湖北省部分重点中学2014届高三二月联考数学(理)试卷及答案(含答案)
- 格式:doc
- 大小:553.00 KB
- 文档页数:8
武汉市2014届高三2月调研测试数 学(理科)2014.2.20一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数m (3+i)-(2+i)(m ∈R ,i 为虚数单位)在复平面内对应的点不可能位于A .第一象限B .第二象限C .第三象限D .第四象限2.已知甲组数据的平均数为17,乙组数据的中位数为17,则x ,y 的值分别为 A .2,6 B .2,7 C .3,6 D .3,73.已知e 1,e 2是夹角为60°的两个单位向量,若a =e 1+e 2,b =-4e 1+2e 2,则a 与b 的夹角为A .30°B .60°C .120°D .150° 4.《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加A .47尺B .1629尺C .815尺D .1631尺5.阅读如图所示的程序框图,运行相应的程序.若输入某个正整数n 后,输出的S ∈(31,72),则n 的值为 A .5 B .6 C .7 D .86.若(9x -13x )n (n ∈N *)的展开式的第3项的二项式系数为36,则其展开式中的常数项为A .252B .-252C .84D .-847.设a ,b ∈R ,则“a 1-b 2+b 1-a 2=1”是“a 2+b 2=1”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 8.如图,在长方体ABCD-A 1B 1C 1D 1中,E ,H 分别是棱A 1B 1,D 1C 1上的点(点E 与B 1不重合),且EH ∥A 1D 1,过EH 的平面与棱BB 1,CC 1相交,交点分别为F ,G .设AB =2AA 1=2a .在长方体ABCD-A 1B 1C 1D 1内随机选取一点,记该点取自于几何体A 1ABFE-D 1DCGH 内的概率为P ,当点E ,F 分别在棱A 1B 1,BB 1上运动且满足EF =a 时,则PD 1C 1 B 1A1 ABCDE GF H的最小值为A .1116B .34C .1316D .789.若S 1=⎠⎛121x d x ,S 2=⎠⎛12(ln x +1)d x ,S 3=⎠⎛12x d x ,则S 1,S 2,S 3的大小关系为A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 1<S 3<S 2D .S 3<S 1<S 210.如图,半径为2的半圆有一内接梯形ABCD ,它的下底AB 是⊙O 的直径,上底CD 的端点在圆周上.若双曲线以A ,B 为焦点,且过C ,D 两点,则当梯形ABCD 的周长最大时,双曲线的实轴长为A .3+1B .23+2C .3-1D .23-2二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上.答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.已知某几何体的三视图如图所示,则该几何体的表面积为 .12.曲线y =sin xx 在点M (π,0)处的切线与两坐标轴围成的三角形区域为D (包含三角形内部与边界).若点P (x ,y )是区域D 内的任意一点,则x +4y 的最大值为 . 13.如下图①②③④所示,它们都是由小正方形组成的图案.现按同样的排列规则进行排列,记第n 个图形包含的小正方形个数为f (n ),则 (Ⅰ)f (5)= ;(Ⅱ)f (n )= .14.已知函数f (x )=3sin2x +2cos 2x+m 在区间[0,π2]上的最大值为3,则(Ⅰ)m = ;(Ⅱ)对任意a ∈R ,f (x )在[a ,a +20π]上的零点个数为 .(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑.如果全选,则按第15题作答结果计分.) 15.(选修4-1:几何证明选讲)如图,⊙O 的直径AB 的延长线与弦CD 的延长线相交于点P ,E 为⊙O 上一点,AE ⌒=AC ⌒,DE 交AB 于点F .若AB =4,BP =3,则PF = .16.(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线ρ(2cos θ-sin θ)-a =0与曲线⎩⎪⎨⎪⎧x =sin θ+cos θ,y =1+sin2θ.(θ为参数)有两个不同的交点,则实数a 的取值范围为 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知sin(A -B )=cos C .(Ⅰ)若a =32,b =10,求c ;(Ⅱ)求a cos C -c cos Ab的取值范围. 18.(本小题满分12分)已知数列{a n }满足a 1>0,a n +1=2-|a n |,n ∈N *. (Ⅰ)若a 1,a 2,a 3成等比数列,求a 1的值;(Ⅱ)是否存在a 1,使数列{a n }为等差数列?若存在,求出所有这样的a 1;若不存在,说明理由.19.(本小题满分12分)如图,在三棱柱ABC-A 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(Ⅰ)求直线B 1C 1与平面A 1BC 1所成角的正弦值;(Ⅱ)在线段BC 1上确定一点D ,使得AD ⊥A 1B ,并求BDBC 1的值.20.(本小题满分12分)甲、乙、丙三人进行乒乓球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)用X 表示前4局中乙当裁判的次数,求X 的分布列和数学期望. 21.(本小题满分13分)如图,矩形ABCD 中,|AB |=22,|BC |=2.E ,F ,G ,H 分别是矩形四条边的中点,分别以HF ,EG 所在的直线为x 轴,y 轴建立平面直角坐标系,已知→OR =λ→OF ,→CR ′=λ→CF ,其中0<λ<1.(Ⅰ)求证:直线ER 与GR ′的交点M 在椭圆Γ:x 22+y 2=1上;(Ⅱ)若点N 是直线l :y =x +2上且不在坐标轴上的任意一点,F 1、F 2分别为椭圆Γ的左、右焦点,直线NF 1和NF 2与椭圆Γ的交点分别为P 、Q 和S 、T .是否存在点N ,使得直线OP 、OQ 、OS 、OT 的斜率k OP 、k OQ 、k OS 、k OT 满足k OP +k OQ +k OS +k OT =0?若存在,求出点N 的坐标;若不存在,请说明理由.22.(本小题满分14分)(Ⅰ)已知函数f (x )=e x -1-tx ,∃x 0∈R ,使f (x 0)≤0,求实数t 的取值范围;(Ⅱ)证明:b -a b <ln b a <b -aa ,其中0<a <b ;(Ⅲ)设[x ]表示不超过x 的最大整数,证明:[ln(1+n )]≤[1+12+…+1n ]≤1+[ln n ](n ∈N *).武汉市2014届高三2月调研测试 数学(理科)试题参考答案及评分标准一、选择题1.B 2.D 3.C 4.B 5.B 6.C 7.A 8.D 9.A 10.D 二、填空题11.3π2+ 3 12.4 13.(Ⅰ)41;(Ⅱ)2n 2-2n +1 14.(Ⅰ)0;(Ⅱ)40或41 15.215 16.[0,12) 三、解答题 17.(本小题满分12分)解:(Ⅰ)由sin(A -B )=cos C ,得sin(A -B )=sin(π2-C ).∵△ABC 是锐角三角形,∴A -B =π2-C ,即A -B +C =π2, ① 又A +B +C =π, ② 由②-①,得B =π4.由余弦定理b 2=c 2+a 2-2ca cos B ,得(10)2=c 2+(32)2-2c ×32cos π4, 即c 2-6c +8=0,解得c =2,或c =4.当c =2时,b 2+c 2-a 2=(10)2+22-(32)2=-4<0, ∴b 2+c 2<a 2,此时A 为钝角,与已知矛盾,∴c ≠2.故c =4.……………………………………………………………………………6分 (Ⅱ)由(Ⅰ),知B =π4,∴A +C =3π4,即C =3π4-A .∴a cos C -c cos Ab =sin A cos C -cos A sin C sin B =sin(A -C )22=2sin(2A -3π4). ∵△ABC 是锐角三角形,∴π4<A <π2,∴-π4<2A -3π4<π4,∴-22<sin(2A -3π4)<22,∴-1<a cos C -c cos A b<1.故a cos C -c cos Ab的取值范围为(-1,1).………………………………………12分 18.(本小题满分12分)解:(Ⅰ)∵a 1>0,∴a 2=2-|a 1|=2-a 1,a 3=2-|a 2|=2-|2-a 1|.当0<a 1≤2时,a 3=2-(2-a 1)=a 1,∴a 21=(2-a 1)2,解得a 1=1.当a 1>2时,a 3=2-(a 1-2)=4-a 1,∴a 1(4-a 1)=(2-a 1)2,解得a 1=2-2(舍去)或a 1=2+2.综上可得a 1=1或a 1=2+2. (6)分(Ⅱ)假设这样的等差数列存在,则由2a 2=a 1+a 3,得2(2-a 1)=a 1+(2-|2-a 1|),即|2-a 1|=3a 1-2. 当a 1>2时,a 1-2=3a 1-2,解得a 1=0,与a 1>2矛盾;当0<a 1≤2时,2-a 1=3a 1-2,解得a 1=1,从而a n =1(n ∈N *),此时{a n }是一个等差数列;综上可知,当且仅当a 1=1时,数列{a n }为等差数列.………………………12分19.(本小题满分12分) 解:(Ⅰ)∵AA 1C 1C 为正方形,∴AA 1⊥AC .∵平面ABC ⊥平面AA 1C 1C , ∴AA 1⊥平面ABC ,∴AA 1⊥AC ,AA 1⊥AB .由已知AB =3,BC =5,AC =4,∴AB ⊥AC .如图,以A 为原点建立空间直角坐标系A-xyz ,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),∴→A 1B =(0,3,-4),→A 1C 1=(4,0,0),→B 1C 1=(4,-3,0). 设平面A 1BC 1的法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·→A 1B =0,n ·→A 1C 1=0.即⎩⎪⎨⎪⎧3y -4z =0,4x =0.令z =3,则x =0,y =4,∴n =(0,4,3). 设直线B 1C 1与平面A 1BC 1所成的角为θ,则 sin θ=|cos <→B 1C 1,n >|=|→B 1C 1·n ||→B 1C 1||n |=3×45×5=1225.故直线B 1C 1与平面A 1BC 1所成角的正弦值为1225.………………………………6分 (Ⅱ)设D (x ,y ,z )是线段BC 1上一点,且→BD =λ→BC 1(λ∈[0,1]),∴(x ,y -3,z )=λ(4,-3,4),∴x =4λ,y =3-3λ,z =4λ,∴→AD =(4λ,3-3λ,4λ). 又→A 1B =(0,3,-4),由→AD ·→A 1B =0,得3(3-3λ)-4×4λ=0, 即9-25λ=0,解得λ=925∈[0,1]. 故在线段BC 1上存在点D ,使得AD ⊥A 1B .此时BD BC 1=λ=925.…………………………………………………………………12分20.(本小题满分12分) 解:(Ⅰ)记A 1表示事件“第2局结果为甲胜”,A 2表示事件“第3局甲参加比赛时,结果为甲负”, A 表示事件“第4局甲当裁判”. 则A =A 1·A 2.P (A )=P (A 1·A 2)=P (A 1)P (A 2)=14.………………………………………………4分 (Ⅱ)X 的可能取值为0,1,2.记A 3表示事件“第3局乙和丙比赛时,结果为乙胜丙”, B 1表示事件“第1局结果为乙胜丙”,B 2表示事件“第2局乙和甲比赛时,结果为乙胜甲”, B 3表示事件“第3局乙参加比赛时,结果为乙负”.则P (X =0)=P (B 1·B 2·A 3)=P (B 1)P (B 2)P (A 3)=18, P (X =2)=P (B 1-·B 3)=P (B 1-)P (B 3)=14, P (X =1)=1-P (X =0)-P (X =2)=1-18-14=58. ∴X 的分布列为∴E (X )=0×18+1×58+2×14=98.………………………………………………12分21.(本小题满分13分)解:(Ⅰ)由已知,得F (2,0),C (2,1).由→OR =λ→OF ,→CR ′=λ→CF ,得R (2λ,0),R ′(2,1-λ). 又E (0,-1),G (0,1),则直线ER 的方程为y =12λx -1, ① 直线GR ′的方程为y =-λ2x +1. ②由①②,得M (22λ1+λ2,1-λ21+λ2).∵(22λ1+λ2)22+(1-λ21+λ2)2=4λ2+(1-λ2)2(1+λ2)2=(1+λ2)2(1+λ2)2=1,∴直线ER 与GR ′的交点M 在椭圆Γ:x 22+y 2=1上.…………………………5分 (Ⅱ)假设满足条件的点N (x 0,y 0)存在,则直线NF 1的方程为y =k 1(x +1),其中k 1=y 0x 0+1,直线NF 2的方程为y =k 2(x -1),其中k 2=y 0x 0-1.由⎩⎪⎨⎪⎧y =k 1(x +1),x 22+y 2=1.消去y 并化简,得(2k 21+1)x 2+4k 21x +2k 21-2=0. 设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-4k 212k 21+1,x 1x 2=2k 21-22k 21+1.∵OP ,OQ 的斜率存在,∴x 1≠0,x 2≠0,∴k 21≠1. ∴k OP +k OQ =y 1x 1+y 2x 2=k 1(x 1+1)x 1+k 1(x 2+1)x 2=2k 1+k 1·x 1+x 2x 1x 2=k 1(2-4k 212k 21-2)=-2k 1k 21-1.同理可得k OS +k OT =-2k 2k 22-1.∴k OP +k OQ +k OS +k OT =-2(k 1k 21-1+k 2k 22-1)=-2·k 1k 22-k 1+k 21k 2-k 2(k 21-1)(k 22-1)=-2(k 1+k 2)(k 1k 2-1)(k 21-1)(k 22-1). ∵k OP +k OQ +k OS +k OT =0,∴-2(k 1+k 2)(k 1k 2-1)(k 21-1)(k 22-1)=0,即(k 1+k 2)(k 1k 2-1)=0. 由点N 不在坐标轴上,知k 1+k 2≠0,∴k 1k 2=1,即y 0x 0+1·y 0x 0-1=1. ③又y 0=x 0+2, ④ 解③④,得x 0=-54,y 0=34.故满足条件的点N 存在,其坐标为(-54,34).………………………………13分22.(本小题满分14分)解:(Ⅰ)若t <0,令x =1t ,则f (1t )=e t 1-1-1<0;若t =0,f (x )=e x -1>0,不合题意; 若t >0,只需f (x )min ≤0.求导数,得f ′(x )=e x -1-t . 令f ′(x )=0,解得x =ln t +1.当x <ln t +1时,f ′(x )<0,∴f (x )在(-∞,ln t +1)上是减函数; 当x >ln t +1时,f ′(x )>0,∴f (x )在(ln t +1,+∞)上是增函数. 故f (x )在x =ln t +1处取得最小值f (ln t +1)=t -t (ln t +1)=-t ln t . ∴-t ln t ≤0,由t >0,得ln t ≥0,∴t ≥1.综上可知,实数t 的取值范围为(-∞,0)∪[1,+∞).…………………………4分(Ⅱ)由(Ⅰ),知f (x )≥f (ln t +1),即e x -1-tx ≥-t ln t .取t =1,e x -1-x ≥0,即x ≤e x -1.当x >0时,ln x ≤x -1,当且仅当x =1时,等号成立, 故当x >0且x ≠1时,有ln x <x -1.令x =b a ,得ln b a <b a -1(0<a <b ),即ln b a <b -a a .令x =a b ,得ln a b <a b -1(0<a <b ),即-ln b a <a -b b ,亦即ln b a >b -a b .综上,得b -a b <ln b a <b -aa .………………………………………………………9分 (Ⅲ)由(Ⅱ),得b -a b <ln b a <b -aa .令a =k ,b =k +1(k ∈N *),得1k +1<ln k +1k <1k .对于ln k +1k <1k ,分别取k =1,2,…,n , 将上述n 个不等式依次相加,得 ln 21+ln 32+…+ln n +1n <1+12+…+1n , ∴ln(1+n )<1+12+…+1n . ①对于1k +1<ln k +1k ,分别取k =1,2,…,n -1,将上述n -1个不等式依次相加,得 12+13+…+1n <ln 21+ln 32+…+ln n n -1,即12+13+…+1n <ln n (n ≥2), ∴1+12+…+1n ≤1+ln n (n ∈N *). ②综合①②,得ln(1+n )<1+12+…+1n ≤1+ln n .易知,当p <q 时,[p ]≤[q ],∴[ln(1+n )]≤[1+12+…+1n ]≤[1+ln n ](n ∈N *).又∵[1+ln n ]=1+[ln n ],∴[ln(1+n )]≤[1+12+ (1)]≤1+[ln n ](n ∈N *).……………………………14分。
湖北省部分重点中学2014届高三第二次联考高三数学试卷(理科)参考答案CDDDBCACBB②和③ 3或13 2(0,]3 216.解:(Ⅰ)∵()2π3πcos 2cos 22cos 22323f x x x x x x ⎛⎫⎛⎫=--=-=- ⎪ ⎪⎝⎭⎝⎭, ∴.故函数()f x 的最小正周期为π;递增区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z )(Ⅱ)解法一:π23B f B ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,∴π1sin 32B ⎛⎫-=- ⎪⎝⎭. ∵0πB <<,∴ππ2π333B -<-<,∴ππ36B -=-,即π6B =. 由余弦定理得:2222cos b a c ac B =+-,∴2132a a =+-⨯,即2320a a -+=,故1a =(不合题意,舍)或2a =. 因为222134b c a +=+==,所以∆ABC 为直角三角形.解法二:π23B f B ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,∴π1sin 32B ⎛⎫-=- ⎪⎝⎭. ∵0πB <<,∴ππ2π333B -<-<,∴ππ36B -=-,即π6B =.由正弦定理得:1πsin sin 6a A ==,∴sin C =,∵0πC <<,∴π3C =或2π3. 当π3C =时,π2A =;当2π3C =时,π6A =.(不合题意,舍) 所以∆ABC 为直角三角形. 17.(Ⅰ) 延长AD ,FE 交于Q .因为ABCD 是矩形,所以BC ∥AD ,所以∠AQF 是异面直线EF 与B C 所成的角.在梯形ADEF 中,因为DE ∥AF ,AF ⊥FE ,AF=2,DE =1得∠AQF =30°.(Ⅱ) 方法一:设AB =x .取AF 的中点G .由题意得DG ⊥AF .因为平面ABCD ⊥平面ADEF ,A B ⊥AD ,所以AB ⊥平面ADEF ,(第17题图)所以AB ⊥DG .所以DG ⊥平面ABF .过G 作GH ⊥BF ,垂足为H ,连结DH ,则DH ⊥BF ,所以∠DHG 为二面角A -BF -D 的平面角.在直角△AGD 中,AD =2,AG =1,得DG.在直角△BAF 中,由AB BF =sin ∠AFB =GH FG ,得GH x, 所以GH.在直角△DGH 中,DG,GH,得DH=. 因为cos ∠DHG =GH DH =13,得x所以AB方法二:设AB =x .以F 为原点,AF ,FQ 所在的直线分别为x 轴,y 轴建立空间直角坐标系Fxyz .则 F (0,0,0),A (-2,0,0),E0,0),D (-10),B (-2,0,x ), 所以DF =(1,0),BF =(2,0,-x ).因为EF ⊥平面ABF ,所以平面ABF 的法向量可取1n =(0,1,0).设2n =(x 1,y 1,z 1)为平面BFD 的法向量,则111120,0,x z x x -=⎧⎪⎨-=⎪⎩ 所以,可取2n =,1. 因为cos<1n ,2n >=1212||||n n n n ⋅⋅=13,得 x所以AB18.解:(1)当1n =时,由111211a S a -=⇒=.又1121n n a S ++-=与21n n a S -=相减得:12n n a a +=,故数列{}n a 是首项为1,公比为2的等比数列,所以12n n a -=(2)设n a 和1n a +两项之间插入n 个数后,这2n +个数构成的等差数列的公差为(第17题图)n d , 则11211n n n n a a d n n -+-==++, 又(12361)611952,2014195262+++++=-=, 故61616220146262262(621)2612.6363b a d =+-⋅=+⨯=⨯ 19 0.41,11120.41712.a b a b ++=⎧⎨+⨯+=⎩解得:0.5,0.1a b ==.(Ⅱ)X 2 的可能取值为4.12,11.76,20.40.()[]2 4.12(1)1(1)(1)P X p p p p ==---=-,()[]22211.761(1)(1)(1)(1)P X p p p p p p ==--+--=+-,()220.40(1)P X p p ==-.………9分(Ⅲ)由(Ⅱ)可得:()222 4.12(1)11.76(1)20.40(1)E X p p p p p p ⎡⎤=-++-+-⎣⎦ 211.76p p =-++. ………………11分因为E(X 1)< E(X 2), 所以21211.76p p <-++.所以0.40.6p <<.当选择投资B 项目时,p 的取值范围是()0.4,0.620.解:(1)依题意,得2a =,c e a == 1,322=-==∴c a b c ;故椭圆C 的方程为2214x y += . (2)方法一:点M 与点N 关于x 轴对称,设),(11y x M ,),(11y x N -, 不妨设01>y .由于点M 在椭圆C 上,所以412121x y -=. (*) 由已知(2,0)T -,则),2(11y x TM +=,),2(11y x TN -+=,21211111)2(),2(),2(y x y x y x TN TM -+=-+⋅+=⋅∴3445)41()2(1212121++=--+=x x x x 51)58(4521-+=x . 由于221<<-x ,故当581-=x 时,TM TN ⋅取得最小值为15-. 方法二:点M 与点N 关于x 轴对称,故设(2cos ,sin ),(2cos ,sin )M N θθθθ-, 不妨设sin 0θ>,由已知(2,0)T -,则)sin ,2cos 2()sin ,2cos 2(θθθθ-+⋅+=⋅TN TM3cos 8cos 5sin )2cos 2(222++=-+=θθθθ51)54(cos 52-+=θ. 故当4cos 5θ=-时,TM TN ⋅取得最小值为15-,此时83(,)55M -, (3) 方法一:设),(00y x P ,则直线MP 的方程为:)(010100x x x x y y y y ---=-, 令0y =,得101001y y y x y x x R --=, 同理:101001y y y x y x x S ++=, 故212021202021y y y x y x x x S R --=⋅ (**)又点M 与点P 在椭圆上,故)1(42020y x -=,)1(42121y x -=,代入(**)式,得: 4)(4)1(4)1(421202*********202021=--=----=⋅y y y y y y y y y y x x S R . 所以4=⋅=⋅=⋅S R S R x x x x OS OR ,OR OS +的最小值为4 方法二:设(2cos ,sin ),(2cos ,sin )M N θθθθ-,不妨设sin 0θ>,)sin ,cos 2(ααP ,其中θαsin sin ±≠.则直线MP 的方程为:)cos 2(cos 2cos 2sin sin sin αθαθαα---=-x y ,令0y =,得θαθαθαsin sin )sin cos cos (sin 2--=R x , 同理:θαθαθαsin sin )sin cos cos (sin 2++=S x , 故4sin sin )sin (sin 4sin sin )sin cos cos (sin 42222222222=--=--=⋅θαθαθαθαθαS R x x . 所以4=⋅=⋅=⋅S R S R x x x x OS OR ,OR OS +的最小值为421、解:(I )'121()(1)2(1)(1)[(1)2]n n n n f x nx x x x x x n x x --=---=---, 当1[,1]2x ∈时,由'()0n f x =知1x =或者2n x n =+, 当1n =时,11[,1]232n n =∉+,又111()28f =,(1)0n f =,故118a =; 当2n =时,11[,1]222n n =∈+,又211()216f =,(1)0n f =,故2116a =; (II )当3n ≥时,1[,1]22n n ∈+, ∵1[,)22n x n ∈+时,'()0n f x >;(,1)2n x n ∈+时,'()0n f x <; ∴()n f x 在2n x n =+处取得最大值,即2224()()22(2)n n n n n n a n n n +==+++ 综上所述,21,(1)84,(2)(2)n n n n a n n n +⎧=⎪⎪=⎨⎪≥⎪+⎩. 当2n ≥时,欲证 2241(2)(2)n n n n n +≤++,只需证明2(1)4n n+≥ ∵011222222(1)()()()n n n n n n n C C C C n n n n+=+⋅+⋅++⋅ 2(1)41212142n n n-≥++⋅≥++=,所以,当2n ≥时,都有21(2)n a n ≤+成立. (III )当1,2n =时,结论显然成立;当3n ≥时,由(II )知3411816n n S a a a =+++++2221111181656(2)n <++++++ 11111111()()()816455612n n <++-+-++-++ 1117816416<++=. 所以,对任意正整数n ,都有716n S <成立.。
鄂南高中 华师一附中 黄冈中学 黄石二中 荆州中学 孝感高中 襄阳五中 襄阳四中2014届高三第二次联考数 学(理工类)命题学校:孝感高中 命题人:彭西骏 韩松桥 审题人:徐新斌 黄 鹏 考试时间:2014年3月20日下午15:00—17:00本试卷共4页,共22题,其中第15、16题为选考题。
满分150分。
考试用时120分钟。
★ 祝考试顺利 ★注意事项:1.答题前,考生务必将自己的姓名、班级、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 方框涂黑。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷、草稿纸上无效。
3.填空题和解答题的作答:用黑色墨水签字笔将答案直接答在答题卡上对应的答题区域内。
答在试题卷、草稿纸上无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
考生应根据自己选做的题目准确填涂题号,不得多选。
答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效。
5.考生必须保持答题卡的整洁。
考试结束后,请将答题卡上交。
一、选择题:本大题共10小题,每小题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.若复数z 满足i z i 21)1(+=+(其中i 是虚数单位),则z 对应的点位于复平面的 A .第一象限 B .第二象限 C .第三象限 D .第四象限2.设集合2{(3)30}A x x a x a =-++=,2{540}B x x x =-+=,集合A B 中所有元素之和为8,则实数a 的取值集合为A .{0}B .{03},C .{13,4},D .{013,4},, 3.下列说法正确的是A .“a b >”是“22a b >”的必要条件B .自然数的平方大于0C .“若a b ,都是偶数,则+a b 是偶数”的否命题为真D .存在一个钝角三角形,它的三边长均为整数4.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是A .48cm 3B .98cm 3C .88cm 3D .78cm 3 5.把函数()sin y x x R =∈的图象上所有的点向左平移6π个单位长度,再把所得图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到图象的函数表达式为A .sin 2,3y x x R π⎛⎫=-∈ ⎪⎝⎭B .sin 2,3y x x R π⎛⎫=+∈ ⎪⎝⎭ C .1sin ,26y x x R π⎛⎫=+∈ ⎪⎝⎭D .1sin ,26y x x R π⎛⎫=-∈ ⎪⎝⎭6.已知双曲线)0( 14222>=-a y a x 的一条渐近线与圆8)322=+-y x (相交于N M ,两点,且4=MN ,则此双曲线的离心率为A .5B .355C .533D .57.把一个带+q 电量的点电荷放在r 轴上原点处,形成一个电场,距离原点为r 处的单位电荷受到的电场力由公式2F=k qr(其中k 为常数)确定,在该电场中,一个单位正电荷在电场力的作用下,沿着r 轴的方向从a r =处移动到a r 2=处,与从a r 2=处移动到a r 3=处,电场力对它所做的功之比为 A .23 B .13 C .32D .38.如图,在半径为R 的圆C 中,已知弦AB 的长为5,则AB AC =A .52B .252C .52R D .252R 9.将一颗骰子连续抛掷三次, 已知它落地时向上的点数恰好依次成等差数列, 那么这三次抛掷向上的点数之和为12的概率为 A .185 B . 91 C .183D .72110.函数223,0()2ln ,0x x x f x x x ⎧--+≤⎪=⎨->⎪⎩,直线y m =与函数()f x 的图像相交于四个不同的点,从小到大,交点横坐标依次记为,,,a b c d ,下列说法错误的是A .[)3,4m ∈B .)40,abcd e ⎡∈⎣C .562112,2a b c d e e e e ⎡⎫+++∈+-+-⎪⎢⎣⎭D .若关于x 的方程()=f x x m +恰有三个不同实根,则m 取值唯一二、填空题:本大题共6个小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡...对应题号....的位置上.答错位置,书写不清,模棱两可均不得分. (一) 必考题(11—14题)11.记集合{}22(,)|4A x y x y =+≤和集合{}(,)|20,0,0B x y x y x y =+-≤≥≥表示的平面区域分别为1Ω和2Ω,若在区域1Ω内任取一点(,)M x y ,则点M 落在区域2Ω的概率为 .湖北省八校BAC第8题图第4题图第15题图 第21题图第19题图12.已知正数x, y, z 满足x+2y+3z=1, 则xz z y y x +++++3932421的最小值为 .13.定义某种运算⊗,b a S ⊗=的运算原理如右图所示.设)3()0()(x x x x f ⊗-⊗=.则=)3(f ______;()f x 在区间[]3,3-上的最小值为______.14.数学与文学之间存在着许多奇妙的联系.诗中有回文诗,如:“云边月影沙边雁,水外天光山外树”,倒过来读,便是“树外山光天外水,雁边沙影月边云”,其意境和韵味读来是一种享受!数学中也有回文数,如:88,454,7337,43534等都是回文数,无论从左往右读,还是从右往左读,都是同一个数,称这样的数为“回文数”,读起来还真有趣!二位的回文数有11,22,33,44,55,66,77,88,99,共9个;三位的回文数有101,111,121,131,…,969,979,989,999,共90个; 四位的回文数有1001,1111,1221,…,9669,9779,9889,9999,共90个; 由此推测:11位的回文数总共有 个.(二) 选考题(请考生在第15、16两题中任选一题做答,请先在答题卡指定位置将你所选的题目序号所在方框用2B 铅笔涂黑.如果全选,则按第15题作答结果计分.) 15.(选修4-1:几何证明选讲)如图,△ABC 为圆的内接三角形,BD 为圆的弦,且BD//AC . 过点A 作圆的切线与DB 的延长线交于点E , AD 与BC 交于点F .若AB = AC ,AE = 35, BD = 4,则线段CF 的长为______.16.(选修4-4:坐标系与参数方程)在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,两种坐标系取相同的单位长度.已知曲线 54532:1⎪⎪⎩⎪⎪⎨⎧=+=t y t x C (t 为参数)和曲线θθρcos 2sin :22=C 相交于A B 、两点,设线段AB 的中点为M ,则点M 的直角坐标为 .三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知向量22cos ,3m x =(),1,sin 2n x =(),函数()f x m n =⋅ .(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)在∆ABC 中,c b a ,,分别是角,,A B C 的对边,且()3,1f C c ==,32=ab ,且b a >,求b a ,的值.18.(本小题满分12分)已知数列{}n a 的前n 项和是n S ,且113n n S a +=)(*∈N n .(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设41log (1)n n b S +=-)(*∈N n ,12231111n n n T bb b b b b +=+++ ,求使10072016n T ≥成立的最小的正整数n 的值.19.(本小题满分12分)如图,在三棱锥C P A B -中,,,AB BC PB BC ⊥⊥5,PA PB ==64,AB BC ==,点M 是PC 的中点,点N 在线段AB 上,且MN AB ⊥. (Ⅰ)求AN 的长;(Ⅱ)求二面角M NC A --的余弦值.20.(本小题满分12分) 甲乙两个地区高三年级分别有33000人,30000人,为了了解两个地区全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样方法从两个地区一共抽取了105名学生的数学成绩,并作出了如下的频数分布统计表,规定考试成绩在[120,150]内为优秀.甲地区:乙地区:(Ⅰ)计算x ,y 的值;(Ⅱ)根据抽样结果分别估计甲地区和乙地区的优秀率;若将此优秀率作为概率,现从乙地区所有学生中随机抽取3人,求抽取出的优秀学生人数的数学期望;(Ⅲ)根据抽样结果,从样本中优秀的学生中随机抽取3人,求抽取出的甲地区学生人数η的分布列及数学期望.21.(本小题满分13分)如图所示,已知椭圆C 1和抛物线C 2有公共焦点)0,1(F ,C 1的中心和C 2的顶点都在坐标原点,过点M (4,0)的直线l 与抛物线C 2分别相交于A 、B 两点. (Ⅰ)写出抛物线C 2的标准方程; (Ⅱ)求证:以AB 为直径的圆过原点; (Ⅲ)若坐标原点O 关于直线l 的对称点P 在抛物线C 2上,直线l 与椭圆C 1有公共点,求椭圆C 1的长轴长的最小值.22.(本小题满分14分)已知函数)1,0(,2)1ln()(2≠≥+-+=k k x k x x x f 且. (Ⅰ)当2=k 时,求曲线)(x f y =在点))1(,1(f 处的切线方程; (Ⅱ)求)(x f 的单调减区间;(Ⅲ)当0=k 时,设)(x f 在区间)](,0[*N n n ∈上的最小值为n b ,令n n b n a -+=)1ln(,求证:)(,112*2421231423121N n a a a a a a a a a a a a a n nn ∈-+<⋅⋅⋅⋅⋅⋅+⋅⋅⋅++-.??湖北八校2014届高三第二次联考参考答案 数学(理工类)一、选择题A D DBC BD B A D二、填空题:11,π21; 12, 18 ; 13, 3- 12- ; 14, 900000 ; 15, 553 ; 16, ),(431641 . 三、解答题:17.(1)22()(2cos ,3)(1,sin 2)2cos 3sin 2f x m n x x x x =⋅=⋅=+cos 213sin 22sin(2)16x x x π=++=++. (3)分故最小正周期22T ππ== (5)分(2)31)62sin(2)(=++=πC C f ,1)62sin(=+∴πC ,C 是三角形内角,∴262ππ=+C 即:.6π=C (7)分232cos 222=-+=∴ab c a b C 即:722=+b a . ……………………9分 将32=ab 代入可得:71222=+aa ,解之得:32=a 或4,23或=∴a ,32或=∴b (11)分3,2,==∴>b a b a (12)分18.(1) 当1n =时,11a s =,由11113134S a a +=⇒=, ……………………1分当2n ≥时,11111113()01313n n n n n n n n S a S S a a S a ----⎧+=⎪⎪⇒-+-=⎨⎪+=⎪⎩114nn a a -⇒= ∴{}n a 是以34为首项,14为公比的等比数列. ……………………4分故1311()3()444n n n a -== )(*∈N n …………………6分 (2)由(1)知111111()34n n n S a +++-==,14141log (1)log ()(1)4n n n b S n ++=-==-+ ………………8分11111(1)(2)12n n b b n n n n +==-++++ nT =1223111111111111()()()23341222n n b b b b b b n n n +++⋅⋅⋅+=-+-+⋅⋅⋅+-=-+++1110072014222016n n -≥⇒≥+, 故使10072016n T ≥成立的最小的正整数n 的值2014n =. ………………12分19.解:(1)方法一、如图,分别取AB 、AC 的中点O 、Q,连接OP 、OQ ,设AN a =以O 为坐标原点,OP 为x 轴,OA 为y 轴,OQ 为z 轴建立空间直角坐标系,则3(400),(0,34),(2,2),(0)2P C M N a -,,,,-,3-,0设0(00)N x ,,,则9(00),(),2A B M N a == ,-6,-2,-,-2 由MN A B ⊥得()990,6200=22AB MN a a a ⎛⎫=+--⨯⇒ ⎪⎝⎭即-2- 所以29=AN …………………6分方法二:如图,取AB 的中点为O ,PB 的中点为Q ,连接MQ 、NQ , M 、Q 分别为PB 、PC 的中点∴MQ BC 又 AB BC ⊥ ∴AB MQ ⊥ 又 MN AB ⊥∴AB MNQ ⊥平面 AB NQ ⊥,又 PA PB =且O 为AB 的中点 ∴OP AB ⊥ ∴NQ OP又 Q 为AB 中点 ∴N 为OB 中点∴113242BN OB AB ===∴92AN =………………6分 (2) 3(2),(0.),2MN NC =-=- ,0,-2,4设平面MNC 的一个法向量为()1000,,n x y z = ,则0000220034002x z m MN y z m NC --=⎧⎧∙=⎪⎪⇒⎨⎨-+=∙=⎪⎪⎩⎩试卷类型:A 试卷类型:A令03z =,则003,y 8x =-=,即()13,8,3n =-………………9 分平面ANC 的一个法向量为()20,0,1n =,则121212382cos ,82n n n n n n ∙<>==故二面角M NC A--的余弦值为38282. ………………12分 20.解 (I )6,7x y == ………………4分 (II) 甲地区优秀率为2,11乙地区优秀率为22,0,1,2,3,(3,)55B ξξ= ,ξ的数学期望为26()3.55E ξ=⨯= ………………6分(III)()320330570203C P C η===,()121020330951203C C P C η=== ()211020330452203C C P C η===,()31033063203C P C η=== η的分布列为 η 0 1 2 3P57203 95203 45203 6203 ………………10分 η的数学期望为5795456()0+1+2+3=1.203203203203E η=⨯⨯⨯⨯ ………………12分 21.解: (1) 设抛物线的标准方程为),0(22>=p px y由)0,1(F 得2=p , x y C 4:22=∴; …………………3分 (2) 可设ny x AB +=4:,联立x y 42= 得 01642=--ny y , 设1616,16),,(),,(222121212211==-=yy x x y y y x B y x A 则 12120O A O B x x y y ∴⋅=+=,即以AB 为直径的圆过原点; ………………8分(3)设)4,4(2t t P ,则,l t t OP 上在直线的中点)2,2(2⎪⎩⎪⎨⎧-=+=∴n tt ntt 2244242得1±=n 0<t4,1+==∴y x l n :直线 ………………10分设椭圆:1C 112222=-+a y a x ,与直线4:+=y x l 联立可得: ()()22242218117160a y a y a a -+--+-=3402a ∆≥≥,∴长轴长最小值为34 ………………13分 22.(1)当2=k 时,2)1ln()(x x x x f +-+= x xx f 2111)(+-+=' 2ln )1(,23)1(=='∴f f ………………2分∴曲线)(x f y =在点))1(,1(f 处的切线方程为:)1(232ln -=-x y 即 032ln 223=-+-y x ………………3分(2)),1(,1)1()(+∞-∈+-+='x x k kx x x f ①当0=k 时,00)(,1)(><'+-='x x f x xx f 则令 ),的单调减区间为:(∞+∴0)(x f ②当1001<<>-k k k 即时,k k x x f -<<<'100)(则令 ),的单调减区间为:(k k x f -∴10)( ③当101><-k k k 即时,010)(<<-<'x kk x f 则令 )的单调减区间为:(0,1)(k kx f -∴ (7)分(3)当0=k 时,],0[)(n x f 在上单调递减 n n n f b n -+==∴)1l n ()()(,)1l n (*N n n b n a n n ∈=-+=∴ ………………9分1212121221222121121)2()12)(12(6754532312642)12(5312222264212531--+=-++<+=+<+⨯+-⨯⋅⋅⋅⨯⨯⨯⨯⨯⨯=⨯⋅⋅⋅⨯⨯⨯-⨯⋅⋅⋅⨯⨯⨯=⋅⋅⋅⋅⋅⋅∴-n n n n n n n n n n nn a a a a a a a a nn………………12分)(,112112)1212()35()13(*2421231423121N n a n n n a a a a a a a a aa a a n nn ∈-+=-+=--++⋅⋅⋅+-+-<⋅⋅⋅⋅⋅⋅+⋅⋅⋅++∴-试卷类型:A 试卷类型:A。
湖北省 八校2014届高三第二次联考数学(理)试题一、选择题:本大题共10小题,每小题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足i z i 21)1(+=+(其中i 是虚数单位),则z 对应的点位于复平面的( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.设集合2{(3)30}A x x a x a =-++=,2{540}B x x x =-+=,集合A B 中所有元素之和为8,则实数a 的取值集合为 ( ) A .{0} B .{03}, C .{13,4}, D .{013,4},,3.下列说法正确的是 ( )A .“a b >”是“22a b >”的必要条件B .自然数的平方大于0C .“若a b ,都是偶数,则+a b 是偶数”的否命题为真D .存在一个钝角三角形,它的三边长均为整数4.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A.48cm3B.98cm3C.88cm3D.78cm35.把函数()sin y x x R =∈的图象上所有的点向左平移6π个单位长度,再把所得图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到图象的函数表达式为 ( ) A .sin 2,3y x x R π⎛⎫=-∈ ⎪⎝⎭B .sin 2,3y x x R π⎛⎫=+∈ ⎪⎝⎭C .1sin ,26y x x R π⎛⎫=+∈⎪⎝⎭D .1sin ,26y x x R π⎛⎫=-∈⎪⎝⎭6.已知双曲线)0( 14222>=-a y a x 的一条渐近线与圆8)322=+-y x (相交于N M ,两点,且4=MN ,则此双曲线的离心率为 ( )A B C D .57.把一个带+q 电量的点电荷放在r 轴上原点处,形成一个电场,距离原点为r 处的单位电荷受到的电场力由公式2F=kqr (其中k 为常数)确定,在该电场中,一个单位正电荷在电场力的作用下,沿着r 轴的方向从a r =处移动到a r 2=处,与从a r 2=处移动到a r 3=处,电场力对它所做的功之比为( )3328.如图,在半径为R 的圆C 中,已知弦AB 的长为5,则AB AC( )A .52B .252 C .52R D .252R9.将一颗骰子连续抛掷三次, 已知它落地时向上的点数恰好依次成等差数列, 那么这三次抛掷向上的点数之和为12的概率为 ( )189187210.函数223,0()2ln ,0x x x f x x x ⎧--+≤⎪=⎨->⎪⎩,直线y m =与函数()f x 的图像相交于四个不同的点,从小到大,交点横坐标依次记为,,,a b c d ,下列说法错误的是 ( ) A .[)3,4m ∈B .)40,abcd e ⎡∈⎣C .562112,2a b c d e e e e ⎡⎫+++∈+-+-⎪⎢⎣⎭D .若关于x 的方程()=f x x m +恰有三个不同实根,则m 取值唯一 【答案】D 【解析】试题分析:作出函数()f x 的图象,如图,()f x 的图象与y 轴交点点(0,3),0x ≤时,()f x 的极大值为4,因此,当34m ≤<时,直线y m =与()f x 的图象有4个交点,A 正确,3m =时,12,0,,a b c e=-==5d e =,0abcd =,512a b c d e e +++=+-,4m =时,1,a b ==-621,c d e e ==,4abcd e =,6212a b c d e e+++=+-,因此当34m ≤<时,40abcd e ≤<,5621122e a b c d e e e+-≤+++<+-,这样,B C 也正确,再作直线:l y x m =-+,可见当直线l 与抛物线223y x x =--+相切时,方程()f x x m +=有三个不同实根,对函数2ln y x =-,1'y x =-,令1'1y x=-=-,则1x =,2ln12y =-=,即函数2ln y x=-的图象的斜率为1-的切线方程为2(1)y x -=--,整理得3y x =-+,它正好与函数223(0)y x x x =--+≤的图象有两个交点,因此此时方程()f x x m +=(3m =)也有三个不同实根,故D 错误.选D .考点:直线与曲线相切,方程的解,函数的综合问题.二、填空题:本大题共6个小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分(一) 必考题(11—14题)11.记集合{}22(,)|4A x y x y =+≤和集合{}(,)|20,0,0B x y x y x y =+-≤≥≥表示的平面区域分别为1Ω和2Ω,若在区域1Ω内任取一点(,)M x y ,则点M 落在区域2Ω的概率为 .考点:几何概型.12.已知非负实数x, y, z 满足x+2y+3z=1, 则xz z y y x +++++3932421的最小值为 .13.定义某种运算⊗,b a S ⊗=的运算原理如图所示.设)3()0()(x x x x f ⊗-⊗=.则=)3(f ______;()f x 在区间[]3,3-上的最小值为______14.数学与文学之间存在着许多奇妙的联系.诗中有回文诗,如:“云边月影沙边雁,水外天光山外树”,倒过来读,便是“树外山光天外水,雁边沙影月边云”,其意境和韵味读来是一种享受!数学中也有回文数,如:88,454,7337,43534等都是回文数,无论从左往右读,还是从右往左读,都是同一个数,称这样的数为“回文数”,读起来还真有趣!二位的回文数有11,22,33,44,55,66,77,88,99,共9个;三位的回文数有101,111,121,131,…,969,979,989,999,共90个;四位的回文数有1001,1111,1221,…,9669,9779,9889,9999,共90个;由此推测:11位的回文数总共有个.(二) 选考题(请考生在第15、16两题中任选一题做答,请先在答题卡指定位置将你所选的题目序号所在方框用2B铅笔涂黑.如果全选,则按第15题作答结果计分.)15.(选修4-1:几何证明选讲)如图,△ABC为圆的内接三角形,BD为圆的弦,且BD//AC.过点A 作圆的切线与DB 的延长线交于点E , AD 与BC 交于点F .若AB = AC ,AE = , BD = 4,则线段CF 的长为______.16.(选修4-4:坐标系与参数方程)在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,两种坐标系取相同的单位长度.已知曲线 54532:1⎪⎪⎩⎪⎪⎨⎧=+=t y t x C (t 为参数)和曲线θθρcos 2sin :22=C 相交于A B 、两点,设线段AB 的中点为M ,则点M 的直角坐标为 .第11 页共11 页。
绝密★启用前2014年普通高等学校招生全国统一考试(湖北卷)数学(理工类)本试题卷共6页,22题,其中第15、16题为选考题.全卷满分150分.考试用时120分钟.★祝考试顺利★注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑.2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用统一提供的2B 铅笔涂黑.答案写在答题卡上对应的答案区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 为虚数单位,21i ()1i-=+( ) A .1-B .1C .i -D .i 2.若二项式7(2)a x x +的展开式中31x 的系数是84,则实数a =( ) A .2BC .1D3.设U 为全集,A ,B 是集合,则“存在集合C 使得A C ⊆,U B C ⊆ð”是“A B =∅”的 ( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件 4.得到的回归方程为y bx a =+,则( )A .0a >,0b >B .0a >,0b <C .0a <,0b >D .0a <,0b <5.在如图所示的空间直角坐标系-O xyz 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A .①和②B .③和①C .④和③D .④和②6.若函数()f x ,()g x 满足11()()d 0f x g x x -=⎰,则称()f x ,()g x 为区间[1,1]-上的一组正交函数.给出三组函数:①1()sin 2f x x =,1()cos 2g x x =;②()1f x x =+,()1g x x =-;③()f x x =,2()g x x =.其中为区间[1,1]-上的正交函数的组数是 ( )A .0B .1C .2D .37.由不等式组0,0,20,x y y x ⎧⎪⎨⎪--⎩≤≥≤确定的平面区域记为1Ω,不等式组1,2,x y x y +⎧⎨+-⎩≤≥确定的平面区域记为2Ω.在1Ω中随机取一点,则该点恰好在2Ω内的概率为( )A .18B .14C .34 D .788.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h ≈.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式2275V L h ≈相当于将圆锥体积公式中的π近似取为( )A .227B .258C .15750D .3551139.已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且12π3F PF ∠=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A B C .3D .210.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,2221()(|||2|3)2f x x a x a a =-+--.若x ∀∈R,(1)()f x f x -≤,则实数a 的取值范围为( )A .11[,]66-B .[C .11[,]33-D .[二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答.题卡对应题号......的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11—14题)11.设向量(3,3)=a ,(1,1)=-b .若()()λλ+-a b a b ⊥,则实数λ= .12.直线1l :y x a =+和2l :y x b =+将单位圆C :221x y +=分成长度相等的四段弧,则--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------姓名________________ 准考证号_____________22a b += .13.设a 是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为()I a ,按从大到小排成的三位数记为()D a (例如815a =,则()158I a =,()851D a =).阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b = .14.设()f x 是定义在(0,)+∞上的函数,且()0f x >.对任意0a >,0b >,若经过点(,())a f a ,(,())b f b -的直线与x 轴的交点为(,0)c ,则称c 为a ,b 关于函数()f x 的平均数,记为(,)f M a b .例如,当()1(0)f x x =>时,可得(,)2f a bM a b c +==,即(,)f M a b 为a ,b 的算术平均数. (Ⅰ)当()f x = (0)x >时,(,)f M a b 为a ,b 的几何平均数;(Ⅱ)当()f x = (0)x >时,(,)f M a b 为a ,b 的调和平均数2aba b +.(以上两空各只需写出一个符合要求的函数即可)(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑.如果全选,则按第15题作答结果计分.) 15.(选修4—1:几何证明选讲)如图,P 为O 外一点,过P 点作O 的两条切线,切点分别为A ,B .过PA 的中点Q 作割线交O 于C ,D 两点,若1QC =,3CD =,则PB = .16.(选修4—4:坐标系与参数方程)已知曲线1C的参数方程是x y ⎧=⎪⎨⎪⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是=2ρ.则1C 与2C 交点的直角坐标为 .三、解答题:本大题共5小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分11分)某实验室一天的温度(单位:℃)随时间t (单位:h )的变化近似满足函数关系:ππ()10sin ,[0,24).1212f t t t t =-∈(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?18.(本小题满分12分)已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n +>?若存在,求n 的最小值;若不存在,说明理由.19.(本小题满分12分)如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F ,M ,N 分别是棱AB ,AD ,11A B ,11A D 的中点,点P ,Q 分别在棱1DD ,1BB 上移动,且(02)DP BQ λλ==<<.(Ⅰ)当1λ=时,证明:直线1BC ∥平面EFPQ ;(Ⅱ)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.20.(本小题满分12分)计划在某水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年.入流量...X (年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(Ⅰ)求未来4年中,至多..有1年的年入流量超过120的概率; (Ⅱ)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量若某台发电机运行,则该台年利润为5 000 万元;若某台发电机未运行,则该台年亏损800 万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?21.(本小题满分14分)在平面直角坐标系xOy 中,点M 到点(1,0)F 的距离比它到y 轴的距离多1.记点M 的轨迹为C .(Ⅰ)求轨迹C 的方程;(Ⅱ)设斜率为k 的直线l 过定点(2,1)P -.求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.22.(本小题满分14分)π为圆周率,e 2.71828=为自然对数的底数.(Ⅰ)求函数ln ()xf x x=的单调区间; (Ⅱ)求3e ,e 3,πe ,e π,π3,3π这6个数中的最大数与最小数;(Ⅲ)将3e ,e 3,πe ,e π,π3,3π这6个数按从小到大的顺序排列,并证明你的结论.A B=∅,由韦恩图知,一定C使得A⊆A B=∅”的充要条件【提示】通过集合的包含关系,以及充分条件和必要条件的判断,推出结果【考点】充要条件,集合的包含关系判断及应用【解析】作出散点图如下:424xx x dx=上的正交函数的组数是111117因此,根据奇函数的图象关于原点对称作出函数2x a ≥在R 上的大致图象如下,3±【解析】因为=(3+,3a b λλ+,(3,3+a b λλ-=()()a b a b λλ+⊥-. ()()a b a b λλ+-(3+)(3)(3)(3+)0λλλλ--==+,解得【提示】给出a ,b 的坐标,求解含λ的两向量垂直时λ的值1(1QC QD =⨯(2,1,0)E .所以(2,0,2)BC =-,(1,0,FP =-,(1,1,0)FE =1=时,(1,0,1)FP =-因为1(2,0,2)BC =-,所以12BC FP =,即BC (Ⅱ)设平面EFPQ 的一个法向量(,,)n x y z =00FE n FP n ⎧=⎪⎨=⎪⎩可得,于是取(,,1)n λλ=-同理可得平面MNPQ 的一个法向量为(2,2m λ=-存在λ,使(2,2,1)(,,1)0m n λλλλ=---=,2)(2)10λλλ---+=,解得1λ=±2求出2BC FP =,可得11),2⎛⎫+∞ ⎪⎝⎭1,02⎡⎫⎫-⎬⎪⎢⎭⎭⎣时,故此时直线10,2⎫⎛⎫⎪⎪⎭⎝⎭时,故此时直线0① 的方程得1x =, 1)②1③11),2⎛⎫+∞ ⎪⎝⎭与轨迹C 恰有一个公共点0∆>⎧1,02⎡⎫⎫-⎬⎪⎢⎭⎭⎣时,故此时直线,由②③解得10,2⎫⎛⎫⎪⎪⎭⎝⎭时,直恰有三个公共点11),2⎛⎫+∞ ⎪⎝⎭1,02⎡⎫⎫-⎬⎪⎢⎭⎭⎣时,故此时直线10,2⎫⎛⎫⎪⎪⎭⎝⎭时,故此时直线设出M 点的坐标,(Ⅱ)设出直线l 的方程为单调增、减区间. (Ⅱ)由e 3π<<,得e l n 3e l n π<,πlne<πln3,即e e <ln3ln π,ππ<lne ln3.再根据函数ln y x =、e x y =、x y =π在定义域上单调递增,可得e e 33<π<π,3e e 3ππ<<,从而六个数的最大数在3π与π3之中,最小数在e 3与3e 之中.由e 3<<π及(Ⅰ)的结论得()(3)(e)f f f π<<,即ln ln3ln eπ<<,由此进而得到结论.。
2014年高考襄阳市普通高中第二次调研统一测试理科数学一、选择题(本大题共l0小题。
每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.已知全集U=R,集合,则图中阴影部分所表示的集合为2.在复平面内,复数i(i-1)对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列命题的否定为假命题的是B.任意一个四边形的四个顶点共圆C.所有能被3整除的整数都是奇数4.将函数y=sin2x(x∈R)的图像分别向左平移m(m>O)个单位,向右平移n(n>0)个单位,所得到的两个函数图象都与函数y=sin(2x+)的图象重合,则m+n的最小值为5.等比数列{a n}的前n项和为S n,若a3=6,S3=,则公比q的值为A.1 B.-C.1或-D.-1或-6.右图是某几何体的三视图,则该几何体的体积为A.1 B.C.D.7.在平面区域内任取一点P(x,y),若(x,y)满足2x+y≤b的概率大于,则b的取值范围是A.(-∞,2) B.(0,2) C.(1,3) D.(1,+∞。
)8.已知抛物线y2=2px(p>0),过其焦点且斜率为-1的直线交抛物线于A、B两点,若线段AB的中点的横坐标为3,则该抛物线的准线方程为A.x=-1 B.x=-2 C.x=1 D.x=29.给出下列命题:①向量a、b满足|a|=|b|=|a-b|,则a、b的夹角为30°;②a·b>0是向量a、b的夹角为锐角的充要条件;③将函数y=|x-1|的图象向左平移一个单位,得到函数y=|x|的图象;④在△ABC中,若,则△ABC为等腰三角形.以上命题正确的个数是A.1个 B.2个 C.3个 D.4个10.如图,偶函数f(x)的图像形如字母M,奇函数g(x)的图像形如字母N,若方程f(f(x))=0,f(g(x))=0,g(g(x))=0,g(f(x))=0的实根个数分别为a、b、c、d,则a+b+c+d=A.27 B.30 C.33 D.36二.填空题(本大题共6小题,考生共需作答5小题,每小题5分,共25分。
2014年普通高等学校招生全国统一考试(湖北卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 为虚数单位,则=+-2)11(ii ( ) A. 1- B. 1 C. i - D.i 【答案】C 【解析】 试题分析:因为122)11(2-=-=+-i ii i ,故选C. 点评:本题考查复数的运算,容易题. 2. 若二项式7)2(xa x +的展开式中31x 的系数是84,则实数=a ( ) A.2 B. 54 C. 1 D. 42 【答案】D 【解析】试题分析:因为r r r r rrrx a C xa x C 2777772)()2(+---⋅⋅⋅=⋅⋅,令327-=+-r ,得2=r ,所以84227227=⋅⋅-a C ,解得42=a ,故选D. 点评:本题考查二项式定理的通项公式,容易题.3. 设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件 【答案】A 【解析】试题分析:依题意,若C A ⊆,则A C C C U U ⊆,当C C B U ⊆,可得∅=B A ; 若∅=B A ,不能推出C C B U ⊆,故选A.点评:本题考查集合与集合的关系,充分条件与必要条件判断,容易题.4.根据如下样本数据x3 4 56 78y4.02.55.0-0.50.2-0.3-得到的回归方程为a bx y+=ˆ,则( ) A.0,0>>b a B.0,0<>b a C.0,0><b a D.0.0<<b a 【答案】B 【解析】试题分析:依题意,画散点图知,两个变量负相关,所以0<b ,0>a .选B. 点评:本题考查根据已知样本数判断线性回归方程中的b 与a 的符号,容易题.5.在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A.①和②B.③和①C. ④和③D.④和② 【答案】D 【解析】试题分析:在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④与俯视图为②,故选D.点评:本题考查空间由已知条件,在空间坐标系中作出几何体的形状,再正视图与俯视图,容易题. 6.若函数[]1,1)(),(,0)()()(),(11-=⎰-为区间则称满足x g x f dx x g x f x g x f 上的一组正交函数,给出三组函数: ①x x g x x f 21cos )(,21sin)(==;②1)(,1)(-=+=x x g x x f ;③2)(,)(x x g x x f == 其中为区间]1,1[-的正交函数的组数是( ) A.0 B.1 C.2 D.3 【答案】C 【解析】 试题分析:对①0|cos 21)sin 21()21cos 21(sin111111===⋅---⎰⎰x dx x dx x x ,则)(x f 、)(x g 为区间]1,1[-上的正交函数;对②0|)31()1()1)(1(11311211≠-=-=-+---⎰⎰x x dx x dx x x ,则)(x f 、)(x g 不为区间]1,1[-上的正交函数; 对③0|)41(114113==--⎰x dx x ,则)(x f 、)(x g 为区间]1,1[-上的正交函数.所以满足条件的正交函数有2组,故选B.点评:新定义题型,本题考查微积分基本定理的运用,容易题.7.由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( ) A.81 B.41 C. 43 D.87 【答案】D 【解析】试题分析:依题意,不等式组表示的平面区域如图,由几何公式知,该点落在2Ω内的概率为87222111212221=⨯⨯⨯⨯-⨯⨯=P ,选D.点评:本题考查不等式组表示的平面区域,面积型的几何概型,中等题.8.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一. 该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( ) A.227 B.258C.15750D.355113【答案】B 【解析】试题分析:设圆锥底面圆的半径为r ,高为h ,依题意,2)2(r L π=,h r h r 22)2(75231ππ=, 所以275831ππ=,即π的近似值为258,故选B.点评:本题考查《算数书》中π的近似计算,容易题.9.已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为( ) A.433 B.233C.3D.2 【答案】B 【解析】试题分析:设椭圆的短半轴为a ,双曲线的实半轴为1a (1a a >),半焦距为c ,由椭圆、双曲线的定义得a PF PF 2||||21=+,2212||||a PF PF =-,所以11||a a PF +=,12||a a PF -=,因为 6021=∠PF F ,由余弦定理得))(()()(41121212a a a a a a a a c -+--++=, 所以212234aa c +=,即2122122221)(2124ca c a c a c a c a +≥+=-,所以212148)11(e e e-≤+, 利用基本不等式可求得椭圆和双曲线的离心率的倒数之和的最大值为233. 点评:本题椭圆、双曲线的定义与性质,余弦定理及用基本不等式求最值,难度中等. 10.已知函数)(x f 是定义在R 上的奇函数,当0≥x 时,)3|2||(|21)(222a a x a x x f --+-=,若R ∈∀x ,)()1(x f x f ≤-,则实数a 的取值范围为( )A.]61,61[-B.]66,66[-C. ]31,31[-D. ]33,33[-【答案】B 【解析】试题分析:依题意,当0≥x 时,⎪⎩⎪⎨⎧≤≤-≤<->-=2222220,2,2,3)(a x x a x a a a x a x x f ,作图可知,)(x f 的最小值为2a -,因为函数)(x f 为奇函数,所以当0<x 时)(x f 的最大值为2a ,因为对任意实数x 都有,)()1(x f x f ≤-,所以,1)2(422≤--a a ,解得6666≤≤-a , 故实数a 的取值范围是]66,66[-. 考点:本题考查函数的奇函数的性质、分段函数、最值及恒成立,难度中等.二.填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案天灾答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分.(一)必考题(11—14题)11.设向量(3,3)a =,(1,1)b =-,若()()a b a b λλ+⊥-,则实数λ=________. 【答案】3± 【解析】试题分析:因为)3,3(λλλ-+=+b a ,)3,3(λλλ++=-b a ,因为)()(b a b a λλ-⊥+,所以0)3)(3()3)(3(=+++-+λλλλ,解得3±=λ. 点评:本题考查平面向量的坐标运算、数量积,容易题. 12.直线1:l y x a=+和2:l y x b =+将单位圆22:1C x y +=分成长度相等的四段弧,则22a b +=________.【答案】2 【解析】试题分析:依题意,圆心)0,0(到两条直线的距离相等,且每段弧的长度都是圆周的41,即2||2||b a =,2245cos 2||== a ,所以122==b a ,故222=+b a . 点评:本题考查直线与圆相交,点到直线的距离公式,容易题.13.设a 是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为()I a ,按从大到小排成的三位数记为()D a (例如815a =,则()158I a =,()851D a =).阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b =________.【答案】495 【解析】试题分析:当123=a ,则123198123321≠=-=b ; 当198=a ,则198783198981≠=-=b ;当783=a ,则783495378873≠=-=b ;当495=a ,则a b ==-=495459954,终止循环,故输出495=b . 点评:新定义题型,本题考查程序框图,当型循环结构,容易题.14.设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点()()()()b f b a f a ,,,的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(ba cb a M f +==,即),(b a M f 为b a ,的算术平均数. (1)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数; (2)当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab+2; (以上两空各只需写出一个符合要求的函数即可) 【答案】(2)x 【解析】试题分析:设)0()(>=x x x f ,则经过点),(a a ,),(b b -的直线方程为ab ab a x a y ---=--,令0=y ,所以ba abx c +==2, 所以当())0(>=x x x f 时,),(b a M f 为b a ,的调和平均数ba ab+2. 点评:本题考查两个数的几何平均数与调和平均数,难度中等. (二)选考题15.(选修4-1:几何证明选讲)如图,P 为⊙O 的两条切线,切点分别为B A ,,过PA 的中点Q 作割线交⊙O 于D C ,两点,若,3,1==CD QC 则_____=PB .【答案】4 【解析】试题分析:由切割线定理得4)31(12=+⨯=⋅=QD QC QA ,所以2=QA ,4==PA PB.点评:本题考查圆的切线长定理,切割线定理,容易题. 16.(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y t x ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为_______. 【答案】)1,3( 【解析】试题分析:由⎪⎩⎪⎨⎧==33t y t x 消去t 得)0,0(322≥≥=y x y x ,由2=ρ得422=+y x ,解方程组⎪⎩⎪⎨⎧==+222234yx y x 得1C 与2C 的交点坐标为)1,3(.点评:本题考查参数方程、极坐标方程与平面直角坐标方程的转化,曲线的交点,容易题.。
2014年高考真题——理科数学(湖北卷)解析版2 Word版含解析绝密★启用前2014年普通高等学校招生全国统一考试(湖北卷)数学(理工类)本试题卷共5页,22题。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用统一提供的2B铅笔将答题卡上试卷类型A后的方框涂黑。
2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2014?湖北卷] i为虚数单位,=()A.-1 B.1 C.-i D.i1.A[解析] ==-1.故选A.2.[2014?湖北卷] 若二项式的展开式中的系数是84,则实数a=()A.2 B. C.1 D.2.C[解析] 展开式中含的项是T6=C(2x)2=C22a5x-3,故含的项的系数是C22a5=84,解得a=1.故选C.3.[2014?湖北卷] U为全集,A,B是集合,则"存在集合C使得A?C,B??UC"是"A∩B =?"的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.C[解析] 若存在集合C使得A?C,B??UC,则可以推出A∩B=?;若A∩B=?,由维思图可知,一定存在C=A,满足A?C,B??UC,故"存在集合C使得A?C,B??UC"是"A∩B =?"的充要条件.故选C.4.[2014?湖北卷] 根据如下样本数据:x345678y4.02.5-0.50.5-2.0-3.0得到的回归方程为\s\up6(^(^)=bx+a,则()A.a>0,b>0 B.a>0,b C.a0 D.a4.B[解析] 作出散点图如下:观察图象可知,回归直线\s\up6(^(^)=bx+a的斜率b0.故a>0,b5.[2014?湖北卷] 在如图1-1所示的空间直角坐标系O - xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()图1-1A.①和②B.①和③C.③和②D.④和②5.D[解析] 由三视图及空间直角坐标系可知,该几何体的正视图显然是一个直角三角形且内有一条虚线(一锐角顶点与其所对直角边中点的连线),故正视图是④;俯视图是一个钝角三角形,故俯视图是②. 故选D.6.[2014?湖北卷] 若函数f(x),g(x)满足f(x)g(x)dx=0,则称f(x),g(x)为区间[-1,1]上的一组正交函数,给出三组函数:①f(x)=sx,g(x)=cosx;②f(x)=x+1,g(x)=x-1;③f(x)=x,g(x)=x2.其中为区间[-1,1]上的正交函数的组数是()A.0 B.1 C.2 D.36.C[解析] 由题意,要满足f(x),g(x)是区间[-1,1]上的正交函数,即需满足f(x)g(x)dx =0.①f(x)g(x)dx=sxcosxdx=sxdx==0,故第①组是区间[-1,1]上的正交函数;②f(x)g(x)dx=(x+1)(x-1)dx==-≠0,故第②组不是区间[-1,1]上的正交函数;③f(x)g(x)dx=x?x2dx==0,故第③组是区间[-1,1]上的正交函数.综上,是区间[-1,1]上的正交函数的组数是2. 故选C.7.[2014?湖北卷] 由不等式组确定的平面区域记为Ω1,不等式组确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为()A. B. C. D.7.D[解析] 作出Ω1,Ω2表示的平面区域如图所示,SΩ1=S△AOB=×2×2=2,S△BCE=×1×=,则S四边形AOEC=SΩ1-S△BCE=2-=.故由几何概型得,所求的概率P===.故选D.8.[2014?湖北卷] 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求"锔"的术:"置如其周,令相乘也.又以高乘之,三十六成一."该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A. B. C. D.8.B[解析] 设圆锥的底面圆半径为r,底面积为S,则L=2πr,由题意得L2h≈Sh,代入S=πr2化简得π≈3;类比推理,若V=L2h,则π≈.故选B.9.、[2014?湖北卷] 已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=,则椭圆和双曲线的离心率的倒数之和的最大值为()A. B. C.3 D.29.A[解析] 设|P=r1,|P=r2,r1>r2,椭圆的长半轴长为a1,双曲线的实半轴长为a2,椭圆、双曲线的离心率分别为e1,e2.则由椭圆、双曲线的定义,得r1+r2=2a1,r1-r2=2a2,平方得4a=r+r+2r1r2,4a=r-2r1r2+r.又由余弦定理得4c2=r+r-r1r2,消去r1r2,得a+3a=4c2,即+=4.所以由柯西不等式得=≤=.所以+≤.故选A.10.[2014?湖北卷] 已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=(|x-+|x --3a2).若?x∈R,f(x-1)≤f(x),则实数a的取值范围为()A. B.C. D.10.B[解析] 因为当x≥0时,f(x)=,所以当0≤x≤a2时,f(x)==-x;当a2f(x)==-a2;当x≥2a2时,f(x)==x-3a2.综上,f(x)=因此,根据奇函数的图象关于原点对称作出函数f(x)在R上的大致图象如下,观察图象可知,要使?x∈R,f(x-1)≤f(x),则需满足2a2-(-4a2)≤1,解得-≤a≤.故选B.11.[2014?湖北卷] 设向量a=(3,3),b=(1,-1).若(a+λb)⊥(a-λb),则实数λ=________.11.±3[解析] 因为a+λb=(3+λ,3-λ),a-λb=(3-λ,3+λ),又(a+λb)⊥(a-λb),所以(a+λb)?(a-λb)=(3+λ)(3-λ)+(3-λ)(3+λ)=0,解得λ=±3.12.[2014?湖北卷] 直线l1:y=x+a和l2:y=x+b将单位圆C:x2+y2=1分成长度相等的四段弧,则a2+b2=________.12.2[解析] 依题意得,圆心O到两直线l1:y=x+a,l2:y=x+b的距离相等,且每段弧长等于圆周的,即==1×s 45°,得==1.故a2+b2=2.图1-213.[2014?湖北卷] 设a是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=815,则I(a)=158,D(a)=851).阅读如图1-2所示的程序框图,运行相应的程序,任意输入一个a,输出的结果b=________.13.495[解析] 取a1=815?b1=851-158=693≠815?a2=693;由a2=693?b2=963-369=594≠693?a3=594;由a3=594?b3=954-459=495≠594?a4=495;由a4=495?b4=954-459=495=a4?b=495.14.、[2014?湖北卷] 设f(x)是定义在(0,+∞)上的函数,且f(x)>0,对任意a>0,b>0,若经过点(a,f(a)),(b,-f(b))的直线与x轴的交点为(c,0),则称c为a,b关于函数f(x)的平均数,记为Mf(a,b),例如,当f(x)=1(x>0)时,可得Mf(a,b)=c=,即Mf(a,b)为a,b 的算术平均数.(1)当f(x)=________(x>0)时,Mf(a,b)为a,b的几何平均数;(2)当f(x)=________(x>0)时,Mf(a,b)为a,b的调和平均数.(以上两空各只需写出一个符合要求的函数即可)14.(1)(2)x(或填(1)k1;(2)k2x,其中k1,k2为正常数)[解析] 设A(a,f(a)),B(b,-f(b)),C(c,0),则此三点共线:(1)依题意,c=,则=,即=.因为a>0,b>0,所以化简得=,故可以选择f(x)=(x>0);(2)依题意,c=,则=,因为a>0,b>0,所以化简得=,故可以选择f(x)=x(x>0).15.[2014?湖北卷] (选修4-1:几何证明选讲)如图1-3,P为⊙O外一点,过P点作⊙O的两条切线,切点分别为A,B,过PA的中点Q作割线交⊙O于C,D两点,若QC=1,CD=3,则PB=________.图1-315.4[解析] 由切线长定理得QA2=QC?QD=1×(1+3)=4,解得QA=2.故PB=PA=2QA=4.16.[2014?湖北卷] (选修4-4:坐标系与参数方程)已知曲线C1的参数方程是(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,则C1与C2交点的直角坐标为________.16.[解析] 由消去t得y=x(x≥0),即曲线C1的普通方程是y=x(x≥0);由ρ=2,得ρ2=4,得x2+y2=4,即曲线C2的直角坐标方程是x2+y2=4.联立解得故曲线C1与C2的交点坐标为.17.、、、[2014?湖北卷] 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10-cost-st,t∈[0,24).(1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?17.解:(1)因为f(t)=10-2=10-2s,又0≤t当t=2时,s=1;当t=14时,s=-1.于是f(t)在[0,24)上取得的最大值是12,最小值是8.故实验室这一天的最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.(2)依题意,当f(t)>11时,实验室需要降温.由(1)得f(t)=10-2s,故有10-2s>11,即s又0≤t即10故在10时至18时实验室需要降温.18.、、[2014?湖北卷] 已知等差数列{}满足:a1=2,且a1,a2,a5成等比数列.(1)求数列{}的通项公式.(2)记Sn为数列{}的前n项和,是否存在正整数n,使得Sn>+800?若存在,求n的最小值;若不存在,说明理由.18.解:(1)设数列{}的公差为d,依题意得,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),化简得d2-4d=0,解得d=0或d=4.当d=0时,=2;当d=4时,=2+(n-1)?4=-2.从而得数列{}的通项公式为=2或=-2.(2)当=2时,Sn=,显然此时不存在正整数n,使得Sn>+800成立.当=-2时,Sn==2.令2>+800,即n2--400>0,解得n>40或n此时存在正整数n,使得Sn>+800成立,n的最小值为41.综上,当=2时,不存在满足题意的正整数n;当=-2时,存在满足题意的正整数n,其最小值为41.19.、、、[2014?湖北卷] 如图1-4,在棱长为2的正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ =λ(0(1)当λ=1时,证明:直线BC1∥平面EFPQ.(2)是否存在λ,使面EFPQ与面PQ所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.图1-419.解:方法一(几何方法):(1)证明:如图①,连接AD1,由ABCD-A1B1C1D1是正方体,知BC1∥AD1.当λ=1时,P是DD1的中点,又F是AD的中点,所以FP∥AD1,所以BC1∥FP.而FP?平面EFPQ,且BC1?平面EFPQ,故直线BC1∥平面EFPQ.图①图②(2)如图②,连接BD.因为E,F分别是AB,AD的中点,所以EF∥BD,且EF=BD.又DP=BQ,DP∥BQ,所以四边形PQBD是平行四边形,故PQ∥BD,且PQ=BD,从而EF∥PQ,且EF=PQ.在Rt△EBQ和Rt△FDP中,因为BQ=DP=λ,BE=DF=1,于是EQ=FP=,所以四边形EFPQ也是等腰梯形.同理可证四边形PQ也是等腰梯形.分别取EF,PQ,的中点为H,O,G,连接OH,OG,则GO⊥PQ,HO⊥PQ,而GO∩HO=O,故∠GOH是面EFPQ与面PQ所成的二面角的平面角.若存在λ,使面EFPQ与面PQ所成的二面角为直二面角,则∠GOH=90°.连接,,则由EF∥,且EF=知四边形M是平行四边形.连接GH,因为H,G是EF,的中点,所以GH=ME=2.在△GOH中,GH2=4,OH2=1+λ2-=λ2+,OG2=1+(2-λ)2-=(2-λ)2+,由OG2+OH2=GH2,得(2-λ)2++λ2+=4,解得λ=1±,故存在λ=1±,使面EFPQ与面PQ所成的二面角为直二面角.方法二(向量方法):以D为原点,射线DA,DC,DD1分别为x,y,z轴的正半轴建立如图③所示的空间直角坐标系.由已知得B(2,2,0),C1(0,2,2),E(2,1,0),F(1,0,0),P(0,0,λ).图③\s\up6(→(→)=(-2,0,2),FP=(-1,0,λ),FE=(1,1,0).(1)证明:当λ=1时,FP=(-1,0,1),因为\s\up6(→(→)=(-2,0,2),所以\s\up6(→(→)=2\s\up6(→(→),即BC1∥FP.而FP?平面EFPQ,且BC1?平面EFPQ,故直线BC1∥平面EFPQ.(2)设平面EFPQ的一个法向量为n=(x,y,z),则由\s\up6(→(\o(FE,\s\up6(→)可得于是可取n=(λ,-λ,1).同理可得平面PQ的一个法向量为m=(λ-2,2-λ,1).若存在λ,使面EFPQ与面PQ所成的二面角为直二面角,则m?n=(λ-2,2-λ,1)?(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±.故存在λ=1±,使面EFPQ与面PQ所成的二面角为直二面角.20.[2014?湖北卷] 计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率.(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:年入流量X40120发电机最多可运行台数123若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?20.解:(1)依题意,p1=P(40p2=P(80≤X≤120)==0.7,p3=P(X>120)==0.1.由二项分布得,在未来4年中至多有1年的年入流量超过120的概率为p=C(1-p3)4+C(1-p3)3p3=0.94+4×0.93×0.1=0.947 7.(2)记水电站年总利润为Y(单位:万元).①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y=5000,E(Y)=5000×1=5000.②安装2台发电机的情形.依题意,当40Y420010 000P0.20.8所以,E(Y)=4200×0.2+10 000×0.8=8840.③安装3台发电机的情形.依题意,当40120时,三台发电机运行,此时Y=5000×3=15 000,因此P(Y=15 000)=P(X>120)=p3=0.1.由此得Y的分布列如下:Y3400920015 000P0.20.70.1所以,E(Y)=3400×0.2+9200×0.7+15 000×0.1=8620.综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.21.[2014?湖北卷] 在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1.记点M的轨迹为C.(1)求轨迹C的方程;(2)设斜率为k的直线l过定点P(-2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.21.解:(1)设点M(x,y),依题意得=|x|+1,即=|x|+1,化简整理得y2=2(|x|+x).故点M的轨迹C的方程为y2=(2)在点M的轨迹C中,记C1:y2=4x,C2:y=0(x依题意,可设直线l的方程为y -1=k(x+2).由方程组可得ky2-4y+4(2k+1)=0.①当k=0时,y=1.把y=1代入轨迹C的方程,得x=.故此时直线l:y=1与轨迹C恰好有一个公共点.当k≠0时,方程①的判别式Δ=-16(2k2+k-1).②设直线l与x轴的交点为(x0,0),则由y-1=k(x+2),令y=0,得x0=-.③(i)若由②③解得k.即当k∈(-∞,-1)∪时,直线l与C1没有公共点,与C2有一个公共点.故此时直线l与轨迹C恰好有一个公共点.(ii)若或由②③解得k∈或-≤k即当k∈时,直线l与C1只有一个公共点.当k∈时,直线l与C1有两个公共点,与C2没有公共点.故当k∈∪时,直线l与轨迹C恰好有两个公共点.(iii)若由②③解得-1即当k∈∪时,直线l与C1有两个公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有三个公共点.综上可知,当k∈∪∪{0}时,直线l与轨迹C恰好有一个公共点;当k∈∪时,直线l与轨迹C恰好有两个公共点;当k∈∪时,直线l与轨迹C恰好有三个公共点.22.[2014?湖北卷] π为圆周率,e=2.718 28...为自然对数的底数.(1)求函数f(x)=的单调区间;(2)求e3,3e,eπ,πe,,3π,π3这6个数中的最大数与最小数;(3)将e3,3e,eπ,πe,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.22.解:(1)函数f(x)的定义域为(0,+∞).因为f(x)=,所以f′(x)=.当f′(x)>0,即0当f′(x)e时,函数f(x)单调递减.故函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).(2)因为e于是根据函数y=x,y=ex,y=πx在定义域上单调递增,可得3e故这6个数的最大数在π3与3π之中,最小数在3e与e3之中.由e由π3;由综上,6个数中的最大数是3π,最小数是3e.(3)由(2)知,3e又由(2)知,故只需比较e3与πe和eπ与π3的大小.由(1)知,当0即在上式中,令x=,又2-.①由①得,π>e>2.7×>2.7×(2-0.88)=3.024>3,即π>3,亦即πe> e3,所以e3又由①得,π>6->6-e>π,即π>π,所以eπ综上可得,3e即这6个数从小到大的顺序为3e,e3,πe,eπ,π3,3π.。
2014年普通高等学校招生全国统一考试(湖北卷)理科数学试题答案与解析1. 解析 因为()221i 1i 2i i 1i 1i 2---===-+-,所以()221i i 11i -⎛⎫=-=- ⎪+⎝⎭,故选A . 2. 解析 ()77177271C 22C rrrr r rr r a T x a x x --+-⎛⎫=⋅⋅=⋅ ⎪⎝⎭.令273r -=,则5r =. 由25572C 84a ⋅=得1a =,故选C .3. 解析 由韦恩图易知充分性成立.反之,AB =∅时,不妨取UC B=ð,此时A C ⊆.必要性成立. 故选C .4. 解析 把样本数据中的x ,y 分别当作点的横、纵坐标,在平面直角坐标系xOy 中作出散点图,由图可知0b <,0a >. 故选B .5. 解析 设()002A,,,()220B ,,,()121C ,,,()222D ,,,因为B ,C ,D 在平面yOz 上的投影的坐标分别为()020,,,()021,,,()022,,,点()002A ,,在平面yOz 上,又点C 的横坐标小于点B 和D 的横坐标,所以该几何体的正视图为图④.因为点A ,C ,D 在平面xOy 上的投影坐标分别为()000,,,()120,,,()220,,,点()220B ,,在平面xOy 上,所以该几何体的俯视图为图②. 故选D .评注 本题考查了空间直角坐标系和三视图,考查了空间想象能力.本题也可以根据该四面体各项点的坐标画出几何体的直观图再求解.6. 解析 由①得()()111sin cos sin 222f xg x x x x ==,是奇函数,所以()()11d 0f x g x x -=⎰,所以①为区间[]1,1-上正交函数;由②得()()21f x g x x =-,所以()()()31121114d 1d 133x f x g x x x x x --⎛⎫=-=-=- ⎪-⎝⎭⎰⎰,所以②不是区间[]1,1-上的正交函数;由③得()()3f x g x x =,是奇函数,所以()()11d 0f x g x x -=⎰,所以①为区间[]1,1-上的正交函数. 故选C .7. 解析 区域1Ω为直角AOB △及其内部,其面积12222AOB S =⨯⨯=△.区域2Ω是直线1x y +=和2x y +=-夹成的条形区域.由题意得所求概率127428AODC AOB S P S -===四边形△.故选D .评注 本题考查了可行域和概率的基础知识.正确理解可行域的概念和掌握概率的求法是求解的关键.8. 解析 圆锥的体积22211ππ332π12πL L h V r h h ⎛⎫=== ⎪⎝⎭,由题意得7512π2≈,π近似取为258,故选B .9. 解析 解法一: 设椭圆方程为()2211221110x y a b a b +=>>,离心率为1e ,双曲线的方程为()2222222210,0x y a b a b -=>>,离心率为2e ,它们的焦距为2c ,不妨设P 为两曲线在第一象限的交点,12,F F 分别为左,右焦点,则易知1211222,2,PF PF a PF PF a ⎧+=⎪⎨-=⎪⎩解得112212,.PF a a PF a a ⎧=+⎪⎨=-⎪⎩在12F PF △中,由余弦定理得()()()()222121212122cos 604a a a a a a a a c ++--+⋅-=,整理得2221234a a c +=,所以22122234a a c c +=,即2212134e e +=.设121,e e ⎛= ⎝⎭a,1,3⎛= ⎝⎭b ,所以1211e e +=⋅⋅==…a b a b ,故1211e e +的最大值是13,故选A. 解法二:不妨设P 在第一象限,1PF m =,2PF n =.在12F PF △中,由余弦定理得2224m n mn c +-=.设椭圆的长轴长为12a ,离心率为1e ,双曲线的实轴长为22a ,离心率为2e ,它们的焦距为2c ,则12121122m n m na a m e e c c c+-+++===. 所以22222221211441m m e e c m n mn n n m m⎛⎫+=== ⎪+-⎛⎫⎝⎭-+ ⎪⎝⎭,易知21n n m m ⎛⎫-+ ⎪⎝⎭的最小值为34.故12max11e e ⎛⎫+=⎪⎝⎭故选A. 评注 本题考查了椭圆、双曲线的定义、方程和性质;考查了利用不等式和函数求最值的基本方法.本题对运算能力的要求较高.10. 解析 当0x …时,()2222223, 2,, 2,, 0,x a x a f x a a x a x x a ⎧-⎪=-<<⎨⎪-⎩…剟画出图像,再根据()f x 是奇函数补全图像.因为满足x ∀∈R ,()()1f x f x -…,所以261a …,即66a -剟.故选B.11. 解析=ab =()31310⋅⨯+⨯-=a b =.因为()()b b λλ+⊥-a a ,所以()()22221820b b b λλλλ+⋅-=-=-=a a a .故3λ=±.x-1()评注 本题考查了直线和圆的位置关系,考查了直线的斜率和截距,考查了数形结合的思想方法.正确画出图形求出和的值时解题的关键.12. 解析 由题意知直线1l 和2l 与单位圆C 所在的位置如图.因此11a b =⎧⎨=-⎩或11a b =-⎧⎨=⎩故22112a b +=+=.评注 本题考查了直线和圆的位置关系,考查了直线的斜率和截距,考查了数形结合的思想方法.正确画出图形求出a 和b 的值是解题的关键.13. 解析 设组成数a 的三个数字是m ,n ,p ,其中19m n p <<剟,所以()()b Da I a =-=()100101001099p n m m n p p m ++---=-=()()()()10010019010p m p m p m p m ---=--++-+,即数b 的十位数字一定是9.由题意可知,程序循环到最后一次,a 的十位数字是9,设a 的另两个数字是x ,y , 其中18y x<剟,此时()90010Da x y =++,()100109I a y x =++, 89199b y =-,若8919910090y x y -=++,则()801100x y =+,无解.若8919910090y y x -=++,则801199y x =+,解得5x =,4y =.所以495b =.14. 解析 (I )若(),f M a b 是a ,b 的几何平均数,则c 由题意知,()(),a f a),()(),b f b -0f a f b -+=f a f b,所以可取()f x .(II )若(),f M a b 是a ,b 的调和平均数,则2ab c a b =+,由题意知()(),a f a ,2,0ab a b ⎛⎫⎪+⎝⎭,()(),b f b -共线,所以()()22f x f b ab ab a ba b a b=--++,化简得()()f a f b a b =,所以可取()f xx =.15. 解析 由切割线定理得()21134QAQC QD =⋅=⨯+=,所以2QA =,因为Q 为PA 的中点,所以24PA QA ==.故4PB PA ==. 16. 解析 曲线1C为射线y x =()0x ….曲线2C为圆224x y +=.设P 为1C 与2C 的交点,如图,作PQ 垂直x 轴于点Q ,因为tan POQ ∠=,所以30POQ ∠=,又因为2OP =,所以1C 与2C 的交点P的直角坐标为).评注 本题考查了参数方程和极坐标方程.容易忽视0x …,误认为1C为直线y x =. 17. 解析 (I )因为()π1πππ102sin 102sin 12212123f t t t t ⎫⎛⎫=-+=-+⎪ ⎪⎪⎝⎭⎝⎭,又024t <…,所以πππ7π31233t +<…,ππ1sin 1123t ⎛⎫-+ ⎪⎝⎭剟. 当2t =时,ππsin 1123t ⎛⎫+=⎪⎝⎭;当14t =时,ππsin 1123t ⎛⎫+=- ⎪⎝⎭. 于是()f t 在[)0,24上取得最大值12,取得最小值8.故实验室这一天最高温度为12C ,最低温度为8C ,最大温差为4C . (II )依题意,当()11f t …时实验室需要降温.由(I )得()ππ102sin 123f t t ⎛⎫=-+⎪⎝⎭, 故有ππ102sin 11123t ⎛⎫-+>⎪⎝⎭,即ππ1s i n 1232t ⎛⎫+<- ⎪⎝⎭.又024t <…,因此7πππ11π61236t <+<,即1018t <<.在10时至18时实验室需要降温.评注 本题考查了正弦函数的性质,考查了运算求解能力.正确利用正弦函数的单调性是解题的关键.计算失误是造成失分的重要原因之一,应充分重视.18. 解析 (I )设数列{}n a 的公差为d ,依题意2,2d +,24d +,成等比数列,故有()()22224d d d +=+,化简得240d d -=,解得0d =或4d =.当0d =时,2n a =;当4d =时,()21442n a n n =+-⋅=-,从而得数列{}n a 的通项公式为2n a =或42n a n =-.(II )当2n a =时,2n S n =.显然260800n n <+,此时不存在正整数n ,使得60800n S n >+成立.当42n a n =-时,()224222n n n S n ⎡+-⎤⎣⎦==.令2260800n n >+,即2304000n n -->,解得40n >或10n <-(舍去),此时存在正整数n ,使得60800n S n >+成立,n 的最小值为41. 综上,当2n a =时,不存在满足题意的n ;当42n a n =-时,存在满足题意的n ,其最小值为41.评注 本题考查了数列的通项公式和求和公式,考查了分类讨论的方法. 19. 解析 解法一:(几何方法)(I )证明:如图1,连接1AD ,由1111ABCD A B C D -是正方体,知1//BC AD .当1λ=时,P 是1DD 的中点,又F 是AD 的中点,所以1//FP AD .所以1//BC FP .而FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1//BC 平面EFPQ .(II )如图2,连接BD .因为E ,F 分别是AB ,AD 的中点,所以//EF BD ,且12E F B D=.又DP BQ =,//DP BQ ,所以四边形PQBD 是平行四边形,故//PQ BD ,且PQ BD =,从而//EF PQ ,且12EF PQ =.在Rt EBQ △和Rt FDP △中,因为BQ =DP =λ,1BE=DF=,于是EQ=,所以四边形EFPQ 是等腰梯形.同理可证四边形PQMN 是等腰梯形. 分别取EF ,PQ ,MN 的中点为H ,O ,G ,连接OH ,OG ,则G O P Q ⊥,HO PQ ⊥,而GOHO O =,故GOH ∠是面EFPQ 与面PQMN 所成的二面角的平面角.若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则90GOH ∠=.连接EM ,FN ,则由//EF MN ,且E F M N =,知四边形EFNM 是平行四边形.连接GH ,因为H ,G 是EF ,MN 的中点,所以2GH ME ==.在GOH △中,24GH =,2222112OH λλ=+-=+⎝⎭,()()222211222OG λλ=+--=-+⎝⎭, 由222OG OH GH +=,得()22112422λλ-+++=,解得1λ=±, 图1N QPF E M D 1C 1B 1A 1DCB故存在1λ=,使面EFPQ 与面PQMN 所成的二面角为直二面角.解法二:(向量方法)以D 为原点,射线DA ,DC ,1DD 分别为x ,y ,z 轴的正半轴建立如图3所示的空间直角坐标系D xyz -. 由已知得()2,2,0B,()10,2,2C ,()2,1,0E ,()1,0,0F ,()0,0,P λ.()12,0,2BC =-,()1,0,FP λ=-,()1,1,0FE =.GO H图2E FM PQ N D 1C 1B 1A 1DCB A(I )证明:当1λ=时,()1,0,1FP =-,因为()12,0,2BC =-,所以12BC FP =,即1//BC FP .而FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1//BC 平面EFPQ .(II )设平面EFPQ 的一个法向量为(),,x y z =n ,则由0,0,FE FP ⎧⋅=⎪⎨⋅=⎪⎩n n 可得0,0.x y x z λ+=⎧⎨-+=⎩于是可取(),,1λλ=-n .同理可得平面MNPQ 的一个法向量为()2,2,1λλ=--m .若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则()()2,2,1,,10λλλλ⋅--⋅-=m n =,即()()2210λλλλ---+=,解得1λ=±.故存在1λ=±,使使面EFPQ 与面P Q M N 所成的二面角为直二面角.评注 本题考查了线面平行的证明方法和二面角的计算.体现了利用平面的法向量解决二面角中有关求值问题的优势.充分利用方程的思想方法是解题的关键.20. 解析 (I )依题意,()11040800.250p P X =<<==,()235801200.750p P X ===剟,()351200.150p P X =>==.由二项分布,在未来4年中至多有1年的年入流量超过120的概率为()()43430143433991C 1C 140.9477101010p p p p ⎛⎫⎛⎫=-+-=+⨯⨯= ⎪ ⎪⎝⎭⎝⎭.(II )记水电站年总利润为Y (单位:万元)(1)安装1台发电机的情形.由于水库年人流量总大于40,故一台发电机运行的概率为1,对应得年利润5000Y =,()500015000EY =⨯=.(2)安装2台发电机的情形.依题意,当4080X <<时,一台发电机运行, 此时50008004200Y =-=,因此()()1420040800.2PY P X p ==<<==;当80X …时,两台发电机运行,此时5000210000Y =⨯=,因此()()2310000800.8P Y P X p p ===+=…;由此得Y所以,()42000.2100000.88840EY =⨯+⨯=.(3)安装3台发电机的情形.依题意,当4080X <<时,一台发电机运行,此时500016003400Y =-=,因此()()1340040800.2P Y P X p ==<<==;当80120X 剟时,两台发电机运行,此时500028009200Y =⨯-=, 因此()()29200801200.7P Y P X p ====剟;当120X >时,三台发电机运行,此时5000315000Y =⨯=,因此()()3150001200.1P Y P X p ==>==,由此得Y 的分部列如下:所以,()34000.292000.7150000.18620EY =⨯+⨯+⨯=.综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.评注 本题考查了概率和离散型随机变量的分布列.考查了分类讨论方法和运算求解能力.21.解析 (I )设点(),Mx y ,依题意得1MFx =+1x =+,化简整理得()221y x =+.故点M 的轨迹C 的方程为24, 0,0, 0.x x y x ⎧=⎨<⎩…(II )在点M 的轨迹C 中,记1C :24yx =,2C :()00y x =<,依题意,可设直线l 的方程为()12y k x -=+.由方程组()2124y k x y x-=+⎧⎪⎨=⎪⎩可得()244210ky y k -++=.①(1)当0k =时,此时1y =.把1y =代入轨迹C 的方程,得14x =. 故此时直线l :1y =与轨迹C 恰好有一个公共点1,14⎛⎫ ⎪⎝⎭.(2)当0k ≠时,方程①的判别式为()21621k k ∆=-+-.② 设直线l 与x 轴的交点为()0,0x ,则由()12y k x -=+,令0y =,得021k xk+=-.③ (i )若000x ∆<⎧⎨<⎩由②③解得1k <-或12k >.即当()1,1,2k ⎛⎫∈-∞-+∞ ⎪⎝⎭时,直线l 与1C 没有公共点,与2C 有一个公共点, 故此时直线l 与轨迹C 恰好有一个公共点.(ii)若000x ∆=⎧⎨<⎩或000x ∆>⎧⎨⎩…则由②③解得11,2k ⎧⎫∈-⎨⎬⎩⎭或102k -<….即当11,2k ⎧⎫∈-⎨⎬⎩⎭时,直线l 与1C 只有一个公共点,与2C 有一个公共点.当1,02k ⎡⎫∈-⎪⎢⎣⎭时,直线l 与1C 有两个公共点,与2C 没有公共点. 故当11,01,22k ⎡⎫⎧⎫∈--⎨⎬⎪⎢⎣⎭⎩⎭时,直线l 与轨迹C 恰好有两个公共点. (iii )若000x ∆>⎧⎨<⎩<则由②③解得112k -<<-或102k <<. 即当111,0,22k ⎛⎫⎛⎫∈--⎪ ⎪⎝⎭⎝⎭时,直线l 与1C 有两个公共点,与2C 有一个公共点, 故此时直线l 与轨迹C 恰好有三个公共点.综合(1)(2)可知,当(){}1,1,02k ⎛⎫∈-∞-+∞ ⎪⎝⎭时,直线l 与轨迹C 恰好有一个公共点;当11,01,22k ⎡⎫⎧⎫∈--⎨⎬⎪⎢⎣⎭⎩⎭时,直线l 与轨迹C 恰好有两个公共点; 当111,0,22k ⎛⎫⎛⎫∈--⎪ ⎪⎝⎭⎝⎭时,直线l 与轨迹C 恰好有三个公共点. 评注 本题考查了直线和抛物线的位置关系,考查了数形结合的方法,灵活地利用判别式时求解的关键.盲目利用抛物线的定义而漏掉射线()00y x =<就会造成错解二失分.22.解析 (I )函数()f x 的定义域为()0,+∞.因为()ln x f x x =,所以()21ln xf x x -'=. 当()0f x '>,即0e x <<时,函数()f x 单调递增; 当()0f x '<,即e x >时,函数()f x 单调递减.故函数()f x 的单调递增区间为()0,e ,单调递减区间为()e,+∞.(II )因为e 3π<<,所以e ln 3e ln π<,πln e πln 3<,即e e ln 3ln π<,ππln e ln 3<. 于是根据函数ln y x =,e xy =,πxy =在定义域上单调递增, 可得e e 33ππ<<,3ππe e 3<<.故这6个数的最大数在3π与π3之中,最小数在e 3与3e 之中. 由e 3π<<及(I )的结论,得()()()π3e f f f <<,即ln πln 3ln e π3e<<.由ln πln 3π3<,得3πln πln 3<,所以π33π>;由l n 3l n e3e <,得e 3ln 3ln e <,所以e 33e <. 综上,6个数中的最大数是π3,最小数是e 3.(III)由(II )知,e e 3π3ππ3<<<,e 33e <.又由(II )知,ln πln eπe<,得e ππe <. 故只需比较3e 与e π和πe 与3π的大小.由(I )知,当0e x <<时,()()1e e f x f <=,即l n 1e x x <.在上式中,令2e πx =,又2e e π<,则2e eln ππ<,从而e 2ln ππ-<,即得e ln π2π>-.①由①得,()e 2.72eln πe 2 2.72 2.720.88 3.0243π 3.1⎛⎫⎛⎫>->⨯->⨯-=> ⎪ ⎪⎝⎭⎝⎭,即e l n π3>,亦即e 3ln πln e >,所以3e e π<.又由①得,3e3ln π>66e ππ->->,即3ln ππ>, 所以π3e π<.综上可得,e 3e π3π3e πe <π3<<<<,即6个数从小到大的顺序为e 3,3e ,e π,πe ,3π,π3.评注 本题考查了函数和导数的综合应用;考查了不等式求解的能力,考查了分析问题、解决问题的综合能力.充分考查了考生的综合素质.在平时的学习过程中应充分培养综合解决问题的能力.。
湖北省部分重点中学2014届高三二月联考高三数学试卷(理科)命题学校:江夏一中考试时间:2014年2月6日下午15:00—17:00 试卷满分:150分一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中, 只有一项是符合题目要求的.1.已知,x y R ∈,i 为虚数单位,且(2)1x i y i --=-+,则(1)x yi ++的值为 ( )A .4B .4+4iC .4-D .2i2.设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U = A ⋃B ,则集合)(B A C U ⋂ 的真子集共有 A .3个 B .6个 C .7个 D .8个 3.要得到函数)42sin(π+=x y 的图象,只要将函数x y 2cos =的图象( )A .向左平移4π单位 B .向右平移4π单位 C .向右平移8π单位 D .向左平移8π单位4.半径为R 的球的内接正三棱柱的三个侧面积之和的最大值为( )A 、233RB 、23RC 、222RD 、22R5.已知数据123 n x x x x ,,,,是武汉市n *(3 )n n N ≥∈,个普通职工的2013年的年收入,设这n 个数据的中位数为x ,平均数为y ,方差为z ,如果再加上比尔.盖茨的2013年的年收入1n x +(约900亿元),则这1n +个数据中,下列说法正确的是( ) A .年收入平均数大大增大,中位数一定变大,方差可能不变 B .年收入平均数大大增大,中位数可能不变,方差变大 C .年收入平均数大大增大,中位数可能不变,方差也不变D .年收入平均数可能不变,中位数可能不变,方差可能不变。
6.在各项均为正数的等比数列}{n a 中,2475314))((a a a a a =++,则下列结论中正确的是( )A .数列}{n a 是递增数列;B .数列}{n a 是递减数列;C .数列}{n a 既不是递增数列也不是递减数列;D .数列}{n a 有可能是递增数列也有可能是递减数列.7.已知实数0,0a b >>,对于定义在R 上的函数)(x f ,有下述命题: ①“)(x f 是奇函数”的充要条件是“函数()f x a -的图像关于点(,0)A a 对称”; ②“)(x f 是偶函数”的充要条件是“函数()f x a -的图像关于直线x a =对称”; ③“2a 是()f x 的一个周期”的充要条件是“对任意的R x ∈,都有()()f x a f x -=-”; ④ “函数()y f x a =-与()y f b x =-的图像关于y 轴对称”的充要条件是“a b =” 其中正确命题的序号是( )A .①②B .②③C .①④D .③④8.在边长为1的正三角形ABC 中,BD →=xBA →,CE →=yCA →,x >0,y >0,且x +y =1, 则CD →·BE →的最大值为( )A .-58B .-34C .-32D .-389.设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C 上一点,若126PF PF a +=,且12PF F ∆的最小内角为30 ,则C 的渐近线方程为( )A .x y ±=B .x y 2±=C .x y 22±= D.y = 10.已知函数)1,0(1log )(≠>-=a a x x f a ,若1234x x x x <<<,且12()()f x f x =34()()f x f x ==,则12341111x x x x +++=( ) A. 2 B. 4 C.8 D. 随a 值变化二.填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分,请将答案填在答题卡的.....对应题号的位置上,答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.执行如图所示的程序框图,输出的S = .12.若不等式组02(1)1y y x y a x ≥⎧⎪≤⎨⎪≤-+⎩表示的平面区域是一个三角形,则a 的取值范围是 .13.已知椭圆12222=+by a x 的面积计算公式是ab S π=,则2-=⎰________; 14. 设数列.,1,,12,1,,13,22,31,12,21,11 kk k -这个数列第2010项的值是________;这个数列中,第2010个值为1的项的序号是 .(二)选考题(请考生在第15、16两题中任选一题作答,如果全选,则按第15题作答?10<nnn S S 2⋅+=结果计分.)15.(选修4-1:几何证明选讲)如图,AB 为半径为2的圆O 的直径,CD 为垂直于AB 的一条弦, 垂足为E ,弦BM 与CD 交于点F .则2AC +BF·BM =16.(选修4-4:坐标系与参数方程)在极坐标系中,直线ρ(cos θ-sin θ)+2=0被曲线C :ρ=2所截得弦的中点的极坐标为________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知锐角ABC ∆的三个内角C B A ,,所对的边分别为c b a ,,。
已知B b a C A c a sin )()sin )(sin (-=+-。
(1) 求角C 的大小。
(2) 求B A 22cos cos +的取值范围。
18.(本小题满分12分)某班甲、乙两名学同参加100米达标训练,在相同条件下两人10次训练的成绩(单位:秒)如下:赛,从成绩的稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答结论).(2)从甲、乙两人的10次训练成绩中各随机抽取一次,求抽取的成绩中至少有一个比12.8秒差的概率.(3)经过对甲、乙两位同学的多次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率.图1图219.(本小题满分12分)如图,四边形ABCD 中(图1),E 是BC的中点,2DB =,1,DC =BC =,AB AD =将(图1)沿直线BD 折起,使二面角A BD C --为060(如图2) (1)求证:AE ⊥平面BDC ;(2)求直线AE 与平面ADC 所成角的正弦值。
20.(本小题满分12分){}*),1,0(01,761211N n a a a a a a n n n ∈-≠≠=-+⋅⋅⋅+++-=+λλλ满足已知数列(1) 求数列{}n a 的通项公式n a ;(2) 当31=λ时,数列中是否存在含有1a 在内的三项构成等差数列,若存在 ,请求出来;若不存在,请说明理由。
21.(本小题满分13分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,椭圆C 的上、下顶点分别为A 1,A 2,左、右顶点分别为B 1,B 2,左、右焦点分别为F 1,F 2.原点到直线A 2B 2的距离为255. (1)求椭圆C 的方程;(2)过原点且斜率为12的直线l ,与椭圆交于E ,F 点,试判断∠EF 2F 是锐角、直角还是钝角,并写出理由;(3)P 是椭圆上异于A 1,A 2的任一点,直线P A 1,P A 2,分别交x 轴于点N ,M ,若直线OT 与过点M ,N 的圆G 相切,切点为T .证明:线段OT 的长为定值,并求出该定值.22.(本小题满分14分)已知函数)1(1)ln 1()(>-+=x x x a x x f(1) 当0≥a 时,讨论()x f x x g '-=2)1()(的单调性;(2) 当1=a 时,若n x f >)(恒成立,求满足条件的正整数n 的值; (3) 求证:()()()[]25211321211->++⨯⨯⨯+⨯⨯+n e n n湖北省部分重点中学2014届高三二月联考高三理数参考答案11. 8194 12.)0,(-∞ 13. π 14.757 ,8076181 15. 16 16.⎪⎭⎫ ⎝⎛43,2π三、 本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.解:(1)由正弦定理可知b b a c a c a )())((-=+- ……………………2分即ab c b a =-+222。
由余弦定理得 212c o s 222=-+=ab c b a C ……………………4分所以3π=C …………………5分(2)32π=+B A ,故A B -=32π所以)234cos(212cos 211cos cos 22A A B A -++=+π=A A 2cos 412sin 431+-=)652sin(211π++A …………………8分 因ABC ∆为锐角三角形,所以26ππ<<A61165267πππ<+<A…………………10分 21)652sin(1--<+≤∴πAB A 22cos cos +∴的取值范围为)43,21[ …………………12分18. 解 (1)茎叶图………………3分从统计图中可以看出,乙的成绩较为集中,差异程度较小,应选派乙同学代表班级参加比赛较好. ………………4分 (2)设事件A 为:甲的成绩低于12.8,事件B 为:乙的成绩低于12.8, 则甲、乙两人成绩至少有一个低于12.8秒的概率为P =1-P (A )(B )=1-410×510=45. ………………7分(3)设甲同学的成绩为x ,乙同学的成绩为y ,则|x -y |<0.8, 得-0.8+x <y <0.8+x . ………………8分如图阴影部分面积即为3×3-2.2×2.2=4.16, ………………10分则P (|x -y |<0.8)=P (-0.8+x <y <0.8+x )=4.163×3=104225.…………12分19.解:如图取BD 中点M ,连接AM ,ME 。
∵AB AD ==BD AM ⊥∴∵2DB =,1,DC=BC = ⇒222BC DC DB =+,所以BCD ∆是BC 为斜边的直角三角形,DC BD ⊥, ∵E 是BC 的中点,∴ME 为BCD ∆的中位线CD ME 21//, BD ME ⊥∴,21=ME AME ∠∴是二面角A BD C --的平面角AME ∠∴=060 …………………3分 BD AM ⊥ ,BD ME ⊥且AM 、ME 是平面AME 内两相交于M 的直线 AEM BD 平面⊥∴⊂AE 平面AEM AE BD ⊥∴∵AB AD ==,2DB =ABD ∆∴为等腰直角三角形121==∴BD AM ,234360cos 2112411cos 2222=∴=︒⨯⨯⨯-+=∠⋅⋅-+=AE AME ME AM ME AM AE MEAE AM ME AE ⊥∴==+∴2221 BDC ME BDC BD ME BD 面平面⊂⊂∴,, BDC AE 平面⊥∴ ………………6分 (2)如图,以M 为原点MB 为x 轴,ME 为y 轴,建立空间直角坐标系xyz M -,则由(1)及已知条件可知B(1,0,0),)0,21,0(E , )23,21,0(A ,D )0,0,1(-,C )0,1,1(-, ),0,1,0(),23,21,1(== )23,0,0(-=………8分设平面ACD 的法向量为),,(z y x =则⎪⎩⎪⎨⎧=⋅=⋅00DA n ⇒ ⎪⎩⎪⎨⎧==++002321y z y x ,所成的角为与平面设则令αADC AE n z x )2,0,3(2,3-=∴-==7722373sin =⋅==α则 …………………………10分 所以直线AE 与平面ADC 所成角的正弦值为772 …………………………12分 20.解:由题意 01121=-+⋅⋅⋅++++n n a a a a λ ①012121=-++⋅⋅⋅+++++n n n a a a a a λ②由②-①得0)1(21=-+++n n a a λλ,又*,1,0N n ∈-≠≠λλ ∴121+++=n n a a λλ,故数列{}n a 从第二项开始为等比数列…………………………3分将1=n 代入①式,λλλ711,011221=+==-+a a a a ,∴2≥n 时,2)1(71-+=n n a λλλ∴数列{}n a 的通项⎪⎪⎩⎪⎪⎨⎧≥+=-=-2,)1(711,762n n a n n λλλ …………………………6分(2) 31=λ ∴⎪⎪⎩⎪⎪⎨⎧≥⋅=-=-2,4731,762n n a n n …………………………8分假设存在包含1a 的三项成等差数列不妨设2≥>p k 且112a a a a a n a a p k n pk >>∴>≥>时,当 k p a a a +=∴1222242424)73(764)73(2)2(2)32(2222-=⇒+-=⋅⇒⋅+-=⋅⋅∴------k p k p k p ……10分{}成等差数列或存在数列时成立当且仅当123321,,,,2,32a a a a a a a p k p k n ∴==∴≥> ………………………12分21解:(1)因为椭圆C 的离心率e =32,故设a =2m ,c =3m ,则b =m .直线A 2B 2方程为 bx -ay -ab =0,即mx -2my -2m 2=0.所以 2m 2m 2+4m 2=255,解得m =1.所以 a =2,b =1,椭圆方程为x 24+y 2=1分(2)由⎩⎨⎧x24+y 2=1,y =12x ,得E (2,22),F (-2,-22). ………………….6分 又F 2(3,0),所以F 2E →=(2-3,22),F 2F →=(-2-3,-22),所以F 2E →·F 2F →=(2-3)×(-2-3)+22×(-22)=12>0.所以∠EF 2F 是锐角. ……………… 8分 (3)由(1)可知A 1(0,1) A 2(0,-1),设P (x 0,y 0),直线P A 1:y -1=y 0-1x 0x ,令y =0,得x N =-x 0y 0-1;直线P A 2:y +1=y 0+1x 0x ,令y =0,得x M =x 0y 0+1;……………………………………10分解法一:设圆G 的圆心为(12(x 0y 0+1-x 0y 0-1),h ),则r 2=[12(x 0y 0+1-x 0y 0-1)-x 0y 0+1]2+h 2=14(x 0y 0+1+x 0y 0-1)2+h 2.OG 2=14(x 0y 0+1-x 0y 0-1)2+h 2.OT 2=OG 2-r 2=14(x 0y 0+1-x 0y 0-1)2+h 2-14(x 0y 0+1+x 0y 0-1)2-h 2=x 021-y 02.………….12分 而x 024+y 02=1,所以x 02=4(1-y 02),所以OT 2=4,所以OT =2,即线段OT 的长度为定值2. ………………… 13分解法二:OM ·ON =|(-x 0y 0-1)·x 0y 0+1|=x 021-y 02, ………………….12分而x 024+y 02=1,所以x 02=4(1-y 02),所以OM ·ON =4. 由切割线定理得OT 2=OM ·ON =4.所以OT =2,即线段OT 的长度为定值2. ………………… 13分22.解:(Ⅰ) ()()()()()()'2211ln 011ln 1ln 111a a x x x x a x x ax a x a f x x x ⎡⎤⎛⎫⋅+++--+⋅ ⎪⎢⎥---⎝⎭⎣⎦==--,…………2分 令()ln 1g x ax a x a =---,0a =时()1g x =-为常函数,不具有单调性。