函数和图像知识点汇总
- 格式:doc
- 大小:797.50 KB
- 文档页数:8
函数图像是一种在平面上表示函数关系的方法,通过画出函数图像,可以直观地看出函数的性质和特点。
在数学教学中,函数图像的绘制是非常重要的一部分,它帮助学生理解函数的变化规律,并且可以帮助学生更好地理解函数的性质。
在本文中,将对函数图像的画法进行详细的介绍和总结,包括常见的一些函数图像的特点和绘制方法。
一、基本函数图像的特点及绘制方法1. 直线函数 y=ax+b直线函数是最基本的函数之一,其图像在平面直角坐标系中呈直线状。
直线函数的一般形式为y=ax+b,其中a和b分别是函数的斜率和截距。
当a大于0时,函数图像呈现为向上倾斜的直线;当a小于0时,函数图像呈现为向下倾斜的直线。
绘制直线函数的方法非常简单,只需取两个点就可以确定一条直线。
首先确定直线的截距b,然后再找到直线的斜率a,通过这两个参数就可以确定直线的图像了。
2. 平方函数 y=x^2平方函数是一种非常常见的二次函数,其图像呈现为抛物线形状。
平方函数的一般形式为y=x^2。
平方函数的图像对称于y轴,开口向上。
绘制平方函数的方法可以通过选取多个点来确定函数的图像,一般情况下可以通过选取x=-2,-1,0,1,2等一些常用点,然后根据这些点的坐标值来画出平方函数的图像。
3. 开方函数 y=sqrt(x)开方函数是平方函数的反函数,其图像为抛物线的一条分支。
开方函数的一般形式为y=sqrt(x)。
开方函数的图像对称于x轴,开口向右。
绘制开方函数的方法可以通过选取多个点来确定函数的图像,一般情况下可以通过选取x=0,1,4,9等一些常用点,然后根据这些点的坐标值来画出开方函数的图像。
4. 绝对值函数 y=|x|绝对值函数的图像呈现为一条V形状的曲线。
绝对值函数的一般形式为y=|x|。
绘制绝对值函数的方法可以通过选取多个点来确定函数的图像,一般情况下可以通过选取x=-2,-1,0,1,2等一些常用点,然后根据这些点的坐标值来画出绝对值函数的图像。
以上是一些常见的基本函数的图像特点及绘制方法,通过这些例子可以看出,绘制函数图像的方法主要是通过选取一些关键点来确定函数的图像,然后再通过连接这些点来得到完整的函数图像。
函数性质图像知识点总结一、函数的定义在数学上,函数可以定义为一种特殊的关系,它将输入(自变量)映射到输出(因变量)。
具体来说,如果对于每一个自变量值,函数都有唯一的对应因变量值,那么这个关系就是一个函数。
形式上,我们可以用f(x)来表示函数,其中x是自变量,f(x)是对应的因变量。
例如,y = 2x + 3就是一个函数,其中y是因变量,x是自变量。
二、函数的性质1.定义域和值域函数的定义域是指所有可能的自变量值的集合,而值域是所有可能的因变量值的集合。
在图像上,定义域通常表示为x轴上的取值范围,而值域则表示为y轴上的取值范围。
例如,对于函数f(x) = x²,其定义域为所有实数,而值域为非负实数集合。
2.奇函数与偶函数奇函数与偶函数是函数的对称性质。
如果对于任意的x,有f(-x) = -f(x),那么函数f(x)就是奇函数;如果对于任意的x,有f(-x) = f(x),那么函数f(x)就是偶函数。
奇函数在原点对称,而偶函数在y轴对称。
3.单调性函数的单调性是指在定义域上,函数值的增减关系。
如果对于任意的x₁和x₂,当x₁< x₂时有f(x₁)≤f(x₂),那么函数f(x)就是递增的;如果对于任意的x₁和x₂,当x₁< x₂时有f(x₁)≥f(x₂),那么函数f(x)就是递减的。
4.周期性如果存在一个正数T,使得对于所有的x,有f(x+T) = f(x),那么函数f(x)就是周期函数。
其中最小的T称为函数的周期,通常用P来表示。
常见的周期函数有sin(x)和cos(x)。
5.有界性函数的有界性是指函数值的范围限制。
如果存在两个实数M和N,使得对于任意的x,有|f(x)| ≤ M,那么函数f(x)就是有界的。
如果函数在定义域上有上界和下界,则称为有界函数。
6.反函数若对于一个函数f(x),存在一个函数g(x),使得f(g(x)) = x且g(f(x)) = x,那么函数g(x)就是函数f(x)的反函数。
函数图像高考知识点总结一、函数的概念函数是数学中的一个重要概念,函数的概念在高中数学中有着很重要的地位。
函数的概念是传递和扩展我们数学知识,从而推广了我们对数学问题的认识,为我们更好地探求数学规律打下了坚实的基础。
函数的概念最早来源于19世纪的数学家勒贝格的研究成果,函数的概念对于我们学习数学中的其他知识将会起到很大的帮助。
下面来详细介绍一下函数的概念。
1、函数的定义函数是一种特殊的关系,他只有一个自变量,并且每个自变量都对应唯一一个因变量。
函数符号y=f(x),其中x为自变量,y为因变量,f(x)为函数。
函数的符号表示是:y=f(x)或y=y(x),这里y表示因变量,x表示自变量,f表示函数名称,称为函数符号。
在函数y=f(x)中,x的取值范围称为定义域,y的所有可能取值构成的s称为值域,定义域与值域构成一个对应关系称为函数的定义域和值域。
定义域和值域的关系对函数的研究非常重要,这是我们学习函数的一个关键点。
只有知道了函数的定义域和值域,我们才能更好的对函数进行研究。
2、函数的图像函数的图像是指函数的自变量和因变量之间的关系所表现出来的几何图形。
函数的图像是我们理解函数的重要手段之一,通过函数的图像我们可以直观地了解函数的性质和特点。
函数的图像在我们学习函数的时候起重要的作用,通过函数图像我们可以更好的理解函数的性质。
二、函数图像的性质函数图像有很多重要的性质,这些性质对于我们理解函数图像具有非常重要的作用。
下面我们来详细介绍一下函数图像的性质。
1、函数的奇偶性函数的奇偶性是指函数的图像关于y轴对称还是关于原点对称。
如果函数的图像关于y轴对称,那么函数是偶函数;如果函数的图像关于原点对称,那么函数是奇函数。
通过函数的奇偶性,我们可以更好的理解函数的性质。
2、函数的周期性函数的周期性是指函数的图像在一定范围内具有重复的规律性。
如果函数的图像在一个固定的范围内有重复的特点,那么这个函数就具有周期性。
《函数及其图像》知识点一、函数的概念、变量〔自变量、因变量〕、常量的概念。
①变量:在某一函数变化过程中,可以取不同数值的量,叫做变量。
②自变量:在某一函数变化过程中,主动变化的量的叫做自变量。
③因变量:在某一函数变化过程中,因为自变量的变化而被动变化的量叫做因变量。
此时,我们也称因变量是自变量的函数④常量:在某一函数变化中,始终保持不变的量,叫做常量。
练习:在函数r cπ2=中,自变量是 ,因变量是 ,常量是 , 叫做的函数。
二、函数的三种表示方法:①解析法:②列表法:三、函数自变量的取值范围:平面直角坐标系。
水平的数轴叫做横轴〔x 轴〕,取向右为正方向;铅直的数轴叫做纵轴〔y 轴〕,取向上为正方向;两条数轴的交点O 叫做坐标原点。
x 轴和y 轴将坐标平面分成四个象限〔如图〕:五、平面内点的坐标:〔横坐标,纵坐标〕如图:过点P 作x 轴的垂线段,垂足在x 轴上表示的数是2,因此点P 的横坐标为 2 过点P 作y 轴的垂线段,垂足在y 轴上表示的数是3,因此点P 的纵坐标为 3 所以点P 的坐标为〔2 , 3〕 六、平面内特殊位置的点的坐标情况:〔连线〕第一象限 第二象限 第三象限 第四象限 x 轴上 y 轴上 〔- ,-〕 〔- ,+〕 〔+ ,+〕 〔+ ,-〕 〔0 ,a 〕 (b , 0) 七、点的表示〔横坐标,纵坐标〕注意: ①不要丢了括号和中间的逗号;②表示的意思:当___x =时,___y =如点A 〔2,1〕 表示:当2x =时,1y =③注意x 轴上点的特征:(___,0)即纵坐标等于0;y 轴上点的特征:(0,___)即:横坐标等于0。
概括:坐标轴上的点的横坐标和纵坐标至少有一个为0。
八、对称点的坐标关系:⑴关于x 轴对称的点:横坐标 ,纵坐标 。
y xO 第四象限第三象限第二象限第一象限⑵关于y 轴对称的点:横坐标 ,纵坐标 。
⑶关于原点对称的点:横坐标 ,纵坐标 。
数学函数图像知识点总结函数是数学中的一个重要概念,通过函数可以描述各种现象和规律。
函数图像是函数的图形表示,通过函数图像可以直观地理解函数的性质和行为。
在学习数学函数图像时,我们需要掌握一些重要的知识点,包括函数的定义、基本函数图像、函数的性质、函数图像的变换等内容。
本文将围绕这些知识点展开详细的介绍。
一、函数的定义1.1 函数的定义在数学中,函数是一种特殊的关系,它将一个集合中的每一个元素都对应到另一个集合中的唯一元素。
通俗的讲,函数就是一种映射关系,将自变量映射到因变量。
函数的定义可以用一个公式、图形或者文字描述。
函数通常用f(x)或者y来表示,其中x是自变量,y是因变量。
函数的一般表示形式为y=f(x),其中f表示函数名,x表示自变量,y表示因变量。
1.2 函数的性质函数有许多重要的性质,包括定义域、值域、奇偶性、周期性等。
在图像中,这些性质通常能够直观地表现出来。
- 定义域:函数的自变量的取值范围称为函数的定义域。
在函数图像上,定义域通常可以通过图形的横坐标范围来表示。
- 值域:函数的因变量的取值范围称为函数的值域。
在函数图像上,值域通常可以通过图形的纵坐标范围来表示。
- 奇偶性:函数的奇偶性是指函数图像关于y轴对称还是关于原点对称。
奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
- 周期性:具有周期性的函数在一定的距离内重复出现相似的图像。
周期函数的图像通常具有明显的重复性特征。
1.3 常见的基本函数在函数图像中,一些基本函数的图像具有重要的参考意义,这些函数包括线性函数、二次函数、指数函数、对数函数、三角函数等。
- 线性函数:线性函数的图像是一条直线,具有固定的斜率和截距。
- 二次函数:二次函数的图像是一个抛物线,具有一个顶点。
- 指数函数:指数函数的图像是以底数为底的指数幂函数,具有快速增长或者快速衰减的特点。
- 对数函数:对数函数的图像是以底数为底的对数函数,具有反映增长速度缓慢的特点。
高一数学函数图像知识点总结一、函数图像知识点汇总1.函数图象的变换1平移变换①水平平移:y=fx±aa>0的图象,可由y=fx的图象向左+或向右-平移a个单位而得到.②竖直平移:y=fx±bb>0的图象,可由y=fx的图象向上+或向下-平移b个单位而得到.2对称变换①y=f-x与y=fx的图象关于y轴对称.②y=-fx与y=fx的图象关于x轴对称.③y=-f-x与y=fx的图象关于原点对称.由对称变换可利用y=fx的图象得到y=|fx|与y=f|x|的图象.①作出y=fx的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|fx|的图象;②作出y=fx在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f|x|的图象.3伸缩变换①y=afxa>0的图象,可将y=fx图象上每点的纵坐标伸a>1时或缩a<1时到原来的a倍,横坐标不变.②y=faxa>0的图象,可将y=fx的图象上每点的横坐标伸a<1时或缩a>1时到原来的倍,纵坐标不变.4翻折变换①作为y=fx的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|fx|的图象;②作为y=fx在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f|x|的图象.2.等价变换可看出函数的图象为半圆.此过程可归纳为:1写出函数解析式的等价组;2化简等价组;3作图.3.描点法作图方法步骤:1确定函数的定义域;2化简函数的解析式;3讨论函数的性质即奇偶性、周期性、单调性、最值甚至变化趋势;4描点连线,画出函数的图象.注意:一条主线数形结合的思想方法是学习函数内容的一条主线,也是高考考查的热点.作函数图象首先要明确函数图象的形状和位置,而取值、列表、描点、连线只是作函数图象的辅助手段,不可本末倒置.两个区别1一个函数的图象关于原点对称与两个函数的图象关于原点对称不同,前者是自身对称,且为奇函数,后者是两个不同的函数对称.2一个函数的图象关于y轴对称与两个函数的图象关于y轴对称也不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系.三种途径明确函数图象形状和位置的方法大致有以下三种途径.1图象变换:平移变换、伸缩变换、对称变换.2函数解析式的等价变换.3研究函数的性质.二、例题解析三、复习指导函数图象是研究函数性质、方程、不等式的重要工具,是数形结合的基础,是高考考查的热点,复习时,应重点掌握几种基本初等函数的图象,并在审题、识图上多下功夫,学会分析“数”与“形”的结合点,把几种常见题型的解法技巧理解透彻。
函数图像及知识点总结本文将首先介绍函数的概念,接着讨论函数图像的基本特征和性质,然后给出一些常见的函数图像和它们的性质分析,最后总结本文的内容。
一、函数的概念在代数学中,函数是一种对应关系,它将一个集合的元素映射到另一个集合的元素上。
具体地说,一个函数 f 是一个规则,它将集合 A 中的每个元素 x 映射到集合 B 中的一个元素f(x) 上。
其中,集合 A 被称为函数的定义域,集合 B 被称为函数的值域。
如果对于定义域A 中的每个元素 x,都有一个唯一的值 f(x) 与之对应,那么函数 f 是一一对应的,否则称为多对一的。
函数可以用多种方式来表示,比如用代数式、图表、表格或者用文字描述。
在本文中,我们将主要讨论函数图像的性质和特点。
二、函数图像的基本特征和性质在直角坐标系中,函数 f 的图像是它的定义域的点在坐标系中的表示,即点 (x, f(x))。
函数图像的基本特征和性质可以通过其图像的形状和位置来描述。
1. 函数的增减性和极值对于函数 f,如果在定义域的某个区间上,当 x1 < x2 时有 f(x1) < f(x2),那么称函数 f 在该区间上是增加的;如果在该区间上,当 x1 < x2 时有 f(x1) > f(x2),那么称函数 f 在该区间上是减少的。
极值是函数图像中的最高点或最低点,它们可以通过导数或者图像来求得。
2. 函数的奇偶性如果对于函数 f 的所有 x 都有 f(-x) = f(x),那么称函数 f 是偶函数;如果对于函数 f 的所有x 都有 f(-x) = -f(x),那么称函数 f 是奇函数。
3. 函数的周期性如果存在一个正数 T,使得对于函数 f 的所有 x 都有 f(x+T) = f(x),那么称函数 f 是周期函数,其中 T 被称为函数 f 的周期。
4. 函数的对称性如果函数图像关于某个点对称,那么称函数具有对称性。
常见的对称性有关于 x 轴、y 轴和原点的对称性。
函数及其图像总结知识点函数的图像是函数表示的一种形式,它是函数在坐标系中的图形表示。
函数的图像可以帮助我们更直观地理解函数的特点和性质。
在学习函数的过程中,函数的图像是一个非常重要的知识点。
本文将总结函数的相关知识点,以帮助读者更好地掌握这一重要的数学概念。
一、函数的定义在数学中,函数是一种特殊的关系。
如果存在一种依赖关系,使得除了x以外,对每个x都只有唯一的y和y唯一对应某个x,那么就称这种依赖关系为函数。
函数的符号表示通常是f(x)或者y=f(x),其中x为自变量,y为因变量。
函数的定义域是自变量的取值范围,值域是函数的输出范围。
二、常见函数1. 线性函数:y=ax+b,其中a和b为常数。
线性函数的图像是一条直线,斜率a决定了直线的斜率,常数b决定了直线的截距。
线性函数是最简单的函数之一,它们在数学建模中有着广泛的应用。
2. 二次函数:y=ax^2+bx+c,其中a、b和c为常数且a不等于0。
二次函数的图像是一条抛物线,开口向上或向下取决于a的正负。
二次函数在物理学、工程学等领域有着重要的应用。
3. 指数函数:y=a^x,其中a为正实数且不等于1。
指数函数的图像是一条逐渐增长或逐渐减小的曲线。
指数函数在自然科学和经济学中有着广泛的应用。
4. 对数函数:y=loga(x),其中a为正实数且不等于1。
对数函数的图像是一条渐进线,对数函数能够将指数函数的性质转化为更容易理解的形式。
5. 三角函数:包括正弦函数、余弦函数、正切函数等。
三角函数在物理学、工程学和天文学中有着重要应用。
以上函数是常见的、在数学教育中重点研究的函数。
这些函数具有各自的特点和性质,通过学习这些函数,我们可以更好地理解数学中的各种问题,并且为进一步学习高等数学课程打下扎实的基础。
三、函数的性质1. 奇函数和偶函数:奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
通过奇偶函数的性质,我们可以推导出一系列关于函数图像的对称性质,以及某些函数值的简化表示。
一次函数的图像与性质知识点总结知识点1 、 一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数. 知识点2、 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点 3、一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb ,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可. 知识点4 、 一次函数y=kx+b (k ,b 为常数,k≠0)的性质(1)k 的正负决定直线的倾斜方向;①k >0时,y 的值随x 值的增大而增大;②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上;②当b <0时,直线与y 轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k ,b 的符号不同,直线所经过的象限也不同;①当k >0,b >0时,直线经过第一、二、三象限(直线不经过第四象限);②当k >0,b ﹥0时,直线经过第一、三、四象限(直线不经过第二象限);③当k ﹤0,b >0时,直线经过第一、二、四象限(直线不经过第三象限);④当k﹤0,b﹤0时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点5、正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.知识点6、点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l 的图象上.知识点7、确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点8、待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b 中,k,b就是待定系数.知识点9、用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.公文写作公文写作是指根据公务活动的客观现实和需求,运用科学的逻辑思路和写作手法完成公文的撰写。
函数图像变换知识点总结一、基本概念1. 函数图像的平移函数图像的平移是指将原函数图像沿横轴或纵轴方向平移一定的距离。
平移的方向和距离可以是正数也可以是负数。
- 沿横轴方向平移:对于函数y=f(x),如果在横轴方向上平移了a个单位,新函数表示为y=f(x-a)。
- 沿纵轴方向平移:对于函数y=f(x),如果在纵轴方向上平移了b个单位,新函数表示为y=f(x)+b。
2. 函数图像的伸缩函数图像的伸缩是指将原函数图像沿横轴或纵轴方向进行拉伸或压缩。
伸缩的方向和比例可以是正数也可以是负数。
- 沿横轴方向伸缩:对于函数y=f(x),如果在横轴方向上进行了伸缩,新函数表示为y=f(kx)。
- 沿纵轴方向伸缩:对于函数y=f(x),如果在纵轴方向上进行了伸缩,新函数表示为y=kf(x)。
3. 函数图像的翻转函数图像的翻转是指对原函数图像进行镜像操作,可以分为关于横轴翻转和关于纵轴翻转两种情况。
- 关于横轴翻转:对于函数y=f(x),进行横轴翻转后,新函数表示为y=-f(x)。
- 关于纵轴翻转:对于函数y=f(x),进行纵轴翻转后,新函数表示为y=f(-x)。
二、函数图像变换的特点1. 平移:平移不改变函数的基本形状,只是改变了函数的位置;2. 伸缩:伸缩可以改变函数的斜率和幅度,但不改变函数的形状;3. 翻转:翻转改变了函数的整体形状,使得原函数变为其镜像;4. 组合变换:可以将多种变换进行组合,得到更复杂的函数图像变换。
三、函数图像变换的应用函数图像变换不仅仅是数学中的一种抽象概念,还可以应用到具体的问题中,如物理、经济等领域。
1. 物理问题:在物理学中,函数图像变换可以用来描述物体的运动、变形等。
例如,对于速度-时间图像,进行平移可表示物体的起始位置不同;进行伸缩则可以描述加速度的变化;进行翻转可以描述反向运动等情况。
2. 经济问题:在经济学中,函数图像变换可以用来描述经济模型的变化。
例如,对于需求-价格图像,进行平移可以表示需求量或价格的变化;进行伸缩可以描述需求的弹性;进行翻转可以描述替代品或补充品的关系等情况。
《函数及其图像》知识点一、函数的概念、变量(自变量、因变量)、常量的概念。
①变量:在某一函数变化过程中,可以取不同数值的量,叫做变量。
②自变量:在某一函数变化过程中,主动变化的量的叫做自变量。
③因变量:在某一函数变化过程中,因为自变量的变化而被动变化的量叫做因变量。
此时,我们也称因变量是自变量的函数④常量:在某一函数变化中,始终保持不变的量,叫做常量。
练习:在函数r cπ2=中,自变量是 ,因变量是 ,常量是 , 叫做的函数。
二、函数的三种表示方法:①解析法:②列表法:三、函数自变量的取值围:平面直角坐标系。
水平的数轴叫做横轴(x 轴),取向右为正方向;铅直的数轴叫做纵轴(y 轴),取向上为正方向;两条数轴的交点O 叫做坐标原点。
x 轴和y 轴将坐标平面分成四个象限(如图):五、平面点的坐标:(横坐标,纵坐标)如图:过点P 作x 轴的垂线段,垂足在x 轴上表示的数是2,因此点P 的横坐标为 2 过点P 作y 轴的垂线段,垂足在y 轴上表示的数是3,因此点P 的纵坐标为 3 所以点P 的坐标为(2 , 3) 六、平面特殊位置的点的坐标情况:(连线)第一象限 第二象限 第三象限 第四象限 x 轴上 y 轴上 (- ,-) (- ,+) (+ ,+) (+ ,-) (0 ,a ) (b , 0) 七、点的表示(横坐标,纵坐标)注意: ①不要丢了括号和中间的逗号;②表示的意思:当___x =时,___y =如点A (2,1) 表示:当2x =时,1y =③注意x 轴上点的特征:(___,0)即纵坐标等于0;y 轴上点的特征:(0,___)即:横坐标等于0。
概括:坐标轴上的点的横坐标和纵坐标至少有一个为0。
八、对称点的坐标关系:⑴关于x 轴对称的点:横坐标 ,纵坐标 。
y xO 第四象限第三象限第二象限第一象限⑵关于y 轴对称的点:横坐标 ,纵坐标 。
⑶关于原点对称的点:横坐标 ,纵坐标 。
(,)P a b 关于x 轴对称_________;关于y 轴对称__________;关于原点对称___________思考:如何解决点关于y=x ,y=-x 对称,以及点旋转90°之后的坐标。
九、数轴上的点和 是一一对应的;在平面直角坐标系中的点和 也是一一对应的。
十、点(,)P a b 到x 轴的距离为________;到y 轴的距离为_______1、点(-3,2)到X 轴的距离是 ,到Y 轴的距离是2、点P 在第3象限,P 到X 轴的距离是4,到Y 轴的距离是3,那么点P 的坐标是 十一、点的平移:(,)P a b 向上平移2格______;向下平移3格_______;向右平移1格______;向右平移5格_______(概括:左右平移改变的是横坐标,上下平移改变的是纵坐标)十二、两点之间的距离:①在同一条水平上线上的时候:求A 、B 两点之间的距离概括:A 、B 两点之间的距离为:12x x -或12y y -②当两点不在同一水平上的时候,我们是通过构造直角三角形的方法来进行求解的,这就需要用到勾股定理的相关知识,同时也要用到①中两点在同一水平线上的时候,两点之间的距离求法。
A 、B 两点之间的距离:221212()()AB x x y y =-+-A 、B 两点的中点坐标为:1212(,)22x x y y ++ 1、点A (0,2)与点B (0,-3),则AB= 2、点A (2,0)与点B (-5,0),则AB= 3、点A (2,3)与点B (3,2),则AB=十三、画函数图像通常用描点法,步骤是:列表、描点、连线三步。
十四、如何根据解析式作图,在作图的过程中,我们应该关注哪些方面①确定x 的取值围,特别要小心有些情况下x 并不能取到所有的值,图像也会受到一定的限制。
②初步判断函数图像的增、减性,来初步判断函数应该是上升的、还是下降的。
③判断函数图像是直线、还是双曲线(可以通过x 的指数来判断,也可以通过变化速度是匀速的还是变速的来进行判断)④最后从函数与x 轴(未必一定会有)、y 轴的交点;以及极值点(未必一定会有);对称性(如原点对称);分段性;从而画出比较准确的草图。
B(4,3)A(-2,3)O B(-2,2)A(-2,3)O十五、点是否在函数图像上:(其本质就是判断这个点所代表的,x y 的值是不是解析方程的解) 如:判断点(4,6)是否在函数223y x x =--图像上,即相当于4,6x y ==是不是方程223y x x =--的解。
或者说:当4x =,22234243y x x =--=-⨯-是否会等于6。
1、点(-3,2),(a ,1+a )在函数1-=kx y 的图像上,则______,==a k2、已知一次函数y=kx+5的图象经过点(-1,2),则k= . 十六、已知横坐标求纵坐标、或者已知纵坐标求横坐标:如:22y x =-的图像上 已知点A 的横坐标为2,点B 的纵坐标为-4;求点A 、B 的坐标。
解析:A 点相当于问你,当 2x =时,____y =;B 点相当于问你:4y =-时,___x =。
十七、寻找与题意相符的函数图像:在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x =时,点R 应运动到( )A .N 处B .P 处C .Q 处D .M 处十八、一次函数的定义:函数解析式是用自变量的一次整式表示的函数叫做一次函数。
形如:)0,(≠+=k b k b kx y 是常数,特别的,当b=0时,一次函数)0(≠=k kx y 常数也叫做正比例函数。
十九、一次函数的图像是一条 ,因此画一次函数的图像只需要取 个点。
二十、函数图像上的点:(注:点的横坐标就是x 的值,点的纵坐标就是y 的值) ⑴已知点A (2,a )在一次函数1+-=x y 上,则a= 。
⑵直线34-=x y 过点( ,0)、(0, )⑶请你写出直线1+=x y 上任意两个点的坐标 。
二十一、一次函数)0,(≠+=k b k b kx y 是常数,的性质:由k 值的正负来决定。
(图1)⑴已知点(x 1,y 1)和点(x 2,y 2)在函数1+-=x y 的图像上,且x 1>x 2,那么y 1y 2⑵已知点(x 1,y 1)和点(x 2,y 2)在函数1-=x y 的图像上,且y 1>y 2,那x 1x 2二十二、一次函数)0,(≠+=k b k b kx y 是常数,的图像特征:由k 、b 的取值决定练习:1、一次函数1+-=x y 的图像经过第 象限。
2、直线b kx y +=1过第一、二、四象限,则直线k bx y -=2不经过 象限。
二十三、一次函数)0,(≠+=k b k b kx y 是常数,与y 轴的交点坐标:(0,b )与x 轴的交点坐标:(kb-,0)练习:一次函数1-=x y 与y 轴的交点坐标是 。
一次函数12+=x y 与x 轴的交点坐标是 。
二十四、求两个一次函数图像的交点坐标:就是把这两个一次函数的解析式组成方程组,得到一个二元一次方程组,解方程组便得到它们的交点坐标。
练习:一次函数1+-=x y 和1-=x y 的交点坐标是二十五、一次函数的作图:首先它的图像是一条直线,而确定一点直线只需要两个点,所以通常只要在直角坐标系中,描出两个点并连接即可。
通常的作法是:取与x 轴和y 轴的两个交点。
如:作函数2y x =-的图像①设出要求的函数关系式;②根据条件列出方程;③解方程,从而得到所求的函数关系式。
练习:已知一次函数的图像经过点(-1,1)和点(1,-5),求这个一次函数的关系式。
二十七、一次函数图像的平移:例如:31y x=-向上平移5个单位______;向下平移2个单位_______备注:上下平移(x值不变)向左平移1个单位____;向右平移2个单位_________备注:左右平移(y值不变)直线y=2x-3向下平移4个单位可得直线y=______, 再向左平移2个单位可得直线y=_________二十八、一次函数与三角形:①当b≠0时,一次函数)0,(≠+=kbkbkxy是常数,的图像与y轴的交点(0,b),与x轴的交点(kb-,0)和原点(0,0)组成一个直角三角形。
这个直角三角形的面积练习:一次函数12+=xy的图像与y轴的交点A的坐标为(,),与x轴的交点B的坐标为(,),Rt△ABO的面积等于②在解决面积问题中经常用点,主要用于充当三角形的高。
如下列求阴影部分的面积:已知直线:11112222::l y k x bl y k x b=+⎧⎨=+⎩①12,l l平行的充要条件:12k k=且12b b≠②12,l l重合的充要条件:12k k=且12b b=③12,l l垂直的充要条件:121k k•=-三十、直线位置关系与方程组的解之间的关系两直线相交说明方程组有唯一解;平行说明方程组无解;重合说明方程组有无穷多个解。
如251y xy x=-⎧⎨=-+⎩方程组的解为21xy=⎧⎨=-⎩。
则交点坐标为(2,1)-。
三十一、反比例函数:2kbbS-⨯=反比例函数(共三种表示方式):ky x =1y kx -= xy k = (0)k ≠ 其中xy k =更方便于求解解析式,而且也更容易应该于判断点是否在某个反比例函数图像上。
提醒:关于k y x =中k 等于多少该如何判断得引起大家的重视;如12y x=中的k 是多少呢?1、已知函数()221m y m x -=-是反比例函数,则m 的值等于( )。
A.±1B.1C. 3D.-12、已知变量y 与x 成反比例,并且当x =2时,y =-3。
(1)求y 与x 的函数关系式;(2)当y =2时x 的值;正比例函数1y k x =与反比例函数2y x=有交点的条件(如上图所示): 反比例函数和正比例函数经过相同的象限,即:1k 、2k 同号;或者说:120k k •> 正比例函数图像与反比例函数图像的两个交点关于原点成中心对称:例如:已知一个正比例函数与一个反比例函数图像其中一个交点的坐标为(2,3),则另一个交点的坐标为 ,这个正比例函数的解析式为 ,反比例函数的解析式为 。
三十三、判断函数图像的正误:1、当k>0时,反比例函数x ky =和一次函数y=kx-k 的图象大致为( )xxx2、函数与在同一平面直角坐标系中的图像可能是( )。
三十四、反比例有关的面积问题(图7三角形AOB 的面积有多种方法)三十五、函数与方程、不等式之间的关系:指示:解决此类题目的关键在于,找到图像的交点,并且理解交点的意思,之后再过交点作x 轴的垂线,并且左右平移垂线,进行观察。