次化方法因为()()333222222sin cos 2tan ()2sin cos sin cos tan 1===++x xxf x x x x x x ,令tan (0)=≥x t t ,则问题转化为求()3222()(0)1=≥+t g t t t的最大值.求导得()()()22222213()1+'-=+t t t g t t,令()0g t '=,得t =当∈t 时,()0g t '>,函数()g t 单调递增;当)∈+∞t 时,()0g t '<,函数()g t 单调递减. 所以函数()g t的最大值为==g|()|f x ≤. [方法三]:结合函数的周期性进行证明注意到()()()()22sin sin 2sin sin 2f x x x x x f x πππ+=++==⎡⎤⎣⎦,故函数()f x 是周期为π的函数,结合(1)的结论,计算可得:()()00f f π==,23f π⎛⎫== ⎪⎝⎭⎝⎭223f π⎛⎛⎫=⨯= ⎪ ⎝⎭⎝⎭⎝⎭, 据此可得:()max f x =⎡⎤⎣⎦()minf x =⎡⎤⎣⎦ 即()f x (3)[方法一]【最优解】:利用(2)的结论 由于()32223332sin sin 2sin 2sin sin 2sin 2==nn x xx x xx 23312|sin |sin sin 2sin 2sin2sin 2-=n n n x x xx x x ()12|sin |()(2)2sin 2-≤n n x f x f x f x x ()1()(2)2-n f x f x f x ,所以232223sin sin 2sin 24⎫≤=⎝⎭n n nn x xx . [方法二]:数学归纳法+放缩当1n =时,222sin sin 2sin sin 2sin 2⋅=≤x x x x x 33244≤≤x ,显然成立; 假设当n k =时原式成立,即22223sin sin 2sin 4sin 24≤kkk x x x x .那么,当1n k =+时,有222221sin sin 2sin 4sin 2sin 2+≤kk x x x x x 2234sin 2cos 24⎛⎫⋅⋅⋅≤⎪⎝⎭kk kx x332cos22sin 2cos24sin 2⎛⎫⋅⋅≤ ⎪⎝⎭k kk kk x x x x 32cos248sin 2⎛⎫⋅≤ ⎪⎝⎭k k k x x 11334tan 24++⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭k k kx , 即当1n k =+时不等式也成立.综上所述,不等式对所有的n *∈N 都成立. 【整体点评】(2)方法一:基本不等式是证明不等式的重要工具,利用基本不等式解题时一定要注意等号成立的条件;方法二:齐次化之后切化弦是一种常用的方法,它将原问题转化为一元函数的问题,然后构造函数即可证得题中的不等式;方法三:周期性是三角函数的重要特征,结合函数的周期性和函数的最值证明不等式充分体现了三角函数有界限的应用.(3)方法一:利用(2)的结论体现了解答题的出题思路,逐问递进是解答题常见的设问方式; 方法二:数学归纳法是处理与自然数有关的命题的常见策略,放缩法是不等式证明中常见的方法.11.【2020年新课标3卷理科】设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直. (1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1. 【答案】(1)34b =-;(2)证明见解析【解析】 【分析】(1)利用导数的几何意义得到1()02f '=,解方程即可;(2)方法一:由(1)可得2311()32()()422f x x x x '=-=+-,易知()f x 在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+,采用反证法,推出矛盾即可. 【详解】(1)因为2()3f x x b '=+,由题意,1()02f '=,即:21302b ⎛⎫⨯+= ⎪⎝⎭,则34b =-.(2)[方法一]:通性通法由(1)可得33()4f x x x c =-+,2311()33()()422f x x x x '=-=+-, 令()0f x '>,得12x >或12x <-;令()0f x '<,得1122x -<<, 所以()f x 在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f ->或(1)0f <, 即14c >或14c <-. 当14c >时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=->-=+>=->=+>,又32(4)6434(116)0f c c c c c c -=-++=-<,由零点存在性定理知()f x 在(4,1)c --上存在唯一一个零点0x , 即()f x 在(,1)-∞-上存在唯一一个零点,在(1,)-+∞上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c <-时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=-<-=+<=-<=+<,又32(4)6434(116)0f c c c c c c -=++=->,由零点存在性定理知()f x 在(1,4)c -上存在唯一一个零点0'x , 即()f x 在(1,)+∞上存在唯一一个零点,在(,1)-∞上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 综上,()f x 所有零点的绝对值都不大于1. [方法二]【最优解】:设0x 是()f x 的一个零点,且01x ≤,则30034c x x =-+. 从而()332200000333()444f x x x x x x x x x x x ⎛⎫=--+=-++- ⎪⎝⎭. 令22003()4h x x x x x =++-,由判别式2220003Δ43304x x x ⎛⎫=--=-≥ ⎪⎝⎭,可知()0h x =在R 上有解,()h x 的对称轴是011,222x x ⎡⎤=-∈-⎢⎥⎣⎦220002200031(1)104231(1)1042h x x x h x x x ⎧⎛⎫=++-=+≥⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-=-+-=-≥ ⎪⎪⎝⎭⎩,所以()h x 在区间01,2x ⎡⎤--⎢⎥⎣⎦上有一根为1x ,在区间0,12x ⎡⎤-⎢⎥⎣⎦上有一根为2x ,进而有121,1x x ≤≤,所以()f x。
2020年高考数学导数解答题专项练习(含答案解析)1.已知函数f(x)=x2-mln x,h(x)=x2-x+a.(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;(2)当m=2时,若函数k(x)=f(x)-h(x)在区间(1,3)上恰有两个不同零点,求实数a的取值范围.2.设函数已知函数f(x)=ae x-x+1.(1)求函数f(x)的单调区间;(2)若f(x)在(0,3) 上只有一个零点,求a的取值范围;3.已知函数f(x)=lnx+a(x-1)2(a>0).(1)讨论f(x)的单调性;(2)若f(x)在区间(0,1)内有唯一的零点x0,证明:.4.已知函数f(x)=ae2x+(a﹣2) e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.5.已知函数f(x)=2lnx-2mx+x2(m>0).(1)讨论函数f(x)的单调性;(2)当时,若函数f(x)的导函数f/(x)的图象与x轴交于A,B两点,其横坐标分别为x1,x2(x1<x2),线段AB的中点的横坐标为x0,且x1,x2恰为函数h(x)=lnx-cx2-bx的零点.求证:.6.已知函数,g(x)=mx.(1)求函数f(x)的单调区间;(2)当a=0时,f(x)≤g(x)恒成立,求实数m的取值范围;(3)当a=1时,求证:当x>1时,.7.已知函数f(x)=x-alnx+a-1(a∈R).(I)讨论f(x)的单调性;(Ⅱ)若x∈[e a,+∞]时,f(x)≥0恒成立,求实数a的取值范围.8.已知函数R.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求实数a的取值范围.9.已知函数f(x)=ln x-kx,其中k∈R为常数.(1)讨论函数f(x)的单调性;(2)若f(x)有两个相异零点x1,x2(x1<x2),求证:ln x2>2-ln x1.10.已知函数f(x)=x-alnx,a∈R.(1)研究函数f(x)的单调性;(2)设函数f(x)有两个不同的零点x1,x2,且x1<x2.①求a的取值范围;②求证:x1x2>e2.11.设函数f(x)=ex-1-x-ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0恒成立,求a的取值范围.12.已知函数f(x)=lnx-mx2,g(x)=0.5mx2+x,mϵR,令F(x)=f(x)+g(x).(1)求函数f(x)的单调区间;(2)若关于x的不等式F(x)≤mx-1恒成立,求整数m的最小值.13.已知函数f(x)=lnx-mx(m为常数).(1)讨论函数f(x)的单调区间;(2)当时, 设g(x)=2f(x)+x2的两个极值点x1,x2(x1<x2)恰为h(x)=lnx-cx2-bx的零点, 求的最小值.14.设函数f(x)=(x-1)e x-kx2.(1)当k=1时,求函数f(x)的单调区间;(2)若f(x)在x∈[0,+∞)上是增函数,求实数k的取值范围.15.已知函数f(x)=ln x+-1.(1)求函数f(x)的单调区间;(2)设m∈R,对任意的a∈(-1,1),总存在x0∈[1,e],使得不等式ma-f(x0)<0成立,求实数m的取值范围.16.已知函数.(1)求的单调区间;(2)设,若对任意,均存在,使得,求的取值范围.17.设函数f(x)=alnx﹣bx2.(1)当b=1时,讨论函数f(x)的单调性;(2)当a=1,b=0时,函数g(x)=f(x)﹣kx,k为常数,若函数g(x)有两个相异零点x1,x2,证明:.18.已知函数f(x)=axlnx﹣x+1(a≥0).(1)当a=1时,求f(x)的最小值;(3)证明:当m>n>1时,m n﹣1<n m﹣1.19.已知函数在处的切线与轴平行,()(1)试讨论f(x)在上的单调性;(2)①设,求g(x)的最小值;②证明:.20.已知函数f(x)=(x﹣1)2+a(lnx﹣x+1)(其中a∈R,且a为常数)(1)当a=4时,求函数y=f(x)的单调区间;(2)若对于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范围;(3)若方程f(x)+a+1=0在x∈(1,2)上有且只有一个实根,求a的取值范围.2020年高考数学 导数 解答题专项练习(含答案解析)答案解析1.解:(1)由f(x)≥h(x),得m ≤x ln x 在(1,+∞)上恒成立.令g(x)=x ln x ,则g ′(x)=ln x -1ln x 2,当x ∈(1,e)时,g ′(x)<0;当x ∈(e ,+∞)时,g ′(x)>0,所以g(x)在(1,e)上递减,在(e ,+∞)上递增.故当x=e 时,g(x)的最小值为g(e)=e.所以m ≤e.即m 的取值范围是(-∞,e].(2)由已知可得k(x)=x-2ln x-a.函数k(x)在(1,3)上恰有两个不同零点,相当于函数φ(x)=x-2ln x 与直线y=a 有两个不同的交点.φ′(x)=1-2x =x -2x ,当x ∈(1,2)时,φ′(x)<0,φ(x)递减,当x ∈(2,3)时,φ′(x)>0,φ(x)递增.又φ(1)=1,φ(2)=2-2ln 2,φ(3)=3-2ln 3,要使直线y=a 与函数φ(x)=x-2ln x 有两个交点,则2-2ln 2<a <3-2ln 3.即实数a 的取值范围是(2-2ln 2,3-2ln 3).2.解:3.解:4.解:5.解:6.解:7.解:8.解:9.解:10.解:11.解:(1)a=0时,f(x)=e x-1-x,f′(x)=e x-1.当x∈(-∞,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.故f(x)在(-∞,0)单调减少,在(0,+∞)单调增加(2)f′(x)=e x-1-2ax.由(1)知e x≥1+x,当且仅当x=0时等号成立.故f′(x)≥x-2ax=(1-2a)x,从而当1-2a≥0,即a≤0.5时,f′(x)≥0(x≥0),而f(0)=0,于是当x≥0时,f(x)≥0.由e x>1+x(x≠0)得e-x>1-x(x≠0),从而当a>时,f′(x)<e x-1+2a(e-x-1)=e-x(e x-1)(e x-2a),故当x∈(0,ln2a)时, f′(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f(x)<0,综上可得a的取值范围为(-∞,0.5].12.解:13.解:14.15.16.17.18.19.解:20.解:。
班级_____________________ 姓名____________________ 考场号____________ 考号___________----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ 一、解答题1. 解:(Ⅰ) 函数()f x 的定义域为(0,)+∞,'112()e ln e e e .x x x x a b bf x a x x x x--=+-+由题意可得'(1)2,(1) e.f f ==故1,2a b ==.(Ⅱ)由(Ⅰ)知12e ()e ln ,x xf x x x -=+从而()1f x >等价于2ln e .ex x x x ->- 设函数()ln g x x x =,则()1ln g x x '=+,所以当1(0,)ex ∈时,'()0g x <;当1(,)e x ∈+∞时,'()0g x >,故()g x 在1(0,)e 单调递减,在1(,)e+∞单调递增,从而()g x 在(0,)+∞的最小值为11().e eg =-.设函数2()e ex h x x -=-,则'()e (1)x h x x -=-,所以当(0,1)x ∈时,'()0h x >;当(1,)x ∈+∞时,'()0h x <,故()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而()h x 在(0,)+∞的最大值为1(1)eh =-.综上,当0x >时,()()g x h x >,即()1f x >.2. 解题指南(1)根据导数公式求出函数的导数,利用分类讨论思想求解;(2)根据函数的单调性以及函数极值与导数的关系式确定函数的极值点,代入函数中求解.解析(1)2/222(2)24(1)()1(2)(1)(2)a x x ax a f x ax x ax x +-+-=-=++++ (*) 当1a ≥时,/()0f x >,此时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,由/()0f x =得1x =,(2x =-舍去).当1(0,)x x ∈时,/()0f x <;当1(,)x x ∈+∞时,/()0f x >. 故()f x 在区间1(0,)x 上单调递减,在区间1(,)x +∞上单调递增. 综上所述,当1a ≥时,()f x 在区间(0,)+∞上单调递增.当01a <<时,()f x在区间(0,上单调递减,在区间)+∞上单调递增.由(*)式知,当1a ≥时,/()0f x >,此时()f x 不存在极值点,因而要使得()f x 有两个极值点,必有01a <<.又()f x的极值点只可能是1x =2x =-,且由定义可知,1x a>-且2x ≠-,所以1a ->-且2-≠-,解得12a ≠- 此时,由(*)式易知,12,x x 分别是()f x 的极小值和极大值点,而 12()()f x f x +=12121222ln(1)ln(1)22x x ax ax x x +-++-++21212121212124()ln[1()]2()4x x x x a x x a x x x x x x ++=+++-+++224(1)2ln(21)ln(21)22121a a a a a -=--=-+---令21a x -=,则01a <<且12a ≠-知:当102a <<时,10x -<<;当112a <<时,01x <<. 记22()ln 2g x x x=+-, (Ⅰ)当10x -<<时,2()2ln()2g x x x =-+-,所以/222222()0x g x x x x -=-=<因此,()g x 在区间(1,0)-上单调递减,从而()(1)40g x g <-=-<,故当102a <<时, 12()()0f x f x +<.班级_____________________ 姓名____________________ 考场号____________ 考号___________----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ (Ⅱ)当01x <<时,2()2ln 2g x x x =+-,所以/222222()0x g x x x x-=-=< 因此,()g x 在区间(0,1)上单调递减,从而()(1)0g x g >=,故当时112a <<,12()()0f x f x +>.综上所述,满足条件的a 的取值范围为1(,1)2.3. (1)证明:因为对任意x ∈R ,都有()()e e e e ()x x x x f x f x -----=+=+=,所以f (x )是R上的偶函数.(2)解:由条件知(e e 1)e 1x x x m --+-≤-在(0,+∞)上恒成立. 令t = e x (x >0),则t >1,所以m ≤21111111t t t t t --=--+-++-对于任意t >1成立.因为11111t t -++≥- = 3,所以1113111t t -≥--++-, 当且仅当t = 2,即x = ln2时等号成立.因此实数m 的取值范围是1,3⎛⎤-∞- ⎥⎝⎦.(3)解:令函数31()e (3)e xx g x a x x =+--+,则21()e 3(1)ex x g x a x '=-+-.当x ≥1时,1e 0ex x ->,x 2– 1≥0,又a >0,故g ′(x )>0,所以g (x )是[1,+∞)上的单调增函数,因此g (x )在[1,+∞)上的最小值是1(1)e e 2g a -=+-.由于存在x 0∈[1,+∞),使030e e (3)0x x a x x -+--+<成立,当且仅当最小值g (1)<0, 故1e+e 20a --<,即1e e 2a -+>.令函数()(e 1)ln 1h x x x =---,则()1h x '=-e 1x-,令h ′(x ) = 0,得e 1x =-.当(0,e 1)x ∈-时,h ′(x )<0,故h (x )是(0,e 1)-上的单调减函数.当x ∈(e – 1,+∞)时,h ′(x )>0,故h (x )是(e – 1,+∞)上的单调增函数. 所以h (x )在(0,+∞)上的最小值是(e 1)h -.注意到h (1) = h (e) = 0,所以当(1,e 1)x ∈- ⊆(0,e 1)-时,(e 1)h -)≤h (x )<h (1) = 0; 当(e 1,e)(e 1,)a ∈-⊆-+∞时,h (x )<h (e) = 0,所以h (x )<0对任意的x ∈(1,e)成立.①当a ∈1e e ,e 2-⎛⎫+⎪⎝⎭⊆(1,e)时,h (a )<0,即1(e 1)ln a a -<-,从而1e 1e a a --<; ②当a = e 时,1e 1e a a --<;③当(e,)(e 1,)a ∈+∞⊆-+∞时,h (a )>h (e) = 0,即1(e 1)ln a a ->-,故1e 1e a a -->.综上所述,当a ∈1e e ,e 2-⎛⎫+⎪⎝⎭时,1e 1e a a --<,当a = e 时,1e 1e a a --=,当(e,)a ∈+∞ 时,1e 1e a a -->.4. 解题指南:(I )利用'()f x 为偶函数和()yf x 在点(0,(0))f 处的切线的斜率为4c -建立关于,a b 的方程求解. (II )利用基本不等式求解.(III)需对c 进行分类,讨论方程'()0f x =是否有实根,从而确定极值.解析:(I )对()f x 求导得'22()22x x f x ae be c -=+-,由()f x '为偶函数,知'()'()f x f x -=, 即222()()0x x a b e e --+=,因220x x e e -+>,所以a b =. 又'(0)224f a b c c =+-=-,故1,1a b ==. (II )当3c =时,22()3x x f x e e x -=--,那么班级_____________________ 姓名____________________ 考场号____________ 考号___________----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ '2222()223222310,x x x x f x e e e e --=+-≥⋅-=>故()f x 在R 上为增函数.(III)由(Ⅰ)知'22()22x x f x e e c -=+-,而2222222224,x x x x e e e e --+≥⋅=当0x =时等号成立. 下面分三种情况进行讨论.当4c <时,对任意22,()220x x x R f x e e c -'∈=+->,此时()f x 无极值; 当4c =时,对任意220,()220x x x f x e e c -'≠=+->,此时()f x 无极值;当4c >时,令2xe t =,注意到方程220t c t+-=有两根21,21604c c t ±-=>, 即'()0f x =有两根112211ln ln 22x t x t ==或.当12x x x <<时,'()0f x <;又当2x x >时,'()0f x >,从而'()f x 在2x x =处取得极小值; 综上,若'()f x 有极值,则c 取值范围为()4,+∞.5. 解题指南(1)先求导数,结合解不等式求解函数的单调区间;(2)利用单调性与导数的关系求解字母的取值范围.解析⑴当4b =时,212()(44)x f x x x -=++,定义域为12(,)-∞, 2115(2)1221212()(24)(44)(2)x x xxxf x x x x -+---'=+⋅+++⨯⨯⨯-=.令()0f x '=,解得12x =-,20x =.当2x <-或120x <<时,()0f x '<;当20x -<<时,()0f x '>.所以()f x 在(,2)-∞-,12(0,)上单调递减;在(2,0)-上单调递增.所以当2x =-时,()f x 取得极小值(2)0f -=;当0x =时,()f x 取得极大值(0)4f =.⑵因为()f x 在13(0,)上单调递增,所以()0f x '≥,且不恒等于0对13(0,)x ∈恒成立. 22115231221212()(2)()(2)x x bxx x xf x x b x bx b -+----'=+⋅+++⨯⨯⨯-=,所以25320x bx x --+≥, 得min 253()x b -≤.因为1252513339x -⨯->=,所以19b ≤,故b 的取值范围为19(,]-∞.6. 解析:(Ⅰ)对()f x 求导得222(6)(3)3(6)'(),()x x x xx a e x ax e x a x af x e e+-+-+-+== 因为()f x 在0x =处取得极值,所以'(0)0f =即0a =.当0a =时,()f x =22336,'(),x x x x x f x e e -+=故33(1),'(1),f f e e ==从而()f x 在点(1,(1)f )处的切线方程为33(1),y x e e-=-化简得30.x ey -=(Ⅱ)由(Ⅰ)知23(6)'().xx a x af x e-+-+= 令2()3(6),g x x a x a =-+-+由()0g x =解得2212636636,.66a a a a x x --+-++== 当1x x <时,()0g x <,即'()0f x <,故()f x 为减函数;当12x x x <<时,()0g x >,即'()0f x >,故()f x 为增函数; 当2x x >时,()0g x <,即'()0f x <,故()f x 为减函数;由()f x 在[)3,+∞上为减函数,知226363,6a a x -++=≤解得9,2a ≥- 故a 的取值范围为9,.2⎡⎫-+∞⎪⎢⎣⎭考点分类第四章 考点一、导数的概念、运算及其几何意义;考点二、导数的应用;第九章 考点一、不等关系与一元二次不等式7. 解:(1)∵22'()2(1)(1)0x x x f x x x x =++=+≥e e e (仅当1x =-时取等号),∴()f x 的单调递增区间为(,)-∞+∞.班级_____________________ 姓名____________________ 考场号____________ 考号___________----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ (2)∵(0)10f a =-<,2(ln )(ln )0f a a a =>, ∴()f x 在单调递增区间(,)-∞+∞上仅有一个零点.(3)由题意知'()0P f x =,又仅'(1)0f -=,得1P x =-,2P y a =-e,由题意知'()OP f m k =,得22(1)m m a +=-e e ,要证1m ≤,即要证32(1)m a +≤-e ,只需证32(1)(1)m m m +≤+e ,即要证1m m +≤e ,① 设()1m g m m =+-e ,则'()1m g m =-e , 又'()00g m m ⇔==,∴()g m 在(,0)-∞上递增,在(0,)∞+上递减。
2020年高考数学(理)总复习:导数的简单应用与定积分题型一 导数的几何意义及导数的运算 【题型要点解析】(1)曲线y =f (x )在点x =x 0处导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,即k =f ′(x 0),由此当f ′(x 0)存在时,曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为y -f (x 0)=f ′(x 0)(x -x 0).(2)过P 点的切线方程的切点坐标的求解步骤:①设出切点坐标;①表示出切线方程;①已知点P 在切线上,代入求得切点坐标的横坐标,从而求得切点坐标.(3)①分式函数的求导,要先观察函数的结构特征,可化为整式函数或较为简单的分式函数;①对数函数的求导,可先化为和、差的形式;①三角函数的求导,先利用三角函数的公式转化为和或差的形式;①复合函数的求导过程就是对复合函数由外层逐层向里求导.所谓最里层是指此函数已经可以直接引用基本初等函数导数公式进行求导.例1.函数f (x )=14 ln x +x 2-bx +a (b >0,a ①R )的图象在点(b ,f (b ))处的切线的倾斜角为α,则倾斜角α 的取值范围是( )A.⎪⎭⎫⎝⎛2,4ππ B.⎪⎭⎫⎢⎣⎡2,4ππ C.⎪⎭⎫⎢⎣⎡ππ,43 D.⎪⎭⎫⎝⎛ππ,43 【解析】】 依题意得f ′(x )=14x +2x -b ,f ′(b )=14b+b ≥214b ·b =1(b >0),当且仅当14b =b >0,即b =12时取等号,因此有tan α≥1,即π4≤α<π2,即倾斜角α 的取值范围是⎪⎭⎫⎢⎣⎡2,4ππ,选B.【答案】 B例2.若实数a ,b ,c ,d 满足(b +a 2-3ln a )2+(c -d +2)2=0,则(a -c )2+(b -d )2的最小值为( ) A. 2 B .2 C .2 2D .8【解析】 因为实数a ,b ,c ,d 满足(b +a 2-3ln a )2+(c -d +2)2=0,所以b +a 2-3ln a =0,设b =y ,a =x ,则有y =3ln x -x 2,由c -d +2=0,设d =y ,c =x ,则有y =x +2,所以(a -c )2+(b -d )2就是曲线y =3lnx -x 2与直线y =x +2之间的最小距离的平方值,对曲线y =3ln x -x 2求导:y ′=3x -2x 与平行y =x +2平行的切线斜率k =1=3x -2x ,解得x =1或x =-32(舍去),把x =1代入y =3ln x -x 2,解得y =-1,即切点(1,-1),则切点到直线y =x +2的距离为L =|1+1+2|2=22,所以L 2=8,即(a -c )2+(b -d )2的最小值为8,故选D.【答案】 D题组训练一 导数的几何意义及导数的运算1.若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln (x +1)的切线,则b =( ) A .1 B.12C .1-ln 2D .1-2ln 2【解析】 对于函数y =ln x +2,切点为(r ,s ),y ′=1x ,k =1r ,对于函数y =ln (x +1),切点为(p ,q ),y ′=1x +1,k =1p +1,1r =1p +1①r =p +1, 斜率k =1r =1p +1=q -s p -r =(ln r +2)-ln (p +1)r -p ,解得:⎩⎪⎨⎪⎧k =2r =12,p =-12,s =ln r +2=ln 12+2=2-ln 2,s =q +2代入y =2x +b,2-ln 2=2×(12)+b ,得:b =1-ln 2.【答案】 C2.在直角坐标系xOy 中,设P 是双曲线C :xy =1(x >0)上任意一点,l 是曲线C 在点P 处的切线,且l 交坐标轴于A 、B 两点,则以下结论正确的是( )A .①OAB 的面积为定值2 B .①OAB 的面积有最小值为3C .①OAB 的面积有最大值为4D .①OAB 的面积的取值范围是[3,4]【解析】 设P 是双曲线xy =1上任意一点,其坐标为P (x 0,y 0),经过P 点的切线方程为y =kx +b .双曲线化为y =1x 形式,y 对x 的导数为y ′=-1x2,在P 点处导数为-1x 20,切线方程为(y -y 0)=-1x 20(x -x 0),令x =0,y =y 0+1x 0=x 0·y 0+1x 0=2x 0=2y 0,(其中x 0·y 0=1),则切线在y 轴截距为2y 0,令y =0,x =2x 0,则切线在x 轴截距为2x 0,设切线与两坐标轴相交于A 、B 两点构成的三角形为OAB .S ①OAB =12|OA |·|OB |=12|2x 0|·|2y 0|=2|x 0·y 0|=2,故切线与两坐标轴构成的三角形面积定值为2.【答案】 A题型二 利用导数研究函数的单调性 【题型要点解析】求解或讨论函数单调性有关问题的解题策略讨论函数的单调性其实就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论:(1)在能够通过因式分解求出不等式对应方程的根时依据根的大小进行分类讨论. (2)在不能通过因式分解求出根的情况时根据不等式对应方程的判别式进行分类讨论. 【提醒】 讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了定义域的限制. 例1.已知函数f (x )=x 2+a ln x .(1)当a =-2时,求函数f (x )的单调区间;(2)若g (x )=f (x )+2x ,在[1,+∞)上是单调函数,求实数a 的取值范围.【解】 (1)f ′(x )=2x -2x,令f ′(x )>0,得x >1;令f ′(x )<0,得0<x <1,所以f (x )的单调递增区间是(1,+∞), 单调递减区间是(0,1).(2)由题意g (x )=x 2+a ln x +2x ,g ′(x )=2x +a x -2x2,若函数g (x )为[1,+∞)上的单调增函数,则g ′(x )≥0在[1,+∞)上恒成立, 即a ≥2x -2x 2在[1,+∞)上恒成立,设φ(x )=2x -2x 2.①φ(x )在[1,+∞)上单调递减,①φ(x )max =φ(1)=0, ①a ≥0;若函数g (x )为[1,+∞)上的单调减函数,则g ′(x )≤0在[1,+∞)上恒成立,不可能. ①实数a 的取值范围为[0,+∞).题组训练二 利用导数研究函数的单调性 设函数f (x )=3x 2+ax e x(a ①R ).(1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程; (2)若f (x )在[3,+∞)上为减函数,求a 的取值范围. 【解析】 (1)对f (x )求导得f ′(x )=(6x +a )e x -(3x 2+ax )e x(e x )2=-3x 2+(6-a )x +a e x因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x,故f (1)=3e ,f ′(1)=3e ,从而f (x )在点(1,f (1))处的切线方程为y -3e =3e(x -1),化简得3x -e y =0. (2)由(1)知f ′(x )=-3x 2+(6-a )x +ae x .令g (x )=-3x 2+(6-a )x +a ,由g (x )=0,解得x 1=6-a -a 2+366,x 2=6-a +a 2+366当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数; 当x 1<x <x 2时,g (x )>0,即f ′(x )>0, 故f (x )为增函数;当x >x 2时,g (x )<0,即f ′(x )<0,故f (x )为减函数.由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2+366≤3,解得a ≥-92,故a 的取值范围为⎪⎭⎫⎢⎣⎡+∞-,29题型三 利用导数研究函数的极值(最值)问题 【题型要点解析】(1)利用导数研究函数的极值的一般思想:①求定义域;①求导数f ′(x );①解方程f ′(x )=0,研究极值情况;①确定f ′(x 0)=0时x 0左右的符号,定极值.(2)求函数y =f (x )在[a ,b ]上最大值与最小值的步骤:①求函数y =f (x )在(a ,b )内的极值;①将函数y =f (x )的极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.(3)当极值点和给定的自变量范围关系不明确时,需要分类求解,在求最值时,若极值点的函数值与区间端点的函数值大小不确定时需分类求解.例1.设函数G (x )=x ln x +(1-x )·ln (1-x ). (1)求G (x )的最小值;(2)记G (x )的最小值为c ,已知函数f (x )=2a ·e x +c +a +1x -2(a +1)(a >0),若对于任意的x ①(0,+∞),恒有f (x )≥0成立,求实数a 的取值范围.【解】 (1)由已知得0<x <1,G ′(x )=ln x -ln (1-x )=lnx 1-x.令G ′(x )<0,得0<x <12;令G ′(x )>0,得12<x <1,所以G (x )的单调减区间为⎪⎭⎫ ⎝⎛21,0,单调增区间为⎪⎭⎫⎝⎛1,21.从而G (x )min =G ⎪⎭⎫⎝⎛21=ln 12=-ln 2.(2)由(1)中c =-ln 2,得f (x )=a ·e x+a +1x -2(a +1).所以f ′(x )=ax 2·e x -(a +1)x 2.令g (x )=ax 2·e x -(a +1),则g ′(x )=ax (2+x )e x >0,所以g (x )在(0,+∞)上单调递增, 因为g (0)=-(a +1),且当x →+∞时,g (x )>0,所以存在x 0①(0,+∞),使g (x 0)=0,且f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增.因为g (x 0)=ax 20·e x 0-(a +1)=0,所以ax 20·e x 0=a +1,即a ·e x 0=a +1x 20,因为对于任意的x ①(0,+∞),恒有f (x )≥0成立,所以f (x )min =f (x 0)=a ·e x 0+a +1x 0-2(a +1)≥0,所以a +1x 20+a +1x 0-2(a +1)≥0,即1x 20+1x 0-2≥0,即2x 20-x 0-1≤0,所以-12≤x 0≤1.因为ax 20·e x 0=a +1,所以x 20·e x 0=a +1a >1.又x 0>0,所以0<x 0≤1,从而x 20·e x 0≤e ,所以1<a +1a ≤e ,故a ≥1e -1.题组训练三 利用导数研究函数的极值(最值)问题已知函数f (x )=ax 2+bx +ce x (a >0)的导函数y =f ′(x )的两个零点为-3和0.(1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值. 【解】 (1)f ′(x )=(2ax +b )e x -(ax 2+bx +c )e x (e x )2=-ax 2+(2a -b )x +b -ce x .令g (x )=-ax 2+(2a -b )x +b -c ,因为e x >0,所以y =f ′(x )的零点就是g (x )=-ax 2+(2a -b )x +b -c 的零点且f ′(x )与g (x )符号相同. 又因为a >0,所以当-3<x <0时,g (x )>0,即f ′(x )>0,当x <-3或x >0时,g (x )<0,即f ′(x )<0, 所以f (x )的单调递增区间是(-3,0), 单调递减区间是(-∞,-3),(0,+∞). (2)由(1)知,x =-3是f (x )的极小值点,所以有⎩⎪⎨⎪⎧9a -3b +c e -3=-e 3,g (0)=b -c =0,g (-3)=-9a -3(2a -b )+b -c =0,解得a =1,b =5,c =5,所以f (x )=x 2+5x +5e x .因为f (x )的单调递增区间是(-3,0), 单调递减区间是(-∞,-3),(0,+∞), 所以f (0)=5为函数f (x )的极大值,故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者,而f (-5)=5e -5=5e 5>5=f (0),所以函数f (x )在区间[-5,+∞)上的最大值是5e 5.题型四 定积分 【题型要点解析】(1)求简单定积分最根本的方法就是根据微积分定理找到被积函数的原函数,其一般步骤:①把被积函数变为幂函数、正弦函数、余弦函数、指数函数与常数的和或差;①利用定积分的性质把所求定积分化为若干个定积分的和或差;①分别用求导公式找到F (x ),使得F ′(x )=f (x );①利用牛顿——莱布尼兹公式求出各个定积分的值;①计算所求定积分的值.有些特殊函数可根据其几何意义,求其围成的几何图形的面积,即其对应的定积分.(2)求由函数图象或解析几何中曲线围成的曲边图形的面积,一般转化为定积分的计算与应用,但一定找准积分上限、积分下限及被积函数,且当图形的边界不同时,要讨论解决,其一般步骤:①画出图形,确定图形范围;①解方程组求出图形交点范围,确定积分上、下限;①确定被积函数,注意分清函数图象的上、下位置;①计算下积分,求出平面图形的面积.例1.设f (x )=⎩⎨⎧1-x 2,x ①[-1,1)x 2-1,x ①[1,2],则⎰-21f (x )d x 的值为( )A.π2+43 B.π2+3 C.π4+43D.π4+3【解析】⎰-21f (x )d x =⎰-211-x 2d x +⎰-21(x 2-1)d x =12π×12+⎪⎭⎫ ⎝⎛-x x 331⎪⎪⎪21=π2+43,故选A.【答案】 A例2.⎰1⎪⎭⎫ ⎝⎛+-212x x d x =________.【解析】⎰1⎪⎭⎫ ⎝⎛+-212x x d x =⎰101-x 2d x +⎰112x d x ,⎰112x d x =14,⎰11-x 2d x 表示四分之一单位圆的面积,为π4,所以结果是π+14.【答案】π+14例3.由曲线y =x 2+1,直线y =-x +3,x 轴正半轴与y 轴正半轴所围成图形的面积为( ) A .3 B.103 C.73D.83【解析】 由题可知题中所围成的图形如图中阴影部分所示,由⎩⎪⎨⎪⎧ y =x 2+1y =-x +3,解得⎩⎪⎨⎪⎧ x =-2y =5(舍去)或⎩⎪⎨⎪⎧x =1,y =2,即A (1,2),结合图形可知,所求的面积为⎰1(x 2+1)d x +12×22=⎪⎭⎫⎝⎛+x x 331|10+2=103,选B. 【答案】 B 题组训练四 定积分1.已知1sin φ+1cos φ=22,若φ①⎪⎭⎫⎝⎛2,0π,则⎰-ϕtan 1(x 2-2x )d x =( )A.13 B .-13C.23D .-23【解析】 依题意,1sin φ+1cos φ=22①sin φ+cos φ=22sin φcos φ①2sin(φ+π4)=2sin2φ,因为φ①(0,π2),所以φ=π4,故⎰-ϕtan 1(x 2-2x )d x =⎰-ϕtan 1-1(x 2-2x )d x =(x 33-x 2)|1-1=23.选C.【答案】 C 2.函数y =⎰t(sin x +cos x sin x )d x 的最大值是________.【解析】 y =⎰t(sin x +cos x sin x )d x=⎰t⎪⎭⎫⎝⎛+x x 2sin 21sin d x =⎪⎭⎫ ⎝⎛--x x 2cos 41cos ⎪⎪⎪t 0=-cos t -14cos 2t +54=-cos t -14(2cos 2 t -1)+54=-12(cos t +1)2+2,当cos t =-1时,y max =2. 【答案】 2 【专题训练】 一、选择题1.已知变量a ,b 满足b =-12a 2+3ln a (a >0),若点Q (m ,n )在直线y =2x +12上,则(a -m )2+(b -n )2的最小值为( )A .9 B.353C.95D .3【解析】令y =3ln x -12x 2及y =2x +12,则(a -m )2+(b -n )2的最小值就是曲线y =3ln x -12x 2上一点与直线y =2x +12的距离的最小值,对函数y =3ln x -12x 2求导得:y ′=3x -x ,与直线y =2x +12平行的直线斜率为2,令2=3x -x 得x =1或x =-3(舍),则x =1,得到点(1,-12)到直线y =2x +12的距离为355,则(a -m )2+(b -n )2的最小值为(355)=95.【答案】C2.设a ①R ,若函数y =e ax +3x ,x ①R 有大于零的极值点,则( ) A .a >-3 B .a <-3 C .a >-13D .a <-13【解析】 y ′=a e ax +3=0在(0,+∞)上有解,即a e ax =-3,①e ax >0,①a <0.又当a <0时,0<e ax <1,要使a e ax =-3,则a <-3,故选B.【答案】 B3.已知函数f (x )=x 3-tx 2+3x ,若对于任意的a ①[1,2],b ①(2,3],函数f (x )在区间[a ,b ]上单调递减,则实数t 的取值范围是( )A .(-∞,3]B .(-∞,5]C .[3,+∞)D .[5,+∞)【解析】 ①f (x )=x 3-tx 2+3x ,①f ′(x )=3x 2-2tx +3,由于函数f (x )在[a ,b ]上单调递减,则有f ′(x )≤0在[a ,b ]上恒成立,即不等式3x 2-2tx +3≤0在[a ,b ]上恒成立,即有t ≥32⎪⎭⎫ ⎝⎛+x x 1在[a ,b ]上恒成立,而函数y =32⎪⎭⎫ ⎝⎛+x x 1在[1,3]上单调递增,由于a ①[1,2],b ①(2,3],当b =3时,函数y =32⎪⎭⎫ ⎝⎛+x x 1取得最大值,即y max =32⎪⎭⎫ ⎝⎛+313=5,所以t ≥5,故选D.【答案】 D4.已知函数f (x )=e x -ln(x +a )(a ①R )有唯一的零点x 0,(e =2.718…)则( ) A .-1<x 0<-12B .-12<x 0<-14C .-14<x 0<0D .0<x 0<12【解析】 函数f (x )=e x -ln(x +a )(a ①R ),则x >-a ,可得f ′(x )=e x -1x +a ,f ″(x )=e x +1(x +a )2恒大于0,f ′(x )是增函数,令f ′(x 0)=0,则e x 0=1x 0+a,有唯一解时,a =1e x 0-x 0,代入f (x )可得:f (x 0)=e x 0-ln(x 0+a )=e x 0-ln(1e x 0)=e x 0+x 0,由于f (x 0)是增函数,f (-1)≈-0.63,f (-12)≈0.11,所以f (x 0)=0时,-1<x 0<-12.故选A.【答案】 A5.定义在(0,+∞)上的函数f (x )满足f (x )>2(x +x )f ′(x ),其中f ′(x )为f (x )的导函数,则下列不等式中,一定成立的是( )A .f (1)>f (2)2>f (3)3B.f (1)2>f (4)3>f (9)4 C .f (1)<f (2)2<f (3)3D.f (1)2<f (4)3<f (9)4【解析】 ①f (x )>2(x +x )f ′(x ), ①f (x )>2x (x +1)f ′(x ), ①f (x )12x>(x +1)f ′(x ).①f ′(x )(x +1)-f (x )12x <0,①(f (x )x +1)′<0,设g (x )=f (x )x +1,则函数g (x )在(0,+∞)上递减, 故g (1)>g (4)>g (9),①f (1)2>f (4)3>f (9)4.故选B.【答案】 B6.已知函数f (x )在R 上可导,其导函数为f ′(x ),若f ′(x )满足f ′(x )-f (x )x -1>0,y =f (x )e x 关于直线x =1对称,则不等式f (x 2-x )e x 2-x<f (0)的解集是( )A .(-1,2)B .(1,2)C .(-1,0)①(1,2)D .(-∞,0)①(1,+∞)【解析】 令g (x )=f (x )e x ,则g ′(x )=f ′(x )-f (x )e x .①f ′(x )-f (x )x -1>0,当x >1时,f ′(x )-f (x )>0,则g ′(x )>0,①g (x )在(1,+∞)上单调递增; 当x <1时,f ′(x )-f (x )<0,则g ′(x )<0, ①g (x )在(-∞,1)上单调递减. ①g (0)=f (0),①不等式f (x 2-x )e x 2-x <f (0)即为不等式g (x 2-x )<g (0).①y =f (x )e x 关于直线x =1对称,①|x 2-x |<2,①0<x 2-x <2,解得-1<x <0或1<x <2,故选C. 【答案】 C7.已知偶函数f (x )(x ≠0)的导函数为f ′(x ),且满足f (1)=0,当x >0时,xf ′(x )<2f (x ),则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)①(0,1)B .(-∞,-1)①(1,+∞)C .(-1,0)①(1,+∞)D .(-1,0)①(0,1)【解析】 根据题意,设函数g (x )=f (x )x 2(x ≠0),当x >0时,g ′(x )=f ′(x )·x -2·f (x )x 3<0,说明函数g (x )在(0,+∞)上单调递减,又f (x )为偶函数,所以g (x )为偶函数,又f (1)=0,所以g (1)=0,故g (x )在(-1,0)①(0,1)上的函数值大于零,即f (x )在(-1,0)①(0,1)上的函数值大于零.【答案】D8.定义在⎪⎭⎫⎝⎛2,0π上的函数f (x ),f ′(x )是它的导函数,且恒有f (x )<f ′(x )·tan x 成立,则( ) A.3f ⎪⎭⎫⎝⎛4π>2f ⎪⎭⎫ ⎝⎛3π B .f (1)<2f ⎪⎭⎫⎝⎛6πsin 1C.2f ⎪⎭⎫⎝⎛6π>f ⎪⎭⎫ ⎝⎛4π D.3f ⎪⎭⎫⎝⎛6π<f ⎪⎭⎫⎝⎛3π 【解析】 构造函数F (x )=f (x )sin x.则F ′(x )=f ′(x )sin x -f (x )cos x sin 2x >0,x ①⎪⎭⎫⎝⎛2,0π, 从而有F (x )=f (x )sin x 在⎪⎭⎫ ⎝⎛2,0π上为增函数,所以有F ⎪⎭⎫ ⎝⎛6π<F ⎪⎭⎫ ⎝⎛3π,3sin36sin 6ππππ⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛f f ①3f ⎪⎭⎫ ⎝⎛6π<f ⎪⎭⎫⎝⎛3π,故选D.【答案】 D 二、填空题9.已知曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则实数a +b 的值为____________.【解析】 因为两个函数的交点为(0,m ),①m =a cos0,m =02+b ×0+1,①m =1,a =1,①f (x ),g (x )在(0,m )处有公切线,①f ′(0)=g ′(0),①-sin 0=2×0+b ,①b =0,①a +b =1.【答案】 110.已知函数f (x )是定义在R 上的奇函数,且当x ①(0,+∞)时,都有不等式f (x )+xf ′(x )>0成立,若a =40.2f (40.2),b =(log 43)f (log 43),c =⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1614log 1614log f ,则a ,b ,c 的大小关系是________. 【解析】 根据题意,令g (x )=xf (x ),则a =g (40.2),b =g (log 43),c =g (log 4116)有g (-x )=(-x )f (-x )=(-x )[-f (x )]=xf (x ),则g (x )为偶函数,又由g ′(x )=(x )′f (x )+xf ′(x )=f (x )+xf ′(x ),又由当x ①(0,+∞)时,都有不等式f (x )+xf ′(x )>0成立,则当x ①(0,+∞)时,有g ′(x )>0,即g (x )在(0,+∞)上为增函数,分析可得|log 4116|>|40.2|>|log 43|,则有c >a >b ;故答案为:c >a >b .【答案】 c >a >b11.已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是________.【解析】 令f ′(x )=ln x -ax +x ⎪⎭⎫⎝⎛-a x 1=ln x -2ax +1=0,得ln x =2ax -1.因为函数f (x )=x (ln x -ax )有两个极值点,所以f ′(x )=ln x -2ax +1有两个零点,等价于函数y =ln x 与y =2ax -1的图象有两个交点,在同一个坐标系中作出它们的图象,过点(0,-1)作y =ln x 的切线,设切点为(x 0,y 0),则切线的斜率k =1x 0,切线方程为y =1x 0x -1.切点在切线y =1x 0x -1上,则y 0=x 0x 0-1=0,又切点在曲线y =ln x 上,则ln x 0=0,①x 0=1,即切点为(1,0),切线方程为y =x -1.再由直线y =2ax -1与曲线y =ln x 有两个交点,知直线y =2ax -1位于两直线y =0和y =x -1之间,其斜率2a 满足0<2a <1,解得实数a 的取值范围是⎪⎭⎫ ⎝⎛21,0.【答案】 ⎪⎭⎫ ⎝⎛21,012.曲线y =2sin x (0≤x ≤π)与直线y =1围成的封闭图形的面积为________.【解析】 令2sin x =1,得sin x =12,当x ①[0,π]时,得x =π6或x =5π6,所以所求面积S =∫5π6(2sin x -1)d x=(-2cos x -x )π6⎪⎪⎪5π6π6=23-2π3. 【答案】 23-2π3三、解答题13.已知函数f (x )=a e 2x +(a -2)e x -x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.【解析】 (1)f (x )的定义域为(-∞,+∞),f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1), (i)若a ≤0,则f ′(x )<0,所以f (x )在(-∞,+∞)单调递减. (ii)若a >0,则由f ′(x )=0得x =-ln a .当x ①(-∞,-ln a )时,f ′(x )<0;当x ①(-ln a ,+∞)时,f ′(x )>0,所以f (x )在(-∞,-ln a )单调递减,在(-ln a ,+∞)单调递增.(2)(i)若a ≤0,由(1)知,f (x )至多有一个零点.(ii)若a >0,由(1)知,当x =-ln a 时,f (x )取得最小值,最小值为f (-ln a )=1-1a +ln a .①当a =1时,由于f (-ln a )=0,故f (x )只有一个零点; ①当a ①(1,+∞)时,由于1-1a +ln a >0,即f (-ln a )>0,故f (x )没有零点;①当a ①(0,1)时,1-1a+ln a <0,即f (-ln a )<0.又f (-2)=a e -4+(a -2)e -2+2>-2e -2+2>0,故f (x )在(-∞,-ln a )有一个零点. 设正整数n 0满足n 0>ln (3a-1),则f (n 0)=e n 0(a e n 0+a -2)-n 0>e n 0-n 0>2r 0-n 0>0.由于ln (3a -1)>-ln a ,因此f (x )在(-ln a ,+∞)有一个零点.综上,a 的取值范围为(0,1).14.已知函数f (x )=e ax (其中e =2.71828…),g (x )=f (x )x .(1)若g (x )在[1,+∞)上是增函数,求实数a 的取值范围; (2)当a =12时,求函数g (x )在[m ,m +1](m >0)上的最小值.【解析】 (1)由题意得g (x )=f (x )x =eaxx在[1,+∞)上是增函数,故'⎪⎪⎭⎫ ⎝⎛x e ax =e ax (ax -1)x 2≥0在[1,+∞)上恒成立,即ax -1≥0在[1,+∞)恒成立,a ≥1x 在x ①[1,+∞)上恒成立,而1x ≤1,①a ≥1; (2)当a =12时,g (x )=e x 2x ,g ′(x )=e x 2(x2-1)x 2,当x >2时,g ′(x )>0,g (x )在[2,+∞)递增, 当x <2且x ≠0时,g ′(x )<0,即g (x )在(0,2),(-∞,0)递减,又m >0,①m +1>1,故当m ≥2时,g (x )在[m ,m +1]上递增,此时,g (x )min =g (m )=e m 2m ,当1<m <2时,g (x )在[m,2]递减,在[2,m +1]递增,此时,g (x )min =g (2)=e2,当0<m ≤1时,m +1≤2,g (x )在[m ,m +1]递减,此时,g (x )min =g (m +1)=e m +12m +1,综上,当0<m ≤1时,g (x )min =g (m +1)=e m +12m +1,当1<m <2时,g (x )min =g (2)=e2,m ≥2时,g (x )min =g (m )=e m 2m .。
(3)导数及其应用1、设函数32()(2)2f x x a x x =+-+,若()f x 为奇函数,则曲线()y f x =在点(1,3)处的切线方程为( ) A .52y x =-B .2y x =+C .58y x =-+D .4y x =-+2、曲线221y x =+在点()1,3P -处的切线方程为( ) A.41y x =--B.47y x =--C.41y x =-D.47y x =+3、已知函数()f x 的导函数为()'f x ,且满足()()2'ln f x xf x x =+,则()'1f =( ) A.e -B.1- C. 1D.4、设函数()f x 的导数为'()f x 且32()'(1)1f x x f x =++,则()f x 的单调递增区间是( ) A. 0∞(-,)和23∞(,+) B. 203(-,)C. 203(,)D. 23∞(-,-)和0∞(,+) 5、设'()f x 是函数()f x 的导函数,将()y f x =和'()y f x =的图象画在同一个平面直角坐标系中,则下图中不可能正确的是( )A. B.C. D.6、函数()323922y x x x x =---<<有( )A.极大值5,极小值27-B.极大值5,极小值11-C.极大值5,无极小值D.极小值27-,无极大值7、已知函数32()f x x ax bx =++在1x =处有极值10,则(2)f 等于( ) A. 1B. 2C. -2D. -18、函数3223125y x x x =--+在[]2,1-上的最大值、最小值分别是( ) A.12,-8B.1,-8C.12,-15D.5,-169、已知函数1f(x)=ax--(a+1)lnx(a 1)x ≥.若不等式()1f x >在区间1,e e ⎡⎤⎢⎥⎣⎦上恒成立,则a 的取值范围为( ) A .[]1,2B .()1,2C .[1)∞,+D .(2,)+∞10、如图所示,在一个边长为1的正方形AOBC 内,曲线2yx =和曲线y x =围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )A.12 B. 14C. 13D. 1611、函数()22ln f x x x =-+在()0,+∞上的极大值为___________.12、若函数32()21(R)f x x ax a =-+∈在(0,)+∞内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为__________.13、设函数()()e 220()x f x g x ax a a ==+,>.若R x ∀∈,曲线()f x 始终在曲线()g x 上方,则a 的取值范围是_______________________________14、若函数2()2x ae f x x x x+=-+在0∞(,+)上仅有一个零点,则a =_________ 15、已知函数()e x f x mx =-. (1)判断函数()f x 的单调性;(2)当()f x 在[1,2]上的最小值是1时,求m 的值答案以及解析1答案及解析: 答案:A解析:函数32()(2)2f x x a x x =+-+,若()f x 为奇函数, 可得2a =,所以函数3()2f x x x =+,可得2'()32,(1)3f x x f =+=; 曲线()y f x =在点(1,3)处的切线的斜率为:5,则曲线()y f x =在点(1,3)处的切线方程为:35(1)y x -=-.即52y x =-. 故选:A .2答案及解析: 答案:A解析:求导函数4y x '= 当1x =-时,()414y '=⨯-=-∴曲线221y x =+在点()1,3P -处的切线方程为:()341y x -=-+ 即41y x =-- 故选A.3答案及解析: 答案:B解析:由题得1'()2'()f x f x x=+,令1x =,可得'(1)1f =-,故选B.4答案及解析: 答案:C解析:因为()()32'11f x x f x =++,所以()()2'2'12f x x f x =+,所以()()2'131'121f f =⨯⨯+⨯,则()'11f =-,所以()32+1f x x x =-+,所以()fx 的定义域为()-+∞∞,,则()2'-3+2f x x x =.令()'0f x >,则2-3+20x x >,即2232003x x x -<⇒<<, 所以()f x 的单调递增区间为20,3⎛⎫ ⎪⎝⎭.5答案及解析: 答案:D解析:A 中曲线表示原函数,直线表示导函数;B 中递增的曲线表示原函数,递减的曲线表示导函数;C 中上面的曲线表示导函数,下面的曲线表示原函数;D 不可能正确.6答案及解析: 答案:C解析:3239y x x x =--, ∴()()2'369313y x x x x =--=+-令0y '=得1x =-,当()2,1x ∈--时0y '>,当(1,2)x ∈-时0y '<,所以函数在1x =-处取得极大值5,无极小值7答案及解析: 答案:B 解析:,,函数在处有极值10, ,解得,,,。
专题03 导数及其应用【2020年】1.(2020·新课标Ⅰ)函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A. 21y x =-- B. 21y x =-+ C. 23y x =- D. 21y x =+【答案】B 【解析】()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+. 2.(2020·新课标Ⅲ)若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为( ) A. y =2x +1 B. y =2x +12 C. y =12x +1 D. y =12x +12【答案】D【解析】设直线l在曲线y =(0x ,则00x >,函数y =y '=,则直线l的斜率k =, 设直线l的方程为)0y x x =-,即00x x -+=, 由于直线l 与圆2215x y +==, 两边平方并整理得2005410x x --=,解得01x =,015x =-(舍), 则直线l 的方程为210x y -+=,即1122y x =+. 【2019年】1.(2019·全国Ⅲ卷】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,x y a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D .2.(2019·天津卷)已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R上恒成立,则a 的取值范围为 A .[]0,1 B .[]0,2 C .[]0,eD .[]1,e【答案】C【解析】当1x =时,(1)12210f a a =-+=>恒成立;当1x <时,22()22021x f x x ax a a x =-+≥⇔≥-恒成立,令2()1x g x x =-,则222(11)(1)2(1)1()111x x x x g x x x x -----+=-=-=----112201x x ⎛⎫⎛⎫=--+-≤-= ⎪ ⎪ ⎪-⎝⎭⎝⎭, 当111x x-=-,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >.当1x >时,()ln 0f x x a x =-≥,即ln xa x≤恒成立, 令()ln xh x x=,则2ln 1()(ln )x h x x -'=,当e x >时,()0h x '>,函数()h x 单调递增, 当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =,∴min ()e a h x ≤=,综上可知,a 的取值范围是[0,e]. 故选C.3.(2019浙江卷)已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0 D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x ,则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b x 3(a +1)x 2+ax ﹣ax ﹣b x 3(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴0且,解得b <0,1﹣a >0,b (a +1)3,则a >–1,b <0. 故选C .4.(2019·全国Ⅰ卷)曲线23()e xy x x =+在点(0)0,处的切线方程为____________. 【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,x x x y x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,则曲线23()e x y x x =+在点(0,0)处的切线方程为3y x =,即30x y -=. 5.(2019·江苏卷)在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 ▲ .【答案】4 【解析】由4(0)y x x x =+>,得241y x'=-, 设斜率为1-的直线与曲线4(0)y x x x=+>切于0004(,)x x x +,由20411x -=-得02x =02x =-∴曲线4(0)y x x x=+>上,点P 到直线0x y +=4=.故答案为4.6.(2019·江苏卷)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ . 【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标. 设点()00,A x y ,则00ln y x =. 又1y x'=, 当0x x =时,01y x '=, 则曲线ln y x =在点A 处的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 将点()e,1--代入,得00e1ln 1x x ---=-, 即00ln e x x =,考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()ln 1H x x '=+,当1x >时,()()0,H x H x '>单调递增, 注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =, 此时01y =,故点A 的坐标为()e,1.7.(2019·北京卷)设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0x xa -++=对任意的x 恒成立, 则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x x f x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立, 又2e 0x >,则0a ≤, 即实数a 的取值范围是(],0-∞. 【2018年】1.(2018·全国Ⅰ卷)设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x =【答案】D 【解析】因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得.故选D.2.(2018·全国Ⅱ卷)函数()2e e x xf x x --=的图像大致为【答案】B【解析】()()()2e e 0,,x xx f x f x f x x--≠-==-∴为奇函数,舍去A ; ()11e e 0f -=->,∴舍去D ; ()()()()()243e e e e 22e 2e ,xx x x x x x xx x f x x x ---+---++=='2x ∴>时,()0f x '>,()f x 单调递增,舍去C. 因此选B.3.(2018·全国Ⅲ卷)函数422y x x =-++的图像大致为【答案】D【解析】函数图象过定点(0,2),排除A ,B ;令42()2y f x x x ==-++,则32()422(21)f x x x x x '=-+=--,由()0f x '>得22(21)0x x -<,得22x <-或202x <<,此时函数单调递增, 由()0f x '<得22(21)0x x ->,得22x >或202x -<<,此时函数单调递减,排除C.故选D.4.(2018·全国Ⅱ卷)曲线2ln(1)y x =+在点(0,0)处的切线方程为__________. 【答案】【解析】则所求的切线方程为.5.(2018·全国Ⅲ卷)曲线()1e xy ax =+在点()0,1处的切线的斜率为2-,则a =________. 【答案】-3【解析】()e 1e xxy a ax =++',则0|12x y a ='=+=-,所以.6.(2018·全国Ⅰ卷)已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【答案】【解析】,所以当时函数单调递减,当时函数单调递增,从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z , 函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,所以当π2π,3x k k =-∈Z 时,函数取得最小值,此时,所以,故答案是.7.(2018·江苏卷)若函数在内有且只有一个零点,则在上的最大值与最小值的和为________. 【答案】–3【解析】由()2620f x x ax =-='得0x =或3a x =, 因为函数()f x 在()0,+∞上有且仅有一个零点且()0=1f ,所以0,033a a f ⎛⎫>= ⎪⎝⎭, 因此32210,33a a a ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭解得3a =.从而函数()f x 在[]1,0-上单调递增,在[]0,1上单调递减,所以()()max 0,f x f =()()(){}()min min 1,11f x f f f =-=-,则()()max min f x f x +=()()0+114 3.f f -=-=- 故答案为-3. 【2017年】1.(2017·全国Ⅲ卷)已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =A .12- B .13C .12D .1【答案】C【解析】函数()f x 的零点满足()2112e e x x x x a --+-=-+,设()11eex x g x --+=+,则()()21111111e1eeee e x x x x x x g x ---+----'=-=-=,当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点, 即21a -⨯=-,解得12a =.故选C. 2.(2017·全国Ⅱ卷)若2x =-是函数21()(1)e x f x x ax -=+-的极值点,则()f x 的极小值为A .1-B .32e -- C .35e - D .1【答案】A【解析】由题可得12121()(2)e (1)e [(2)1]e x x x f x x a x ax x a x a ---'=+++-=+++-, 因为(2)0f '-=,所以1a =-,21()(1)e x f x x x -=--,故21()(2)e x f x x x -'=+-, 令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞上单调递增,在(2,1)-上单调递减, 所以()f x 的极小值为11()(111)e 11f -=--=-.故选A .3.(2017·浙江卷)函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是【答案】D【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .11.(2017·江苏卷)已知函数31()2e e x xf x x x =-+-,其中e 是自然对数的底数.若(1)f a -+2(2)0f a ≤,则实数a 的取值范围是 . 【答案】1[1,]2- 【解析】因为31()2e ()ex x f x x f x x -=-++-=-,所以函数()f x 是奇函数, 因为22()32e e 322e e 0x x x x f 'x x x --=-++≥-+⋅,所以函数()f x 在R 上单调递增,又21)02()(f f a a +-≤,即2())2(1a a f f ≤-,所以221a a ≤-,即2120a a +-≤, 解得112a -≤≤, 故实数a 的取值范围为1[1,]2-.12.(2017·山东卷)若函数e ()x f x (e 2.71828=是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -= ②()3x f x -= ③3()f x x = ④2()2f x x =+ 【答案】①④ 【解析】①ee ()e 2()2x x x x f x -=⋅=在R 上单调递增,故()2x f x -=具有M 性质; ②ee ()e 3()3x x x x f x -=⋅=在R 上单调递减,故()3x f x -=不具有M 性质; ③3e ()e x x f x x =⋅,令3()e x g x x =⋅,则322()e 3e e (3)x x xg x x x x x '=⋅+⋅=+,∴当3x >-时,()0g x '>,当3x <-时,()0g x '<,∴3e ()e x x f x x =⋅在(,3)-∞-上单调递减,在(3,)-+∞上单调递增,故3()f x x =不具有M 性质;④2e ()e (2)x x f x x =+,令2()e (2)x g x x =+,则22()e (2)2e e [(1)1]0x x x g x x x x '=++=++>,则2e ()e (2)x x f x x =+在R 上单调递增,故2()2f x x =+具有M 性质.【2016年】1. 【2016高考山东理数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( )(A )sin y x =(B )ln y x = (C )e x y = (D )3y x =【答案】A【解析】当sin y x =时,cos y x '=,cos 0cos 1⋅π=-,所以在函数sin y x =图象存在两点,使条件成立,故A 正确;函数3ln ,e ,x y x y y x ===的导数值均非负,不符合题意,故选A 。
2020年高考数学 大题专项练习导数与函数 二1.已知函数f(x)=e x -x 2-ax 有两个极值点x 1,x 2(e 为自然对数的底数).12(1)求实数a 的取值范围;(2)求证:f(x 1)+f(x 2)>2.2.设函数f(x)=lnx-0.5ax 2-bx.(1)当a=b=0.5时,求f(x)的最大值;(2)令,其图像上任意一点P(x 0,y 0)处切线的斜率k ≤0.5恒成立,求实数a 的取值范围.3.已知函数f(x)=e x -(x+a)ln(x+a)+x,(x ∈R).(1)当a=1时,求函数f(x)的图像在x=0处的切线方程;(2)若函数f(x)在定义域上为单调递增函数,①求a 的最大整数;②证明:4.已知函数f(x)=kx 3+3(k ﹣1)x 2﹣k 2+1在x=0,x=4处取得极值.(1)求常数k 的值;(2)求函数f(x)的单调区间与极值;(3)设g(x)=f(x)+c ,且∀x ∈[﹣1,2],g(x)≥2c+1恒成立,求c 的取值范围.5. (1)已知函数f(x)=x 3+bx 2+cx +d 的单调减区间为[-1,2],求b ,c 的值.(2)设f(x)=ax 3+x 恰好有三个单调区间,求实数a 的取值范围.6.已知函数f (x )=+x 在x=1处的切线方程为2x ﹣y+b=0.(Ⅰ)求实数a ,b 的值;(Ⅱ)设函数g (x )=f (x )+x 2﹣kx ,且g (x )在其定义域上存在单调递减区间(即g /(x )<0在其定义域上有解),求实数k 的取值范围.7.已知f(x)=x 2-a 2ln x ,a>0.12(1)若f(x)≥0,求a 的取值范围;(2)若f(x 1)=f(x 2),且x 1≠x 2,证明:x 1+x 2>2a.8.若函数f(x)+g(x)和f(x)·g(x)同时在x=t 处取得极小值,则称f(x)和g(x)为一对“P(t)函数”.(1)试判断f(x)=x 与g(x)=x 2+ax+b 是否是一对“P(1)函数”;(2)若f(x)=e x 与g(x)=x 2+ax+1是一对“P(t)函数”.①求a 和t 的值;②若a <0,若对于任意x ∈ [1,+∞),恒有f(x)+g(x)<m·f(x)g(x),求实数m 的取值范围.9.已知函数f(x)=ae x -ln x -1.(1)设x=2是f(x)的极值点,求a ,并求f(x)的单调区间;(2)证明:当a≥时,f(x)≥0.1e10.已知函数f(x)=x-1-alnx(其中a 为参数).(1) 求函数f(x)的单调区间;(2) 若对任意x ∈(0,+∞)都有f(x)≥0成立,求实数a 的取值集合;(3) 证明:n <e<n +1(其中n ∈N *,e 为自然对数的底数).(1+1n )(1+1n )11.已知函数.(1)若a=e ,求函数f(x)的极值;(2)若函数f(x)有两个零点,求实数a 的取值范围.12.设函数f(x)=e 2x -aln x.(1)讨论f(x)的导函数f′(x)零点的个数;(2)证明:当a>0时,f(x)≥2a+aln .2a 13.已知函数在处的切线与轴平行,()(1)试讨论在上的单调性;(2)①设,求的最小值;②证明:.14.已知函数①若函数f(x)在定义域内单调递增,求的取值范围;②若且关于x的方程在[1,4]上恰有两个不相等的实数根,求实数b 取值范围;③设各项为正的数列满足:求证:.15.设函数f(x)=x2e x-1+ax3+bx2,已知x=-2和x=1为f(x)的极值点.(1)求a和b的值.(2)设试比较f(x)与g(x)的大小.答案解析1.解:(1)∵f(x)=e x -x 2-ax ,∴f′(x)=e x -x -a .12设g(x)=e x -x -a ,则g′(x)=e x -1.令g′(x)=e x -1=0,解得x=0.∴当x ∈(-∞,0)时,g′(x)<0,函数g(x)单调递减;当x ∈(0,+∞)时,g′(x)>0,函数g(x)单调递增.∴g(x)min =g(0)=1-a .当a≤1时,f′(x)=g(x)≥0,函数f(x)单调递增,无极值点;当a>1时,g(0)=1-a<0,且当x→+∞时,g(x)→+∞;当x→-∞时,g(x)→+∞.∴当a>1时,f′(x)=g(x)=e x -x -a 有两个零点x 1,x 2.不妨设x 1<x 2,则x 1<0<x 2.∴函数f(x)有两个极值点时,实数a 的取值范围是(1,+∞).(2)证明:由(1)知,x 1,x 2为g(x)=0的两个实数根,x 1<0<x 2,且g(x)在(-∞,0)上单调递减.下面先证x 1<-x 2<0,只需证g(-x 2)<0.∵g(x 2)=ex2-x 2-a=0,得a=ex2-x 2,∴g(-x 2)=e -x2+x 2-a=e -x2-ex2+2x 2.设h(x)=e -x -e x +2x(x>0),则h′(x)=--e x +2<0,1ex∴h(x)在(0,+∞)上单调递减,∴h(x)<h(0)=0,∴g(-x 2)<0,即x 1<-x 2<0.∵函数f(x)在(x 1,0)上单调递减,∴f(x 1)>f(-x 2),∴要证f(x 1)+f(x 2)>2,只需证f(-x 2)+f(x 2)>2,即证ex2+e -x2-x -2>0.2设函数k(x)=e x +e -x -x 2-2(x>0),则k′(x)=e x -e -x -2x .设φ(x)=k′(x)=e x -e -x -2x ,φ′(x)=e x +e -x -2>0,∴φ(x)在(0,+∞)上单调递增,∴φ(x)>φ(0)=0,即k′(x)>0,∴k(x)在(0,+∞)上单调递增,k(x)>k(0)=0,∴当x ∈(0,+∞)时,e x +e -x -x 2-2>0,则ex2+e -x 2-x -2>0,2∴f(-x 2)+f(x 2)>2,∴f(x 1)+f(x 2)>2.2.解:3.解:4.解:5.解:(1)∵函数f(x)的导函数f ′(x)=3x 2+2bx +c ,由题设知-1<x<2是不等式3x 2+2bx +c<0的解集.∴-1,2是方程3x 2+2bx +c=0的两个实根,∴-1+2=-b ,(-1)×2=,即b=-1.5,c=-6.23c 3(2)∵f ′(x)=3ax 2+1,且f(x)有三个单调区间,∴方程f ′(x)=3ax 2+1=0有两个不等的实根,∴Δ=02-4×1×3a>0,∴a<0.∴a 的取值范围为(-∞,0).6.7.解:(1)f′(x)=x-=(x>0).a2x x +a x -a x当x ∈(0,a)时,f′(x)<0,f(x)单调递减;当x ∈(a ,+∞)时,f′(x)>0,f(x)单调递增.当x=a 时,f(x)取最小值f(a)=a 2-a 2ln a.12令a 2-a 2ln a≥0,解得0<a<.12e 故a 的取值范围是(0,].e (2)证明:由(1)知,f(x)在(0,a)上单调递减,在(a ,+∞)上单调递增,不失一般性,设0<x 1<a<x 2<2a ,则2a-x 2<a.要证x 1+x 2>2a ,即x 1>2a-x 2,则只需证f(x 1)<f(2a-x 2).因为f(x 1)=f(x 2),则只需证f(x 2)<f(2a-x 2).设g(x)=f(x)-f(2a-x),a≤x≤2a.则g′(x)=x-+2a-x-=-≤0,a2x a22a -x 2a a -x 2x 2a -x所以g(x)在[a,2a)上单调递减,从而g(x)≤g(a)=0.又a<x 2<2a ,于是g(x 2)=f(x 2)-f(2a-x 2)<0,即f(x 2)<f(2a-x 2).因此x 1+x 2>2a.8.解:9.解:(1)f(x)的定义域为(0,+∞),f ′(x)=ae x -.1x由题设知,f ′(2)=0,所以a=.12e2从而f(x)=e x -ln x -1,f ′(x)=e x -.12e212e21x当0<x <2时,f ′(x)<0;当x >2时,f ′(x)>0.所以f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)证明:当a≥时,f(x)≥-ln x -1.1e ex e设g(x)=-ln x -1,则g′(x)=-.ex e ex e 1x当0<x <1时,g ′(x)<0;当x >1时,g ′(x)>0.所以x=1是g(x)的最小值点.故当x >0时,g(x)≥g(1)=0.因此,当a≥时,f(x)≥0.1e10.解:(1) f ′(x)=1-=(x>0),a x x -a x当a ≤0时,f ′(x)=1-=>0,所以f(x)在(0,+∞)上是增函数;a x x -a x当a>0时,所以f(x)的增区间是(a ,+∞),减区间是(0,a).综上所述, 当a ≤0时,f(x)的单调递增区间是(0,+∞);当a>0时,f(x)的单调递增区间是(a ,+∞),单调递减区间是(0,a).(2) 由题意得f(x)min ≥0.当a ≤0时,由(1)知f(x)在(0,+∞)上是增函数,当x →0时,f(x)→-∞,故不合题意;(6分)当a>0时,由(1)知f(x)min =f(a)=a-1-alna ≥0.令g(a)=a-1-alna ,则由g ′(a)=-lna=0,得a=1,所以g(a)=a-1-alna ≤0,又f(x)min =f(a)=a-1-alna ≥0,所以a-1-alna=0,所以a=1,即实数a 的取值集合是{1}.(10分)(3) 要证不等式1+n <e<1+n +1,1n 1n两边取对数后,只要证nln1+<1<(n +1)ln1+,即只要证<ln1+<,1n 1n 1n +11n 1n令x=1+,则只要证1-<lnx<x-1(1<x ≤2).1n 1x由(1)知当a=1时,f(x)=x-1-lnx 在(1,2]上递增,因此f(x)>f(1),即x-1-lnx>0,所以lnx<x-1(1<x ≤2)令φ(x)=lnx +-1(1<x ≤2),则φ′(x)=>0,1x x -1x2所以φ(x)在(1,2]上递增,故φ(x)>φ(1),即lnx +-1>0,所以1-<lnx(1<x ≤2).1x 1x综上,原命题得证.11.解:12.解:(1)f(x)的定义域为(0,+∞),f′(x)=2e 2x -(x >0).a x当a≤0时,f ′(x)>0,f ′(x)没有零点;当a >0时,设u(x)=e 2x ,v(x)=-,a x因为u(x)=e 2x 在(0,+∞)上单调递增,v(x)=-在(0,+∞)上单调递增,a x所以f′(x)在(0,+∞)上单调递增.又f′(a)>0,当b 满足0<b <且b <时,f ′(b)<0,a 414故当a >0时,f ′(x)存在唯一零点.(2)证明:由(1)可设f′(x)在(0,+∞)上的唯一零点为x 0,当x∈(0,x 0)时,f ′(x)<0;当x∈(x 0,+∞)时,f ′(x)>0.故f(x)在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以当x=x 0时,f(x)取得最小值,最小值为f(x 0).由于2e2x 0-=0,所以f(x 0)=+2ax 0+aln ≥2a +aln .a x0a 2x02a 2a故当a >0时,f(x)≥2a+aln .2a 13.14.解:15.解:。