当前位置:文档之家› t检验习题

t检验习题

t检验习题

t检验习题

1. t检验的应用条件是什么?

答:t检验的应用条件为:①样本来自的总体应符合正态分布或近似正态分布;②两样本均数比较时要求两样本的总体方差相等,即具有方差齐性。但在实际应用中,与上述条件略有偏离,只要其分布为单峰且近似对称分布,一般对结果影响不大,仍可进行t检验分析或者进行变量变换后比较。当样本含量较大时,比如100

n时,可用z检验。

2. 在t检验中,当P<0.05时,则拒绝H0,其理论依据是什么?

答:理论依据是小概率事件基本原理。P值表示H0成立时,出现等于及大于(或小于)现有统计量的概率。若P<0.05,说明在H0成立的前提下得到现有样本统计量是一小概率事件,据小概率事件基本原理(小概率事件在一次试验或抽样中发生的可能性很小,可以视为不发生),则拒绝H0。

3. 两样本均数比较时,P<0.05与P< 0.01在意义上有何差别?

答: P值反映的是两个总体均数差别有无统计学意义,并不表示差别的大小,P< 0.01说明认为有差别的理由更加充分,与P<0.05在意义上没有差别。

t检验习题及答案

例题7.5一家食品生产企业以生产袋装食品为主,每天的产量大约为8000袋左右。按规定每袋的重量应为100g。为对产品质量进行检测,企业质检部门经常要进行抽检,以分析 每袋重量是否符合要求。现从某天生产的一批食品中随机抽取25袋,测得每袋重量如表7—2所示。 表7—2 25袋食品的重量 112.5 101.0 103.0 102.0 110.5 102.6 107.5 95.0 108.8 115.6 100.0 123.5 102.0 101.6 102.2 116.6 95.4 97.8 108.6 105.0 136.8 102.8 101.5 98.4 93.3 已知产品重量的分布,且总体标准差为10g,试估计该天产品平均质量的置信区间,以为95%建立该种食品重量方差的置信区间。 解:已知δ=10,n=25,置信水平1-α=95%,Z x/2=1.96

案例处理摘要 案例 有效缺失合计 N 百分比N 百分比N 百分比 重量25 100.0% 0 .0% 25 100.0%

描述 统计量标准误 重量均值105.7600 1.93038 均值的95% 置信区间下限101.7759 上限109.7441 5% 修整均值104.8567 中值102.6000 方差93.159 标准差9.65190 极小值93.30 极大值136.80 范围43.50 四分位距9.15 偏度 1.627 .464 峰度 3.445 .902 重量 重量 Stem-and-Leaf Plot Frequency Stem & Leaf 1.00 9 . 3 4.00 9 . 5578 10.00 10 . 0111222223 4.00 10 . 5788 2.00 11 . 02

第三章 假设检验

第三章 假设检验 3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。已知这种元 件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确 定这批元件是否合格。 解: {}01001:1000, H :1000 950 100 n=25 10002.5 V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得: 拒绝域: 本题中:0.950.950 u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。 3.4某批矿砂的五个样品中镍含量经测定为(%): 3.25 3.27 3.24 3.26 3.24 设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为3.25? 解:n=5; x=zeros(1,n); x=[3.25 3.27 3.24 3.26 3.24]; x1=sum(x)/n; x2=0; for i=1:n x2=x2+(x(1,i)-x1)^2;

end x2=x2/n; S=sqrt(x2); 010110 2: 3.25 H :t 3.252, S=0.0117, n=5 0.3419 H x μμμμσ==≠==提出假设:构造统计量:本题属于未知的情形,可用检验,即取检验统计量为:本题中,代入上式得:否定域为:1-20.99512 0 V=t>t (1)0.01,(4) 4.6041, 3.25n t t t H ααα- ??-?? ?? ==<∴Q 本题中,接受认为这批矿砂的镍含量为。 3.5确定某种溶液中的水分,它的10个测定值0.452%,0.035%,X S == 2N(,),μσ设总体为正态分布试在水平5%检验假设: 0101() H :0.5% H :0.5%() H :0.04% H :0.0.4% i ii μμσσ≥<≥< {}0.95()0.452% S=0.035%-4.1143 (1)0.05 n=10 t (9) 1.833i t X n ασα==-==1-构造统计量:本文中未知,可用检验。取检验统计量为X 本题中,代入上式得: 0.452%-0.5% 拒绝域为: V=t >t 本题中,0 1 4.1143H <=∴t 拒绝

T检验例题

T检验 习题1.按规定苗木平均高达1.60m以上可以出圃,今在苗圃中随机抽取10株苗木,测定的苗木高度如下: 1.75 1.58 1.71 1.64 1.55 1.72 1.62 1.83 1.63 1.65 假设苗高服从正态分布,试问苗木平均高是否达到出圃要求?(要求α=0.05) 解:1)根据题意,提出:无效假设为:苗木的平均苗高为H0=1.6m; 备择假设为:苗木的平均苗高H A>1.6m; 2)定义变量:在spss软件中的“变量视图”中定义苗木苗高, 之后在“数据视图”中输入苗高数据; 3)分析过程 在spss软件上操作分析过程如下:分析——比较均值——单样本T检验——将定义苗高导入检验变量——检验值定义为1.6——单击选项将置信区间设为95%——确定输出如下: 表1.1:单个样本统计量 表1.2:单个样本检验 4)输出结果分析 由表1.1数据分析可知,变量苗木苗高的平均值为1.6680m,标

准差为0.0843,说明样本的离散程度较小,标准误为0.0267,说明抽样误差较小。 由表1.3数据分析可知,T检验值为2.55,样本自由度为9,t检验的双尾检验值为0.031<0.05,说明差异性显著,因此,否定无效假设H0,取备择假设H A。 根据题意,苗木的苗高服从正态分布,由以上分析知:在显著水平为0.05的水平上检验,苗木的平均苗高大于1.6m,符合出圃的要求。 习题2.从两个不同抚育措施育苗的苗圃中各以重复抽样的方式抽得样本如下: 样本1苗高(CM):52 58 71 48 57 62 73 68 65 56 样本2苗高(CM):56 75 69 82 74 63 58 64 78 77 66 73 设苗高服从正态分布且两个总体苗高方差相等(齐性),试以显著水平α=0.05检验两种抚育措施对苗高生长有无显著性影响。 解:1)根据题意提出:无效假设为H0:两种抚育措施对苗木生长没有显著的影响;备择假设H A:两种抚育措施对苗高生长影响显著; 2)在spss中的“变量视图”中定义变量“苗高1”,“抚育措施”,之后在“数据视图”中输入题中的苗高数据,及抚育措施,其中措施一定义为“1”措施二定义为“2”; 3)分析过程 在spss软件上操作分析过程如下:分析——比较变量——独立

T检验公式推导过程附例题

从正态总体N (μ1,σ)和N (μ2,σ)中分别抽取含量为n 1和n 2的样本,两样本均数差值X 1 -X 2 服从正态分布N (μ1-μ2,σ12 -),其中 σ12X X - ① 其中①式中σX 1 -X 2 为两样本均数差值的标准误,其估计值为 12X X S - ② 其中②式中2C S 为两样本合并的方差,其计算公式为: 22 2111222 212()/()/2 X X n X X n S c n n -+-=+-∑∑∑ ③ 如已计算出S 1 和 S 2 ,则可用公式 ③ 计算出 12X X S - 在0H :μ1=μ2=0的条件下,t 的计算公式为: 1212|| X X X X t S --=,ν=122n n +-⑤ 例3-3 测得14名慢性支气管炎病人与11名健康人的尿中17酮类固醇(u mol/24h )排出量如下,试比较两组人的尿中17酮类固醇的排出量有无不同。 病人X1:10.05 18.75 18.99 15.94 13.96 17.22 14.69 15.10 9.42 8.21 7.24 24.60 健康人X2:17.95 30.46 10.88 22.38 12.89 23.01 13.89 19.40 15.83 26.72 17.29 (1)建立假设检验,确定检验水准 102=H μμ:,即病人与健康人的尿中17酮类固醇的排出量相同 102H μμ≠:,即病人与健康人的尿中17酮类固醇的排出量不相同 α=0.05

(2)计算t 值 本例114n =,1212.35X =∑ ,213549.0919X =∑ 211n = , 2210.70X =∑ ,224397.6486X =∑ 11/2212.35/1415.17 22/2210.70/1119.15X X n X X n ======∑∑① 按公式③2221112222 12()/()/2X X n X X n S c n n -+-=+-∑∑∑ 229.9993S c ==223549.0919-(212.35)/14+4397.6486-(210.70)/1114+11-2 按公式② 12X X S - 12X X S - 按公式 ⑤1212|| X X t S --=,ν=122n n +- |15.17-19.15|=1.80352.2068 t = (3)确定P 值,作出推断结论 ν=14112=2+- ,查附表2,t 界值表 ,得 0.01/2,23 1.714t =0.05/2,23 2.069t = 现<0.10/2,230.05/2,23t t t <<,故0.01>P >0.05 。 按α=0.05水准,不拒绝0H ,差异无统计学意义,尚不能认为慢性支气管炎病人与健康人的尿中17酮类固醇的排出量不同。

医药数理统计第六章习题(检验假设和t检验)

第四章抽样误差与假设检验 练习题 一、单项选择题 1. 样本均数的标准误越小说明 A. 观察个体的变异越小 B. 观察个体的变异越大 C. 抽样误差越大 D. 由样本均数估计总体均数的可靠性越小 E. 由样本均数估计总体均数的可靠性越大 2. 抽样误差产生的原因是 A. 样本不是随机抽取 B. 测量不准确 C. 资料不是正态分布 D. 个体差异 E. 统计指标选择不当 3. 对于正偏态分布的的总体, 当样本含量足够大时, 样本均数的分布近似为 A. 正偏态分布 B. 负偏态分布 C. 正态分布 D. t分布 E. 标准正态分布 4. 假设检验的目的是 A. 检验参数估计的准确度 B. 检验样本统计量是否不同 C. 检验样本统计量与总体参数是否不同 D. 检验总体参数是否不同 E. 检验样本的P值是否为小概率 5. 根据样本资料算得健康成人白细胞计数的95%可信区间为7.2×109/L~ 9.1×109/L,其含义是 A. 估计总体中有95%的观察值在此范围内 B. 总体均数在该区间的概率为95% C. 样本中有95%的观察值在此范围内 D. 该区间包含样本均数的可能性为95% E. 该区间包含总体均数的可能性为95%

答案:E D C D E 二、计算与分析 1.为了解某地区小学生血红蛋白含量的平均水平,现随机抽取该地小学生450人,算得其血红蛋白平均数为101.4g/L,标准差为1.5g/L,试计算该地小学生血红蛋白平均数的95%可信区间。 [参考答案] 样本含量为450,属于大样本,可采用正态近似的方法计算可信区间。 101.4 X=, 1.5 S=,450 n=,0.07 X S=== 95%可信区间为 下限: /2.101.4 1.960.07101.26 X X u S α=-?= -(g/L) 上限: /2.101.4 1.960.07101.54 X X u S α +=+?=(g/L) 即该地成年男子红细胞总体均数的95%可信区间为101.26g/L~101.54g/L。 2.研究高胆固醇是否有家庭聚集性,已知正常儿童的总胆固醇平均水平是175mg/dl,现测得100名曾患心脏病且胆固醇高的子代儿童的胆固醇平均水平为207.5mg/dl,标准差为30mg/dl。问题: ①如何衡量这100名儿童总胆固醇样本平均数的抽样误差? ②估计100名儿童的胆固醇平均水平的95%可信区间; ③根据可信区间判断高胆固醇是否有家庭聚集性,并说明理由。 [参考答案] ①均数的标准误可以用来衡量样本均数的抽样误差大小,即 30 S=mg/dl,100 n= 3.0 X S=== ②样本含量为100,属于大样本,可采用正态近似的方法计算可信区间。 207.5 X=,30 S=,100 n=,3 X S=,则95%可信区间为 下限: /2.207.5 1.963201.62 X X u S α=-?= -(mg/dl)

教育统计学t检验练习

教育统计学t检验练习集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

实验报告实验名称:t 检验成绩: 实验日期: 2011年10月31日实验报告日期:2011年11 月日 林虹 一、实验目的 (1)掌握单一样本t检验。 (2)掌握相关样本t检验 (3)掌握独立样本t检验 二、实验设备 (1)微机 (2)SPSS for Windows V17.0统计软件包 三、实验内容: 1.某市统一考试的数学平均成绩为75分,某校一个班的成绩见表4-1。 问该班的成绩与全市平均成绩的差异显着吗? 表4-1 学生的数学成绩 12345678910111213141516编 号 96977560926483769097829887568960成 绩 17181920212223242526272829303132编 号 成 68747055858656716577566092548780绩 2.某物理教师在教学中发现,在课堂物理教学中采用“先讲规则(物理 的定理或法则),再举例题讲解规则的具体应用”与采用“先讲例

题,再概括出解题规则”这两种教学方法的教学效果似乎不同。为了验证他的这个经验性发现是否属实,他选择了两个近似相等的班级进行教学实验。进行教学实验时的教学内容、教学时间和教学地点等无关变量他都做了严格的控制,分别采用“例-规”法与“规-例”法对两个班的学生进行物理教学,然后,两个班的被试都进行同样的物理知识测验。测验成绩按“5分制”进行评定。两组被试的测验成绩见数据文件data4-02。请用SPSS,通过适当的统计分析方法,检验这两种教学方法的教学效果是否存在实质性差别。 3.某幼儿园分别在儿童入园时和入园一年后对他们进行了“比奈智力测 验”,测验结果见数据文件data4-03。请问,儿童入园一年后的智商有明显的变化吗? (例题) 4.某心理学工作者以大学生为被试,以“正性”和“负性”两种面部表 情模式的照片为实验材料,测量被试对“正性”和“负性”面部表情识别的时间,测验结果见数据文件data4-04。请用SPSS中适当的统计分析方法检验两种面部表情模式对大学生识别面部表情的时间是否存在明显的影响。 5.某小学教师分别采用“集中学习”与“分散学习”两种方式教两个小 学二年级班级的学生学习相同的汉字,两个班学生的学习成绩见 data4-05。请问哪种学习方式效果更好? 6.某省语文高考平均成绩为78分,某学校的成绩见data4-06。请问该 校考生的平均成绩与全省平均成绩之间的差异显着吗?

t检验的资料与习题

第四章:定量资料的参数估计与假设检验基础1抽样与抽样误差 抽样方法本身所引起的误差。当由总体中随机地抽取样本时,哪个样本被抽到是随机的,由所抽到的样本得到的样本指标x与总体指标μ之间偏差,称为实际抽样误差。当总体相当大时,可能被抽取的样本非常多,不可能列出所有的实际抽样误差,而用平均抽样误差来表征各样本实际抽样误差的平均水平。 σx=σ/ Sx=S/ 2t分布 t分布曲线形态与n(确切地说与自由度v)大小有关。与标准正态分布曲线相比,自由度v越小,t分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度v愈大,t分布曲线愈接近正态分布曲线,当自由度v=∞时,t分布曲线为标准正态分布曲线。 t=X-u/Sx=X-u/(S/),V=N-1 正态分布(normaldistribution)是数理统计中的一种重要的理论分布,是许多统计方法的理论基础。正态分布有两个参数,μ和σ,决定了正态分布的位置和形态。为了应用方便,常将一般的正态变量X通过u变换[(X-μ)/σ]转化成标准正态变量u,以使原来各种形态的正态分布都转换为μ=0,σ=1的标准正态分布(standardnormaldistribution),亦称u分布。 根据中心极限定理,通过上述的抽样模拟试验表明,在正态分布总体中以固定n,抽取若干个样本时,样本均数的分布仍服从正态分布,即N(μ,σ)。所以,对样本均数的分布进行u 变换,也可变换为标准正态分布N(0,1) 由于在实际工作中,往往σ是未知的,常用s作为σ的估计值,为了与u变换区别,称为t变换,统计量t值的分布称为t分布。 假设X服从标准正态分布N(0,1),Y服从χ2(n)分布,那么Z=X/sqrt(Y/n)的分布称为自由度为n的t分布,记为Z~t(n)。 特征: 1.以0为中心,左右对称的单峰分布;

t检验的资料与习题

第四章:定量资料的参数估计与假设检验基础 1抽样与抽样误差 抽样方法本身所引起的误差。当由总体中随机地抽取样本时,哪个样本被抽到是随机的,由所抽到的样本得到的样本指标x与总体指标μ之间偏差,称为实际抽样误差。当总 体相当大时,可能被抽取的样本非常多,不可能列出所有的实际抽样误差,而用平均抽样 误差来表征各样本实际抽样误差的平均水平。 σ x=σ/ S x=S/ 2 t分布 t分布曲线形态与n(确切地说与自由度v)大小有关。与标准正态分布曲线相比,自 由度v越小,t分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度v愈 大,t分布曲线愈接近正态分布曲线,当自由度v=∞时,t分布曲线为标准正态分布曲 线。 t = X-u/Sx=X-u/(S/),V=N-1 正态分布(normal distribution)是数理统计中的一种重要的理论分布,是许多统计方法的理论基础。正态分布有两个参数,μ和σ,决定了正态分布的位置和形态。为了应用方便,常将一般的正态变量X通过u变换[(X-μ)/σ]转化成标准正态变量u,以使原来各种形态的正态分布都转换为μ=0,σ=1的 标准正态分布(standard normal distribution),亦称u分布。 根据中心极限定理,通过上述的抽样模拟试验表明,在正态分布总体中以 固定n,抽取若干个样本时,样本均数的分布仍服从正态分布,即N(μ,σ)。所以,对样本均数的分布进行u变换,也可变换为标准正态分布N (0,1) 由于在实际工作中,往往σ是未知的,常用s作为σ的估计值,为了与 u变换区别,称为t变换,统计量t 值的分布称为t分布。

t检验计算公式

t 检验计算公式: 当总体呈正态分布,如果总体标准差未知,而且样本容量n <30,那么这时一切可能的样本平均数与总体平均数的离差统计量呈t 分布。 t 检验是用t 分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。t 检验分为单总体t 检验和双总体t 检验。 1.单总体t 检验 单总体t 检验是检验一个样本平均数与一已知的总体平均数的差异是否显 著。当总体分布是正态分布,如总体标准差σ未知且样本容量n <30,那么样本平均数与总体平均数的离差统计量呈t 分布。检验统计量为: X t μ -= 。 如果样本是属于大样本(n >30)也可写成: X t μ -= 。 在这里,t 为样本平均数与总体平均数的离差统计量; X 为样本平均数; μ为总体平均数; X σ为样本标准差; n 为样本容量。 例:某校二年级学生期中英语考试成绩,其平均分数为73分,标准差为17分,期末考试后,随机抽取20人的英语成绩,其平均分数为79.2分。问二年级学生的英语成绩是否有显著性进步? 检验步骤如下: 第一步 建立原假设0H ∶μ=73 第二步 计算t 值 79.273 1.63X t μ --= = = 第三步 判断 因为,以0.05为显著性水平,119df n =-=,查t 值表,临界值 0.05(19)2.093t = ,而样本离差的t = 1.63小与临界值 2.093。所以,接受原假设, 即进步不显著。

2.双总体t 检验 双总体t 检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。双总体t 检验又分为两种情况,一是相关样本平均数差异的显著性检验,用于检验匹配而成的两组被试获得的数据或同组被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本。二是独立样本平均数的显著性检验。各实验处理组之间毫无相关存在,即为独立样本。该检验用于检验两组非相关样本被试所获得的数据的差异性。 现以相关检验为例,说明检验方法。因为独立样本平均数差异的显著性检验完全类似,只不过0r =。 相关样本的t 检验公式为: t = 在这里,1X ,2X 分别为两样本平均数; 1 2 X σ,2 2X σ分别为两样本方差; γ为相关样本的相关系数。 例:在小学三年级学生中随机抽取10名学生,在学期初和学期末分别进行了两次推理能力测验,成绩分别为79.5和72分,标准差分别为9.124,9.940。问两次测验成绩是否有显著地差异? 检验步骤为: 第一步 建立原假设0H ∶1μ=2μ 第二步 计算t 值 X X t -= =3.459。 第三步 判断 根据自由度19df n =-=,查t 值表0.05(9) 2.262t =,0.01(9) 3.250t =。由于实际计算出来的t =3.495>3.250=0.01(9)t ,则0.01P <,故拒绝原假设。 结论为:两次测验成绩有及其显著地差异。 由以上可以看出,对平均数差异显著性检验比较复杂,究竟使用Z 检验还是使用t 检验必须根据具体情况而定,为了便于掌握各种情况下的Z 检验或t 检验,

三种常用的T检验

独立样本的T检验 (independent-samples T T est) 对于相互独立的两个来自正态总体的样本,利用独立样本的T 检验来检验这两个样本的均值和方差是否来源于同一总体。在SPSS 中,独立样本的T检验由“Independent-Sample T Test”过程来完成。 例:双语教师的英语水平有高低之分,他们(她们)所教的学生对双语教学的态度是否有显著差异? 例题分析: ——研究目的:寻找差异 ——自变量:双语教师的英语水平(ordinal data等级变量),有两个水平:;level1低水平,level2 高水平 ——因变量:学生的双语教学态度(interval data等距变量) SPSS操作步骤 ·Analyze→Compare Means→Independent Samples T Test ·Click the 双语教学态度to the column of “Test V ariable(s)” and the 教师英语水平分组to the column of “Grouping variable” ·Click the button of “Define Groups…” and put the group numbers “1” and “3” into Group 1 and Group 2, and “Continue” back, then “OK”.

结果在论文中的呈现方式 独立样本T检验结果显示,双语教师的英语水平不同,其所教学生对双语教学的态度有显著差异(t=-3,249, df=72, p<0.05)。双语教师英语水平较低所教的学生,他们对双语教学态度的得分也显著低于英语水平较高的双语教师所教的学生(MD=-0.65)。这可能是因为…… 练习:文科生和理科生对双语教学的态度是否有显著差异? 配对样本T检验(Paired-samples T Test) 配对样本T检验,用于检验两个相关的样本(配对资料)是否来自具有相同均值的总体。 例:本次调查中,学生对自己英语能力水平和英语知识水平的评价之间是否有显著差异? 例题分析: ——研究目的:寻找差异 ——自变量:学生的评价对象(norminal data定类数据),有两个水平:level1对自身英语能力水平的评价,level2对自身英语知识水平的评价。 ——因变量:学生自身英语能力和知识的评价分数

应用数理统计吴翊李永乐第三章 假设检验课后作业参考答案

第三章 假设检验 课后作业参考答案 3.1 某电器元件平均电阻值一直保持2.64Ω,今测得采用新工艺生产36个元件的平均电阻值为2.61Ω。假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。已知改变工艺前的标准差为0.06Ω,问新工艺对产品的电阻值是否有显著影响?(01.0=α) 解:(1)提出假设64.2:64.2:10≠=μμH H , (2)构造统计量36 /06.064 .261.2/u 00 -=-= -= n X σμ (3)否定域???? ??>=???? ??>?? ??? ??<=--21212 αααu u u u u u V (4)给定显著性水平01.0=α时,临界值575.2575.22 12 =-=- α αu u , (5) 2 αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。 3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件, 测得其寿命平均值为950(小时)。已知这种元件寿命服从标准差100σ=(小时)的正态分 布,试在显著水平0.05下确定这批元件是否合格。 解: {}01001:1000, H :1000 X 950 100 n=25 10002.5 V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得: 拒绝域: 本题中:0.950.950 u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。

3.3某厂生产的某种钢索的断裂强度服从正态分布( )2 ,σ μN ,其中()2 /40cm kg =σ。现从 一批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比,X 较μ大20(2 /cm kg )。设总体方差不变,问在01.0=α下能否认为这批钢索质量显著提高? 解: (1)提出假设0100::μμμμ>=H H , (2)构造统计量5.13 /4020 /u 00 == -= n X σμ (3)否定域{}α->=1u u V (4)给定显著性水平01.0=α时,临界值33.21=-αu (5) α-<1u u ,在否定域之外,故接受原假设,认为这批钢索质量没有显著提高。 3.4某批矿砂的五个样品中镍含量经测定为(%): 3.25 3.27 3.24 3.26 3.24 设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为3.25? 解: 010110 2: 3.25 H :t X 3.252, S=0.0117, n=5 0.3419 H x μμμμσ==≠==提出假设:构造统计量:本题属于未知的情形,可用检验,即取检验统计量为:本题中,代入上式得:否定域为:1-20.99512 0 V=t>t (1)0.01,(4) 4.6041 , 3.25n t t t H ααα- ??-?? ?? ==<∴Q 本题中,接受认为这批矿砂的镍含量为。

医药数理统计第六章习题(检验假设和t检验)

第四章 抽样误差与假设检验 练习题 一、单项选择题 1. 样本均数的标准误越小说明 A. 观察个体的变异越小 B. 观察个体的变异越大 C. 抽样误差越大 D. 由样本均数估计总体均数的可靠性越小 E. 由样本均数估计总体均数的可靠性越大 2. 抽样误差产生的原因是 A. 样本不是随机抽取 B. 测量不准确 C. 资料不是正态分布 D. 个体差异 E. 统计指标选择不当 3. 对于正偏态分布的的总体, 当样本含量足够大时, 样本均数的分布近似 为 A. 正偏态分布 C. 正态分布 E. 标准正态分布 4. 假设检验的目的是 A. 检验参数估计的准确度 C. 检验样本统计量与总体参数是否不同 D. 检验总体参数是否不同 E. 检验样本的P 值是否为小概率 5. 根据样本资料算得健康成人白细胞计数的95%可信区间为7.2×109 /L ~ 9.1×109 /L ,其含义是 A. 估计总体中有95%的观察值在此范围内 B. 总体均数在该区间的概率为95% C. 样本中有95%的观察值在此范围内 D. 该区间包含样本均数的可能性为95% B. 负偏态分布 D. t 分布 B. 检验样本统计量是否不同

E.该区间包含总体均数的可能性为95%

答案:E D C D E 、计算与分析 1. 为了解某地区小学生血红蛋白含量的平均水平,现随机抽取该地小学生 450 人,算得其血红蛋白平均数为 101.4g/L ,标准差为 1.5g/L ,试计算该地小 学生血红蛋白平均数的 95%可信区间。 [参考答案] 样本含量为 450,属于大样本,可采用正态近似的方法计算可信区间。 95%可信区间为 下限: X -u .S =101.4- 1.960.07=101.26(g/L) 上限:X +u .S =101.4+ 1.960.07=101.54(g/L) 即该地成年男子红细胞总体均数的 95%可信区间为 101.26g/L ~101.54g/L 。 2. 研究高胆固醇是否有家庭聚集性,已知正常儿童的总胆固醇平均水平是 175mg/dl ,现测得100 名曾患心脏病且胆固醇高的子代儿童的胆固醇平均水平为 207.5mg/dl ,标准差为 30mg/dl 。问题: ① 如何衡量这100 名儿童总胆固醇样本平均数的抽样误差? ② 估计100 名儿童的胆固醇平均水平的95%可信区间; ③ 根据可信区间判断高胆固醇是否有家庭聚集性,并说明理由。 [参考答案] ① 均数的标准误可以用来衡量样本均数的抽样误差大小,即 S = 30 mg/dl, n = 100 ② 样本含量为 100 ,属于大样本,可采用正态近似的方法计算可信区间。 X = 207.5 , S =30,n =100,S = 3,则95%可信区间为 下限: X -u .S = 207.5 - 1.96 3 = 201.62 (mg/dl) 上限:X +u .S = 207.5 + 1.96 3 = 213.38 (mg/dl ) X =101.4 , S =1.5,n =450, S 1.5 n = 450 = 0.07 S 30 n 100 = 3.0

t检验得资料与习题

第四章:定量资料得参数估计与假设检验基础 1抽样与抽样误差 抽样方法本身所引起得误差。当由总体中随机地抽取样本时,哪个样本被抽到就是随机得,由所抽到得样本得到得样本指标x与总体指标μ之间偏差,称为实际抽样误差。当总体相当大时,可能被抽取得样本非常多,不可能列出所有得实际抽样误差,而用平均抽样误差来表征各样本实际抽样误差得平均水平。 σ x=σ/ S x=S/ 2 t分布 t分布曲线形态与n(确切地说与自由度v)大小有关。与标准正态分布曲线相比,自由度v越小,t分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度v愈大,t分布曲线愈接近正态分布曲线,当自由度v=∞时,t分布曲线为标准正态分布曲线。 t = X-u/Sx=X-u/(S/),V=N-1 正态分布(normal distribution)就是数理统计中得一种重要得理论分布,就是许多统计方法得理论基础。正态分布有两个参数,μ与σ,决定了正态分布得位置与形态。为了应用方便,常将一般得正态变量X通过u变换[(X-μ)/σ]转化成标准正态变量u,以使原来各种形态得正态分布都转换为μ=0,σ=1得标准正态分布(standard normal distribution),亦称u分布。 根据中心极限定理,通过上述得抽样模拟试验表明,在正态分布总体中以固定n,抽取若干个样本时,样本均数得分布仍服从正态分布,即N(μ,σ)。所以,对样本均数得分布进行u变换,也可变换为标准正态分布N (0,1) 由于在实际工作中,往往σ就是未知得,常用s作为σ得估计值,为了与u 变换区别,称为t变换,统计量t 值得分布称为t分布。 假设X服从标准正态分布N(0,1),Y服从χ2(n)分布,那么Z=X/sqrt(Y/n)得分布称为自由度为n得t分布,记为 Z~t(n)。 特征: 1.以0为中心,左右对称得单峰分布; 2.t分布就是一簇曲线,其形态变化与n(确切地说与自由度ν)大小有关。自由度ν越小,t分布曲线越低平;自由度ν越大,t分布曲线越接近标准正态分布(u分布)曲线,如图、 t(n)分布与标准正态N(0,1)得密度函数

教育统计学t检验练习

教育统计学t检验练习内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

实验报告实验名称:t 检验成绩: 实验日期: 2011年10月31日实验报告日期:2011年11 月日 林虹 一、实验目的 (1)掌握单一样本t检验。 (2)掌握相关样本t检验 (3)掌握独立样本t检验 二、实验设备 (1)微机 (2)SPSS for Windows 统计软件包 三、实验内容: 1.某市统一考试的数学平均成绩为75分,某校一个班的成绩见表4-1。问该班的 成绩与全市平均成绩的差异显着吗 表4-1 学生的数学成绩 12345678910111213141516 编 号 成96977560926483769097829887568960 号 68747055858656716577566092548780 成 绩

2.某物理教师在教学中发现,在课堂物理教学中采用“先讲规则(物理的定理或 法则),再举例题讲解规则的具体应用”与采用“先讲例题,再概括出解题规则”这两种教学方法的教学效果似乎不同。为了验证他的这个经验性发现是否属实,他选择了两个近似相等的班级进行教学实验。进行教学实验时的教学内容、教学时间和教学地点等无关变量他都做了严格的控制,分别采用“例-规” 法与“规-例”法对两个班的学生进行物理教学,然后,两个班的被试都进行同样的物理知识测验。测验成绩按“5分制”进行评定。两组被试的测验成绩见数据文件data4-02。请用SPSS,通过适当的统计分析方法,检验这两种教学方法的教学效果是否存在实质性差别。 3.某幼儿园分别在儿童入园时和入园一年后对他们进行了“比奈智力测验”,测 验结果见数据文件data4-03。请问,儿童入园一年后的智商有明显的变化吗(例题) 4.某心理学工作者以大学生为被试,以“正性”和“负性”两种面部表情模式的 照片为实验材料,测量被试对“正性”和“负性”面部表情识别的时间,测验结果见数据文件data4-04。请用SPSS中适当的统计分析方法检验两种面部表情模式对大学生识别面部表情的时间是否存在明显的影响。 5.某小学教师分别采用“集中学习”与“分散学习”两种方式教两个小学二年级 班级的学生学习相同的汉字,两个班学生的学习成绩见data4-05。请问哪种学习方式效果更好 6.某省语文高考平均成绩为78分,某学校的成绩见data4-06。请问该校考生的 平均成绩与全省平均成绩之间的差异显着吗 **

教育统计学t检验练习

实验报告实验名称:t 检验成绩: 实验日期: 2011年10月31日实验报告日期:2011年11 月日 林虹 一、实验目的 (1)掌握单一样本t检验。 (2)掌握相关样本t检验 (3)掌握独立样本t检验 二、实验设备 (1)微机 (2)SPSS for Windows V17.0统计软件包 三、实验内容: 1.某市统一考试的数学平均成绩为75分,某校一个班的成绩见表4-1。 问该班的成绩与全市平均成绩的差异显着吗? 表4-1 学生的数学成绩 12345678910111213141516编 号 成 96977560926483769097829887568960绩 编 17181920212223242526272829303132号

成 68747055858656716577566092548780绩 2.某物理教师在教学中发现,在课堂物理教学中采用“先讲规则(物理的 定理或法则),再举例题讲解规则的具体应用”与采用“先讲例题,再概括出解题规则”这两种教学方法的教学效果似乎不同。为了验证他的这个经验性发现是否属实,他选择了两个近似相等的班级进行教学实验。进行教学实验时的教学内容、教学时间和教学地点等无关变量他都做了严格的控制,分别采用“例-规”法与“规-例”法对两个班的学生进行物理教学,然后,两个班的被试都进行同样的物理知识测验。测验成绩按“5分制”进行评定。两组被试的测验成绩见数据文件data4-02。 请用SPSS,通过适当的统计分析方法,检验这两种教学方法的教学效果是否存在实质性差别。 3.某幼儿园分别在儿童入园时和入园一年后对他们进行了“比奈智力测 验”,测验结果见数据文件data4-03。请问,儿童入园一年后的智商有明显的变化吗? (例题) 4.某心理学工作者以大学生为被试,以“正性”和“负性”两种面部表情 模式的照片为实验材料,测量被试对“正性”和“负性”面部表情识别的时间,测验结果见数据文件data4-04。请用SPSS中适当的统计分析方法检验两种面部表情模式对大学生识别面部表情的时间是否存在明显的影响。 5.某小学教师分别采用“集中学习”与“分散学习”两种方式教两个小学

t检验及方差分析练习题

采用SPSS统计软件进行操作。 1、某研究者检测了某山区16名健康成年男性的血红蛋白含量(g/L),检测结果见下表。问:该山区健康成年男性的血红蛋白含量与一般健康成年男性血红蛋白含量的总体均数132 g/L 是否有差别。 编号血红蛋白含量(g/L) 1 145 2 150 3 138 4 126 5 140 6 145 7 135 8 115 9 135 10 130 11 120 12 133 13 147 14 125 15 114 16 165 2、为研究老年慢性支气管炎病人与健康人的尿中17酮类固醇排出量是否相等,现随机抽取老年慢性支气管炎病人14例和健康人11例,分别测定尿中17酮类固醇排出量,结果见下表。老年慢性支气管炎病人与健康人的尿中17酮类固醇排出量是否相等? 表老年慢性支气管炎病人与健康人的尿中17酮类固醇排出量(mg/24h) 病人组健康人组 2.90 4.97 5.41 4.24 5.48 4.36 4.60 2.72 4.03 2.37 5.10 2.09 5.92 7.10 5.18 5.60 8.79 4.57 3.14 7.71 6.46 4.99 3.72 6.64 4.01 3、将20名某病患者随机分为两组,分别用甲、乙两药治疗,测得治疗前与治疗后一个月的血沉(mm/小时)如下表。

试问:(1)甲、乙两药是否均有效? (2)甲、乙两药的疗效有无差别? 表甲、乙两药治疗前后的血沉(mm/小时) 甲药病人号 1 2 3 4 5 6 7 8 9 10 治疗前20 23 16 21 20 17 18 18 15 19 治疗后16 19 13 20 20 14 12 15 13 13 乙药病人号 1 2 3 4 5 6 7 8 9 10 治疗前19 20 19 23 18 16 20 21 20 20 治疗后16 13 15 13 13 15 18 12 17 14 4、对10例肺癌病人和12例矽肺0期工人用X光片测量肺门横径右侧距RD值(cm),结果见下表。问:肺癌病人的RD值是否高于矽肺0期工人的RD值。 3.23 2.78 3.50 3.23 4.04 4.20 4.15 4.87 4.28 5.12 4.34 6.21 4.47 7.18 4.64 8.05 4.75 8.56 4.82 9.60 4.95 5.10 5、为研究女性服用某避孕新药后是否影响其血清总胆固醇含量,将20名女性按年龄配成10对,每对中随机抽取一人服用新药,另一人服用安慰剂,经过一定时间后,测得血清总胆固醇含量(mmol/L),结果如下表。以此研究解答以下问题:

第七章 假设检验

第七章 假设检验 一、教材说明 本章主要介绍统计假设检验的基本概念和基本思想、正态总体参数的统计假设的显著性检验方法.。 1、本章的教学目的与要求 (1)使学生了解假设检验的基本概念; (2)使学生了解假设检验的基本思想; (3)使学生掌握假设检验的基本步骤; (4)使学生会计算检验的两类错误,搞清楚两类错误的关系; (5)使学生掌握正态总体参数的假设检验,主要是检验统计量及其分布,检验拒绝域的确定; (6)使学生灵活运用所学知识解决实际问题。 2、本章的重点与难点 本章的重点是正态总体参数的各种假设检验中的检验统计量及其分布,难点是假设检验拒绝域的确定。 二、教学内容 下面主要分3节来讲解本章的主要内容。 §7.1 假设检验的基本概念 对总体分布或分布中的某些参数作出假设,然后利用样本的观测值所提供的信息,运用数理统计的分析方法,检验这种假设是否成立,从而决定接受或拒绝“假设”,这一统计推断过程,称为假设检验。 1.引例 我们先举一个简单的实例来说明假设检验的基本思想及推理方法. 例1:某车间用一台包装机包装葡萄糖, 包得的袋装糖重是一个随机变量, 它服从正态分布.且知标准差为0.015千克.当机器正常时, 其均值为0.5千克,某日开工后为检验包装机是否正常, 随机地抽取它所包装的糖9袋, 称得净重为(千克): 0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512, 问机器是否正常? 分析:用μ和σ分别表示这一天袋装糖重总体X 的均值和标准差,则)015.0,(~2 μN X ,其中μ未知。 问题: 已知总体2 (,)X N μσ:,且00.015,σσ==根据样本值判断 0.5μ=还是 0.5μ≠。 提出两个对立假设00:0.5H μμ==(原假设或零假设)和 10:H μμ≠(备择假设).再利用已知样本作出判断是接受假设0H ( 拒绝假设1H ) , 还是拒绝假设0H (接受假设 1H ). 如果作出的判断是接受0H , 则0μμ=即认为机器工作是正常的, 否则, 认为是不

t检验有单样本t检验

t检验有单样本t检验,配对t检验和两样本t检验。 单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。 配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。 u检验:t检验和就是统计量为t,u的假设检验,两者均是常见的假设检验方法。当样本含量n较大时,样本均数符合正态分布,故可用u检验进行分析。当样本含量n小时,若观察值x符合正态分布,则用t检验(因此时样本均数符合t分布),当x为未知分布时应采用秩和检验。 F检验又叫方差齐性检验。在两样本t检验中要用到F检验。 从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。 其中要判断两总体方差是否相等,就可以用F检验。 简单的说就是检验两个样本的方差是否有显著性差异这是选择何种T检验(等方差双样本检验,异方差双样本检验)的前提条件。 在t检验中,如果是比较大于小于之类的就用单侧检验,等于之类的问题就用双侧检验。 卡方检验 是对两个或两个以上率(构成比)进行比较的统计方法,在临床和医学实验中应用十分广泛,特别是临床科研中许多资料是记数资料,就需要用到卡方检验。 方差分析 用方差分析比较多个样本均数,可有效地控制第一类错误。方差分析(analysis of variance,ANOV A)由英国统计学家,以F命名其统计量,故方差分析又称F检验。 其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。我们要学习的主要内容包括 单因素方差分析即完全随机设计或成组设计的方差分析(one-way ANOV A): 用途:用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。完全随机设计(completely random design)不考虑个体差异的影响,仅涉及一个处理因素,但可以有两个或多个水平,所以亦称单因素实验设计。在实验研究中按随机化原则将受试对象随机分配到一个处理因素的多个水平中去,然后观察各组的试验效应;在观察研究(调查)中按某个研究因素的不同水平分组,比较该因素的效应。 两因素方差分析即配伍组设计的方差分析(two-way ANOV A): 用途:用于随机区组设计的多个样本均数比较,其统计推断是推断各样本所代表的各总体均数是否相等。随机区组设计考虑了个体差异的影响,可分析处理因素和个体差异对实验效应的影响,所以又称两因素实验设计,比完全随机设计的检验效率高。该设计是将受试对象先按配比条件配成配伍组(如动物实验时,可按同窝别、同性别、体重相近进行配伍),每个配伍组有三个或三个以上受试对象,再按随机化原则分别将各配伍组中的受试对象分配到各个处理组。值得注意的是,同一受试对象不同时间(或部位)重复多次测量所得到的资料称为重复测量数据(repeated measurement data),对该类资料不能应用随机区组设计的两因素方差分析进行处理,需用重复测量数据的方差分析。 方差分析的条件之一为方差齐,即各总体方差相等。因此在方差分析之前,应首先检验各样本的方差是否具有齐性。常用方差齐性检验(test for homogeneity of variance)推断

相关主题
文本预览
相关文档 最新文档