第十八章函数及其图象知识点整理
- 格式:doc
- 大小:384.41 KB
- 文档页数:10
三角函数的图像和性质1、用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (23π,-1) (2π,0) 余弦函数y=cosx x ∈[0,2π]的图像中,五个关键点是:(0,1) (2π,0) (π,-1) (23π,0) (2π,1) 2 sin y x = cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值 当22x k ππ=+时,max 1y =;当22x k ππ=- 时,min 1y =-.当2x k π=时,max 1y =;当2x k ππ=+时,min1y =-.既无最大值也无最小值周期性 2π 2ππ奇偶性奇函数 偶函数 奇函数单调性 在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦上是减函数. 在[]2,2k k πππ-上是增函数; 在[]2,2k k πππ+上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭上是增函数.对称性 对称中心(),0k π 对称轴2x k ππ=+对称中心,02k ππ⎛⎫+ ⎪⎝⎭对称轴x k π=对称中心,02k π⎛⎫⎪⎝⎭无对称轴函数 性质例作下列函数的简图(1)y=|sinx|,x ∈[0,2π], (2)y=-cosx ,x ∈[0,2π]例利用正弦函数和余弦函数的图象,求满足下列条件的x 的集合:21sin )1(≥x 21cos )2(≤x3、周期函数定义:对于函数()y f x =,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有:()()f x T f x +=,那么函数()y f x =就叫做周期函数,非零常数T 叫做这个函数的周期。
注意: 周期T 往往是多值的(如sin y x = 2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数叫做()y f x =的最小正周期(有些周期函数没有最小正周期)sin y x =, cos y x =的最小正周期为2π (一般称为周期)正弦函数、余弦函数:ωπ=2T 。
高一数学知识点总结2021高一数学知识点总结总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,为此我们要做好回顾,写好总结。
但是总结有什么要求呢?下面是小编为大家整理的2021高一数学知识点总结,欢迎阅读与收藏。
2021高一数学知识点总结1【(一)、映射、函数、反函数】1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.2、对于函数的概念,应注意如下几点:(1)掌握构成函数的三要素,会判断两个函数是否为同一函数.(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式.(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.3、求函数y=f(x)的反函数的一般步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=f(x)的解析式求出x=f-1(y);(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.【(二)、函数的解析式与定义域】1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域.2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域.(4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式.【(三)、函数的值域与最值】1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,16],值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.【(四)、函数的奇偶性】1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).2、奇偶函数的定义是判断函数奇偶性的主要依据。
基本初等函数知识点知识点一:指数及指数幂的运算1.根式的概念 的次方根的定义:一般地,如果,那么叫做的次方根,其中当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.负数没有偶次方根,0的任何次方根都是0.式子叫做根式,叫做根指数,叫做被开方数.2.n 次方根的性质:(1)当为奇数时,;当为偶数时,(2)3.分数指数幂的意义:;注意:0的正分数指数幂等与0,负分数指数幂没有意义.4.有理数指数幂的运算性质:(1)(2)(3)知识点二:指数函数及其性质1.指数函数概念 一般地,函数叫做指数函数,其中是自变量,函数的定义域为.且图象过定点,即当时,变化对图在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,知识点三:对数与对数运算1.对数的定义(1)若,则叫做以为底的对数,记作,其中叫做底数,叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:.2.几个重要的对数恒等式,,.3.常用对数与自然对数常用对数:,即;自然对数:,即(其中…).,那么①加法:②减法:③数乘:⑤⑥换底公式:知识点四:对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.且图象过定点,即当时,上是增函数上是减函数变化对图在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,1.幂函数概念形如的函数,叫做幂函数,其中为常数.2.幂函数的性质(1)限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.(2)过定点:所有的幂函数在都有定义,并且图象都通过点.(3)单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函当(其中互质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数.,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方.补充:函数1. 映射定义:设A,B是两个非空集合,如果按照某种对应法则f,对集合A 中任一元素x,在集合B中有唯一元素y与之对应,则称f是从集合A到集合B的映射。
中考复习——平面直角坐标系、一次函数、反比例函数【知识梳理】一、平面直角坐标系1. 坐标平面上的点与 有序实数对 构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于x 轴对称的点的坐标为 ;关于y 轴对称的点的坐标为 ;关于原点对称的点的坐标为5.两点之间的距离二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有 的值与它对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式 (2)实际问题具有 意义3.函数的表示方法; (1) (2) (3) 三、一次函数的概念、图象、性质1.正比例函数的一般形式是 ( ),一次函数的一般形式是 (k≠0). 2. 一次函数y kx b =+的图象是经过( , )和( , )两点的一条直线.4.若两个一次函数解析式中,k 相等,表示两直线 ;若两直线垂直,则 。
5.的大小决定直线的倾斜程度,越大,直线越 ;四、反比例函数的概念、图象、性质1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质k >0,b >0k >0,b <0k <0,b >0k <0,21212211P P )0()0()2(y y y P y P -=, ,,,21212211P P )0()0()1(x x x P x P -=, , ,, 3.k 的几何含义:反比例函数y =k x(k≠0)中比例系数k 的几何意义,即过双曲线y =k x(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 。
【例题精讲】 例1.函数22y x =-中自变量x 的取值范围是 ;函数y =x 的取值范围是 .例2.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = . 例3.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的 坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,点C 的坐标为例4.一次函数y=(3a+2)x -(4-b),求满足下列条件的a 、b 的取值范围。
第十八章 《函数及其图象》复习资料知识结构一、函数及其图象 (一)变量与函数1.在某一变化过程中,可以取 的量,叫做变量。
取值 ,我们称之为常量。
如:圆的面积S 随半径r 的变化而变化,S 与r 是变量,π是常量。
2.表示函数的方法通常有三种:① ,② ,③ 。
(二)图形与坐标1.在平面上两条 、 且 的数轴,建立一个平面直角坐标系。
2.点的坐标(x ,y )中,x 代表横坐标,y 代表纵坐标。
3.各象限内点的坐标符号:(如下图)4.对称两点的坐标特征(如下图)5. x 轴上点坐标表示为(x , ),y 轴上点坐标表示为( ,y )6. 点P (x ,y )到x 轴的距离是 ,到y 轴的距离是 。
7.x 轴上两点(a ,0),(b ,0)之间的距离是 或 ,y 轴上两点(0,m ),(0,n )之间的距离是 或8.函数图象的作图方法:① ,② ,③ 。
例1:已知点P (m -1,3),(1)若点P 在第二象限,则m 的取值范围是 , (2)当m=1时,点P 在 ,(3)当m=2时,点P 关于x 轴对称的点p 1的坐标是 ,关于y 轴对称的同为正同为负一负一正一正一负点p 2的坐标是 ,关于原点对称的点p 3的坐标是 .。
(三)函数自变量的取值范围:关键是使函数解析式有意义。
(1)当函数的解析式是整式时,自变量取 ; (2)当函数的解析式是分式时,自变量取 ; (3)当函数的解析式是偶次根式时,自变量取使 ; (4)当函数的解析式是奇次根式时,自变量取 ; (5)实际问题中,自变量的取值范围要根据实际情况而定; 注意:需要多种情况综合考虑时,注意不要遗漏。
例2:求下列函数自变量的取值范围:(1)y x =-26;(2) (3)y x =-6;(4)二、一次函数1.一次函数的概念:函数(,为常数,)叫做的一次函数。
(1)作为一次函数自变量的最高次数是1,且其系数,这两个条件缺一不可。
(2)正比例函数 (为常数,且),正比例函数是特殊的 ,2.一次函数的图像:一次函数y =kx +b (k ≠0)的图像是 。
《函数及其图像》知识点一、函数的概念、变量〔自变量、因变量〕、常量的概念。
①变量:在某一函数变化过程中,可以取不同数值的量,叫做变量。
②自变量:在某一函数变化过程中,主动变化的量的叫做自变量。
③因变量:在某一函数变化过程中,因为自变量的变化而被动变化的量叫做因变量。
此时,我们也称因变量是自变量的函数④常量:在某一函数变化中,始终保持不变的量,叫做常量。
练习:在函数r cπ2=中,自变量是 ,因变量是 ,常量是 , 叫做的函数。
二、函数的三种表示方法:①解析法:②列表法:三、函数自变量的取值范围:平面直角坐标系。
水平的数轴叫做横轴〔x 轴〕,取向右为正方向;铅直的数轴叫做纵轴〔y 轴〕,取向上为正方向;两条数轴的交点O 叫做坐标原点。
x 轴和y 轴将坐标平面分成四个象限〔如图〕:五、平面内点的坐标:〔横坐标,纵坐标〕如图:过点P 作x 轴的垂线段,垂足在x 轴上表示的数是2,因此点P 的横坐标为 2 过点P 作y 轴的垂线段,垂足在y 轴上表示的数是3,因此点P 的纵坐标为 3 所以点P 的坐标为〔2 , 3〕 六、平面内特殊位置的点的坐标情况:〔连线〕第一象限 第二象限 第三象限 第四象限 x 轴上 y 轴上 〔- ,-〕 〔- ,+〕 〔+ ,+〕 〔+ ,-〕 〔0 ,a 〕 (b , 0) 七、点的表示〔横坐标,纵坐标〕注意: ①不要丢了括号和中间的逗号;②表示的意思:当___x =时,___y =如点A 〔2,1〕 表示:当2x =时,1y =③注意x 轴上点的特征:(___,0)即纵坐标等于0;y 轴上点的特征:(0,___)即:横坐标等于0。
概括:坐标轴上的点的横坐标和纵坐标至少有一个为0。
八、对称点的坐标关系:⑴关于x 轴对称的点:横坐标 ,纵坐标 。
y xO 第四象限第三象限第二象限第一象限⑵关于y 轴对称的点:横坐标 ,纵坐标 。
⑶关于原点对称的点:横坐标 ,纵坐标 。
各章节详细知识点七年级上册第一章《有理数》1.正数与负数的概念2.正数与负数的实际意义3.有理数的概念4.数轴的概念5.相反数的概念6.绝对值的概念7.有理数的大小比较8.有理数的加法法则9.有理数的减法法则10.有理数的乘法法则11.有理数的运算律12.有理数的除法法则13.有理数的混合运算法则14.有理数的乘方相关概念(乘方、幂、底数、指数)15.有理数的乘方法则16.科学记数法17.近似数(有效数字)第二章《整式的加减》1.单项式及其相关概念(单项式、系数、次数)2.多项式及其相关概念(多项式、项、常数项、次数)3.整式4.同类项的概念5.合并同类项的法则6.去括号法则7.整式加减的运算法则第三章《一元一次方程》1.方程的概念2.一元一次方程的概念3.方程的解4.等式的性质5.一元一次方程的解法(步骤)6.一元一次方程的应用问题(和差倍分问题、数字问题、行程问题、工程问题、劳动力调配问题、增长率问题、商品利润问题)第四章《图形的初步认识》1.几何图形的概念2.立体图形的概念3.平面图形的概念4.立体图形的三视图5.立体图形的展开图6.点、线、面、体的概念7.直线的相关概念(直线、相交线、交点)8.两点确定一条直线9.点与直线的位置关系10.线段的中点11.两点之间线段最短12.两点之间的距离13.角及其相关概念14.角平分线15.余角的概念16.补角的概念17.余角(补角)的性质七年级下册第五章《相交线与平行线》1.相交线的相关概念(邻补角、对顶角)2.对顶角的性质3.垂线的相关概念(垂直、垂线、垂足)4.过一点画垂线5.垂线段最短6.点到直线的距离7.“三线八角”的相关概念8.平行的概念9.平行公理10.平行线的判定11.平行线的性质12.命题及其相关概念(命题、真命题、假命题)13.定理的概念14.平移的概念15.平移的性质第六章《平面直角坐标系》1.有序实数对的概念2.平面直角坐标系及其相关概念(平面直角坐标系、横轴、纵轴、原点、坐标、象限)3.特殊点坐标(象限符号、坐标轴上点的特征、坐标轴角平分线上点的特征、对称点坐标特征、平行于坐标轴的点的特征)4.直角坐标系的实际应用5.平移的坐标特征第七章《三角形》1.三角形的概念2.三角形的分类3.三角形的三边关系4.三角形的“三线”(高线、中线、角平分线)5.三角形的稳定性6.三角形的内角和定理7.三角形的外角8.三角形的外角性质定理9.多边形及其相关概念(多边形、对角线、正多边形)10.多边形的内角和定理11.多边形的外角和定理第八章《二元一次方程组》1.二元一次方程的概念2.二元一次方程(组)的解3.解二元一次方程(代入消元法、加减消元法)4.二元一次方程的应用5.三元一次方程组的概念6.三元一次方程组的解法第九章《不等式与不等式组》1.不等式的概念2.不等式的解3.解集4.一元一次不等式的概念5.不等式的性质6.一元一次不等式的解法7.一元一次不等式的应用8.一元一次不等式组的概念9.一元一次不等式组的解法第十章《数据的收集、整理与描述》1.收集数据(问卷)2.整理数据(表格)3.描述数据(条形统计图、扇形统计图)4.抽样调查的概念5.总体、个体、样本、样本容量6.简单随机抽样的概念7.直方图及其相关概念(直方图、组距、频数)8.画直方图的步骤八年级上册第十一章《全等三角形》1.全等形的概念2.全等三角形的相关概念(全等三角形、对应顶点、对应边、对应角)3.全等三角形的性质4.全等三角形的判定5.角平分线的性质6.角平分线的判定第十二章《轴对称》1.轴对称图形的概念2.关于直线对称的相关概念3.轴对称的性质4.线段垂直平分线的性质5.线段垂直平分线的判定6.作轴对称图形7.关于坐标轴对称点的特征8.等腰三角形的概念9.等腰三角形的性质10.等腰三角形的判定11.等边三角形的概念12.等边三角形的判定13.等边三角形的性质第十三章《实数》1.算术平方根的概念2.平方根的概念3.平方根的性质4.立方根的概念5.立方根的性质6.实数的概念7.实数的分类8.实数的相反数、绝对值9.实数与数轴的关系第十四章《一次函数》1.变量与常量2.函数与自变量3.函数的图像4.正比例函数的解析式5.正比例函数的图象及其性质6.一次函数的解析式7.一次函数的图象及其性质8.一次函数与一元一次方程的关系9.一次函数与一元一次不等式关系10.一次函数与二元一次方程组的关系第十五章《整式的乘除与因式分解》1.同底数的幂的乘法公式2.幂的乘方公式3.积的乘方公式整式的乘法法则4.单项式与多项式相乘的乘法法则5.多项式相乘的乘法法则6.平方差公式7.完全平方公式8.添括号法则9.同底数幂的除法法则10.单项式除单项式的法则11.多项式除以单项式法则12.因式分解的概念13.因式分解的方法(提取公因式法、公式法)八年级下册第十六章《分式》1.分式的概念2.分式的基本性质3.约分与通分4.最简分式5.分式乘除的法则6.分式加减的法则7.整数指数幂的运算性质8.分式方程的概念9.分式方程的解法10.分式方程的应用第十七章《反比例函数》1.反比例函数的概念2.反比例函数的图象及其性质3.反比例函数的应用第十八章《勾股定理》1.勾股定理2.勾股定理的逆定理第十九章《四边形》1.平行四边形的概念2.平行四边形的性质3.平行四边形的判定4.两条平行直线之间的距离5.矩形的概念6.矩形的判定7.矩形的性质8.菱形的概念9.菱形的性质10.菱形的判定11.正方形的概念12.正方形的性质与判定13.梯形概念14.梯形的分类15.等腰梯形的性质16.等腰绞刑的判定第二十章《数据的分析》1.平均数与加权平均数2.中位数3.众数4.方差九年级上册第二十一章《二次根式》1.二次根式的概念2.二次根式的两个重要公式3.代数式的概念4.二次根式的乘法法则5.二次根式的除法法则6.最简二次根式7.二次根式的加减法法则第二十二章《一元二次方程》1.一元二次方程的概念2.一元二次方程的根3.一元二次方程的解法(直接开方法、配方法、求根公式法、因式分解法)4.根的判别式5.一元二次方程根与系数的关系6.一元二次方程的应用(面积问题、连续增长问题)第二十三章《旋转》1.旋转的相关概念(旋转、旋转中心、旋转角)2.旋转的性质3.中心对称的相关概念(中心对称、对称中心、对称点)4.中心对称的性质5.中心对称图形的概念6.关于原点对称的点的坐标的特征第二十四章《圆》1.圆的相关概念(圆的两种定义、圆心、半径、弦、直径、圆弧、优弧、劣弧、半圆、等圆、等弧)2.垂径定理及其推论3.弧、弦、圆心角、弦心距之间的关系定理4.圆周角的概念5.圆周角定理及其推论6.圆内接多边形的概念7.圆内接四边形的性质8.点与圆的位置关系9.三点确定一个圆10.三角形的外接圆及外心11.直线与圆的位置关系及其相关概念12.切线的性质及判定定理13.切线长定理14.圆与圆的位置关系及其相关概念15.正多边形与圆的相关概念(正三角形与圆、正方形与圆、正六边形与圆)16.弧长公式及扇形面积公式17.圆锥及圆柱的侧面积及表面积第二十五章《概率》1.随机事件、不可能事件、必然事件的概念2.随机事件的性质3.概率的概念4.概率的计算公式5.用列表法、树形图计算概率6.频率与概率的关系。
第一节:函数一、知识归纳函数的概念一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y 是x的函数,其中x是自变量,y是因变量。
函数的三种表达式:(1)图象;(2)表格;(3)关系式。
要使函数的解析式有意义。
函数的解析式是整式时,自变量可取全体实数;②函数的解析式是分式时,自变量的取值应使分母≠0;③函数的解析式是二次根式时,自变量的取值应使被开方数≥0。
④函数的解析式是三次根式时,自变量的取值应是一切实数。
(2)对于反映实际问题的函数关系,应使实际问题有意义。
4 常见函数关系式几何物理生活二、经典题型题型考点一求简单的函数关系式,识别自变量与因变量,给定自变量的值,相应地会求出函数的值。
例1.某市自来水公司为限制单位用水,每月只给某单位计划内用水300吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费。
⑴写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式:①用水量小于等于3000吨;②用水量大于3000吨。
⑵某月该单位用水3200吨,水费是元;若用水2800吨,水费元。
⑶若某月该单位缴纳水费1540元,则该单位用水多少吨?参考答案:(1)y=0.5 x 、y=1500+0.8(x-3000)(2)1660 1400(3) 3050例2.函数是研究( )A.常量之间的对应关系的B.常量与变量之间的对应关系的C.变量与常量之间对应关系的D.变量之间的对应关系的题型考点二确定函数的自变量取值范围,例1 .(2010四川凉山)在函数121xyx+=-中,自变量x的取值范围是____题型考点三能根据实际问题的意义以及函数关系式,确定函数图像例1、某游客为爬上3千米高的山顶看日出,先用了1小时爬了2千米,休息0.5小时后,又用了1小时爬上了山顶。
游客爬山所用时间t与登山高度h间的函数关系用图形表示是()第二节一次函数一、知识归纳知识点一:一次函数的定义函数y=______(k、b为常数,k_____,自变量x的次数是U__ _U次)叫做一次函数.知识点二:正比例函数的定义当b_____时,函数y=_____ (k______,比例系数U____)叫做正比例函数.知识点三:一次函数与正比例函数的异同(1)一次函数y=kx+b的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移b绝对值个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)。
函数及其图象知识点整理一、平面直角坐标系1、在平面内,__________________________的两条数轴,组成平面直角坐标系。
注意1) 坐标平面内的点与_______________一一对应2)坐标轴上的点不属于任何象限。
2、不同位置点的坐标的特征:1)坐标轴上点的特征:x轴上点的纵坐标为0,一般记为P(___,___);x轴可写成直线y=0;y轴上点的横坐标为0,一般记为Q (___,___);y轴可写成x=0,2)各象限内点的坐标的特征:第一象限:(___,___);第二象限:(___,___);第三象限:(___,___);第四象限:(___,___);3 、点P(x,y)坐标的几何意义:1)点P(x,y)到x轴的距离是____;2)点P(x,y)到y轴的距离是____;3)点P(x,y)到原点的距离是____;4、关于坐标轴、原点对称的两点坐标的特征1)点P(a,b)关于x轴的对称点P1(___,___);2)点P(a,b)关于y轴的对称点P2(___,___);3)点P(a,b)关于原点的对称点P3(___,___);5、同一数轴上两点间距离(1)x轴上两点A(x1,0),B(x2,0)则AB=|x1-x2|;(2)y轴上两点C(0,y1),D(0,y2),则CD=|y1-y2|。
6、过P(a,b)平行于x轴的直线可写成y=b,平行于y轴的直线可写成x=a,第一、三象限的两轴角平分线y=x;第二、四象限的夹角平分线y=-x。
二、函数的概念1、常量在某问题的研究过程中,保持不变的量叫做常量。
变量在某问题的研究过程中,可以取不同数值的量叫做变量。
2、函数一般地,设在某一变化过程中有两个变量x与y,如果对于x的每一个值y都有唯一的值和它相对应,那么说y是x的函数,x为自变量,y是因变量。
函数值如果变量y是自变量x的函数,那么当x在定义域内取每一个确定的值,如x=a时,变量y都有惟一确定的值与它对应,这个对应值叫做自变量取确定值a时的函数值。
函数的图像对于一个函数,如果把自变量x与函数y的每对对应值分别作为点的横坐标和纵坐标,在直角坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图像。
3、函数常用表示方法:解析式,列表法,图像法4、函数图像的画法由函数解析式画函数的图像,一般按下列步骤进行。
(1)列表:列表给出自变量与函数的一些对应值;(2)描点:用表中的对应值作为坐标,在直角坐标平面内描出相应的点;(3)连线:用光滑的曲线,按照自变量由小到大的顺序,把所描的点连接起来。
在描点时,描出的点越多,图像越精确,实际上,一般不可能把所有的点都描出来,只能用光滑的曲线连接描出的一些点,从面得到函数的近似图像。
注意:画图象应在自变量取值范围内画5、自变量取值范围:当函数表达式为整式时自变量取全体实数;为分式时分母不为零;为二次根式中被开方数是非负数; a 0,a -p中a ≠0;使实际问题有意义. 求自变量取值范围时考虑应周密:例如y=x +21--x x +2-x 中x >0且x ≠2 三、几个常见的函数(一).正比例函数1、函数__________(k ≠0的常数)叫做正比例函数2、正比例函数的图像:①正比例函数y=kx (k ≠0的常数)的图像是经过坐标原点和(1,_____)的一条直线,也叫做直线y=kx 。
②根据两点确定一条直线的规律,在画正比例函数的图像时,除了取原点以处,只需另外再取一个点就可以了,一般取符合解析式的整点(即横坐标和纵坐标都是整数的点)描起来较方便。
如画函数x y 21-=的图像时,分别取点(0,0)和(2,-1),然后描点、连线即可。
3、正比例函数的性质正比例函数y=kx (k ≠0的常数)有如下的性质:①当k >0时,它的图像在第_________象限内,y 随x 的增大而_________; ②当k <0时,它的图像在第_________象限内,y 随x 的增大而_________。
4、函数的性质应结合它的图像来理解(二)一次函数1、函数y=_________ (_______常数, _______≠0)叫做一次函数,当b=0时,一次函数y=kx+b 就成为y=kx (k 是常数 k≠0),这时y 是x 的正比例函数,所以正比例函数是一次函数的特殊情况。
2、一次函数的图像 ①一次函数的图像是经过点(0,_______)且平行于直线y=kx 的一条直线,一次函数y=kx+b 的图像也叫做直线y=kx+b 。
直线y=kx+b 与y 轴相交于点(0,b ) ②两条直线L 1:y=k 1x+b 1,L 2:y=k 2x+b 2,如果k 1=k 2,b 1≠b 2,那么L 1// L 2,反之也成立。
③由两点确定一条直线可知,在画一次函数的图像时,只要先描出直线上的两点,再过这两点画一条直线就可以了,当b≠0时,一般取与坐标轴相交的两点(____,0)、(0,____)较好。
3、直线位置与常数的关系①k 决定直线的方向 k >0直线的方向向上;k <0直线的方向向下 ②b 决定直线与y 轴交点的位置: b >0 直线与y 轴交点在x 轴的_____; b=0 直线过_____点;b <0 直线与y 轴交点在x 轴的_____;根据下列一次函数y=kx+b(k ≠ 0)的草图回答出各图中k 、b 的符号:4、一次函数的性质:与正比例函数的性质一样,当k>0,y随x的增大而_____;当k<0,y随x的增大而_____。
5、一次函数与一元一次方程、不等式的关系一次函数y=kx+b(k≠0),当y=0时,即对应一元一次方程y=kx+b(k≠0),也就是说一次函数y=kx+b(k≠0)的图像与x轴的交点的横坐标x的值就是方程y=kx+b(k≠0)的根。
图像位于x轴上方部分对应的x的取值范围就是不等式kx+b>0的解集,图像位于x轴下方部分对应的x的取值范围就是不等式kx+b<0的解集。
6、求一次函数表达式:待定系数法由已知条件,先设一个式子中的未知系数,然后根据已知数据求出未知系数,从而法语出这个式子的方法叫待定系数法。
说明:求正比例函数、反比例函数、一次函数、二次函数等一般都采用待定系数法。
7、一次函数图像与坐标轴交点:直线y=kx+b(k≠0)与x轴交点(____,0),与y轴交点(0,____),与两坐标轴围成的三角形的面积_______(三)反比例函数1、函数y=kx(k≠0的常数)叫做反比例函数,也可以说y与x成反比例,函数中的x≠0。
①与正比例函数一样,确定了k值,就可以确定一个反比例函数。
②反比例函数y=kx还可表示成y=kx-1的形式。
2、反比例函数的性质①当k>0时,它的图像的两个分支分别在第_____限内,在每个象限内y随x的增大而______。
②当k<0时,它的图像的两个分支分别在第_____象限内,在每个象限内,y随x的增大而______。
③图像的两个分支都无限接近于x轴和y轴,但不会与x轴和y轴相交。
注意:应用要注意“在每个象限内”这个条件。
3、k决定双曲线的位置①k>0 ⇔图像的两个分支分别在第____ 象限内。
②k<0 ⇔图像的两个分支分别在第____ 象限内。
4、k的几何意义过双曲线y=kx(k≠0)上任意一点P引x轴、y轴的垂线,垂足分别为B、A,则矩形PBOA的面积为_____ ,△POB的面积为______(六)常见题解法及思路1、直角坐标系问题其实就是各特殊点、象限点的坐标问题,只要掌握各点坐标特征,问题就可迎刃而解。
2、对于函数问题,其概念理解应全面,应注意三点:1)两个变量x与y;2)变量y的值随变量x的值变化而变化;3)对于x的每一个值,y都有惟一的值与它对应。
3、画函数图像的一般方法是:列表、描点、连线4、灵活掌握各特殊函数本身的定义、表达式特征、图象、性质,其中也包括函数的对称性和增减性,并且由数形结合思想将表达式、图象、性质三位一体。
如:会由函数图象来判断解析式的系数符号,或由一些对图象的描述性语言来判断解析式的系数符号。
5、求两个函数的交点问题,把两个解析式组成方程组,方程组若有解,则为交点坐标6、用待定系数法求函数解析式的方法1)有几个待定的系数,就要有几个条件来列出相应的方程(组)计算。
2)由了解各特殊函数中系数的作用来进行计算,如:一次函数y=kx+b 1与y=kx+b 2(k ≠0),由于x 的系数相同而知两直线平行,反之亦然。
7、一次函数图像与x,y 轴所围成三角形与四边形的面积问题需要求出函数图像与坐标轴的交点。
8、一次函数与反比例函数综合应用题型。
知识过关训练题1.求下列函数中自变量x 的取值范围(1) y =1x +2 (2)y=x -2(3)y=2.某水果批发市场规定,批发水果不少于100千克时,批发价为每千克2.5元.小于携带现金3000元到市场采购苹果,并以批发价买进,如果购买的苹果为x 千克,小王付款后的剩余现金为y 元,则y 与x 之间的函数关系式是___,自变量x 的取值范围是__________.3.(-3,4)关于x 轴对称的点的坐标为____,关于y 轴对称的点的坐标为______,关于原点对称的坐标为_________.4. 点B (-5,-12)到x 轴的距离是____,到y 轴的距离是____,到原点的距离是____。
5.点 M (-6,8)到 x 轴的距离是_________,到 y 轴的距离是________.到原点的距离是_________ 6.以点(3,0)为圆心,半径为5的圆与x 轴交点坐标为_______,与y 轴交点坐标为_______ 7.点P (a -3,5-a )在第一象限内,则a 的取值范围是____________8、下列函数中,是一次函数的是_________。
①x y 31=②x y 52+-= ③xy 1-= ④y=(2x-1)2+2 ⑤ y=x-2 ⑥y=2πx 9.若y=(m-2)x+(m 2-4)是正比例函数,则m 值是( )A 、2B 、-2C 、±2D 、任意实数10.将直线y=-2x+1沿y 轴方向向上平移3个单位长,得到的直线解析式为 。
11、若直线y=kx+b 中,k <0,b >0,则直线不经过( ) A .第一象限 B 、第二象限 C 、第三象限 D 、第四象限12.直线y=3x-2经过第 象限,y 随x 的增大而 。
13、已知一次函数y=(m+2)x+(3-2m)的图象不经过第四象限,则m 的范围是 。
14、当m 时,一次函数y=(m+1)x+6的函数值随x 的增大而减小。
15、直线y=(m+1)x+m 2+1与y 轴的交点坐标是(0,5),且直线经过第一、二、四象限,则m= 。