电子计数法测量频率原理及误差分析
- 格式:doc
- 大小:192.00 KB
- 文档页数:3
电子测量实验报告实验三频率测量及其误差分析院系:信息工程学院班级:08电子信息工程一班学号:**********姓名:***实验三频率测量及其误差分析一、实验目的1 掌握数字式频率计的工作原理;2 熟悉并掌握各种频率测量方法;3 理解频率测量误差的成因和减小测量误差的方法。
二、实验内容1用示波器测量信号频率,分析测量误差;2用虚拟频率计测量频率。
三、实验仪器及器材1信号发生器 1台2 虚拟频率计 1台3 示波器 1台4 UT39E型数字万用表 1块四、实验要求1 查阅有关频率测量的方法及其原理;2 理解示波器测量频率的方法,了解示波器各旋钮的作用;3 了解虚拟频率计测量的原理;4 比较示波器测频和虚拟频率计测频的区别。
五.实验步骤1 用示波器测量信号频率用信号发生器输出Vp-p=1V、频率为100Hz—1MHz的正弦波加到示波器,适当调节示波器各旋钮,读取波形周期,填表3-1,并以信号源指示的频率为准,计算频率测量的相对误差。
操作步骤:1、将信号发生器与示波器用线连接好。
其中CH1为输出通信,设置信号发生器为正弦波,输出Vp-p=1V,起始频率为2Hz,观察并记录各个信号的频率,周期和测量误差。
2、保持幅度不变,改变输出频率,最好设置为2Hz—100MHz之间,同样计算并记录频率,周期,和测量误差。
如下表:表3-1“周期法”测量信号频率分析结果:如上表,我们发现,当频率从2Hz—100MHz之间变化时,其相对误差的大小会发生变化。
当频率为特别小或者特别大时,误差相对会比较大一些。
如上表的2Hz和100MHz。
原因在于,当频率特别小的时候,受到的外界干扰信号影响对其比较大,相当于把原信号给淹没了。
当频率特别大的时候,高频干扰同样会对它产生比较大的影响。
2 用虚拟频率计测量频率用标准信号发生器输出正弦信号作为被测信号,送到DSO2902的CH-A1通道,按表3-2进行实验。
并以信号发生器指示的频率为准,计算测频误差。
频率计实验报告一、实验目的本次实验的目的是通过设计和搭建频率计电路,掌握频率测量的基本原理和方法,熟悉相关电子元器件的使用,提高电路设计和调试的能力,并深入理解数字电路中计数器、定时器等模块的工作原理。
二、实验原理频率是指周期性信号在单位时间内重复的次数。
频率计的基本原理是通过对输入信号的周期进行测量,并将其转换为频率值进行显示。
常见的频率测量方法有直接测频法和间接测频法。
直接测频法是在给定的闸门时间内,对输入信号的脉冲个数进行计数,从而得到信号的频率。
间接测频法则是先测量信号的周期,然后通过倒数计算出频率。
在本次实验中,我们采用直接测频法。
使用计数器对输入信号的脉冲进行计数,同时使用定时器产生固定的闸门时间。
在闸门时间结束后,读取计数器的值,并通过计算得到输入信号的频率。
三、实验设备与器材1、数字电路实验箱2、示波器3、函数信号发生器4、集成电路芯片(如计数器芯片、定时器芯片等)5、电阻、电容、导线等若干四、实验步骤1、设计电路原理图根据实验要求和原理,选择合适的计数器芯片和定时器芯片,并设计出相应的电路连接图。
确定芯片的引脚连接方式,以及与外部输入输出信号的连接关系。
2、搭建实验电路在数字电路实验箱上,按照设计好的电路原理图,插入相应的芯片和元器件,并使用导线进行连接。
仔细检查电路连接是否正确,确保无短路和断路现象。
3、调试电路接通实验箱电源,使用示波器观察输入信号和输出信号的波形,检查电路是否正常工作。
调整函数信号发生器的输出频率和幅度,观察频率计的测量结果是否准确。
4、记录实验数据在不同的输入信号频率下,记录频率计的测量值,并与函数信号发生器的设定值进行比较。
分析测量误差产生的原因,并尝试采取相应的措施进行改进。
五、实验数据与分析以下是在实验中记录的部分数据:|输入信号频率(Hz)|测量值(Hz)|误差(%)||||||100|98|2||500|495|1||1000|990|1||2000|1980|1|从数据中可以看出,测量值与输入信号的实际频率存在一定的误差。
0引言随着无线电技术的发展与普及,"频率"已经成为广大群众所熟悉的物理量。
而单片机的出现,更是对包括测频在内的各种测量技术带来了许多重大的飞跃,然而,小体积、价廉、功能强等优势也在电子领域占有非常重要的地位。
为此.本文给出了一种以单片机为核心的频率测量系统的设计方法。
1 测频系统的硬件结构测量频率的方法一般分为无源测频法、有源测频法及电子计数法三种。
无源测频法(又可分为谐振法和电桥法),常用于频率粗测,精度在1%左右。
有源比较法可分为拍频法和差频法,前者是利用两个信号线性叠加以产生拍频现象,再通过检测零拍现象进行测频,常用于低频测量,误差在零点几Hz;后者则利用两个非线性信号叠加来产生差频现象,然后通过检测零差现象进行测频,常用于高频测量,误差在±20 Hz左右。
以上方法在测量范围和精度上都有一定的不足,而电子计数法主要通过单片机进行控制。
由于单片机的较强控制与运算功能,电子计数法的测量频率范围宽,精度高,易于实现。
本设计就是采用单片机电子计数法来测量频率,其系统硬件原理框图如图1所示。
为了提高测量的精度,拓展单片机的测频范围,本设计采取了对信号进行分频的方法。
设计中采用两片同步十进制加法计数器74LS160来组成一个100分频器。
该100分频器由两个同步十进制加法计数器74LS160和一个与非门74LS00共同设计而成。
由于一个74LS160可以分频十的一次方,而当第一片74LS160工作时,如果有进位,输出端TC便有进位信号送进第二片的CEP端,同时CET也为高电平,这样两个工作状态控制端CET、CEP将同时为高电平,此时第二片74LS160将开始工作。
2 频率测量模块的电路设计用单片机电子计数法测量频率有测频率法和测周期法两种方法。
测量频率主要是在单位定时时间里对被测信号脉冲进行计数;测量周期则是在被测信号一个周期时间里对某一基准时钟脉冲进行计数。
2.1 8051测频法的误差分析电子计数器测频法主要是将被测频率信号加到计数器的计数输入端,然后让计数器在标准时间Ts1内进行计数,所得的计数值N1。
第三章 频率和时间测量技术§3.3电子计数法测量周期一、电子计数法测量周期的原理测周则是由晶振产生可以计数的窄脉冲N ,由被测信号产生闸门T ,具有Tx =NT c 的关系。
二、误差分析1、测周误差可以表示为:由误差曲线可以看出:被测信号频率越低,正负壹误差对测周精确度的影响就越小;基准频率fc 越高,测周的误差越小。
2、触发误差测周时闸门信号是由被测信号产生的,而被测信号有干扰,会导致时基闸门T 的不准确。
如图:U B 是触发电平,若没有干扰时闸门时间为T x ,若有干扰存在,闸门开启时间就会提前,会带来ΔT 1的误差。
11()()=()x c c c c x c x c x c cT f T f f T N f T f T f f ∆∆∆∆=±+=±+±+3、多周期测量进一步分析可知,多周期测量可以减小转换误差和± 1误差。
对于触发误差,周期倍乘K 倍后,由图可以看出,相邻周期产生的误差ΔT 是相互抵消的,只有第一个周期和最后一个周期产生的误差会存在,因此周期倍乘K 倍之后产生的总的触发误差和一个周期产生的触发误差一样,这就使得周期倍乘之后产生的触发相对误差减少为原来的1/K 倍。
4、测周总误差=±++⋅∆∆πk T kT f f u T f u x x c c mx c n 2()11 结论:1)用计数器直接测周的误差主要有三项,即量化误差、触发误差以及标准频率误差。
2)采用多周期测量即周期倍乘可提高测量准确度;有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)3)提高标准频率,可以提高测周分辨力;4)测量过程中尽可能提高信噪比Um /Un 。
三、中界频率对某信号使用测频法和测周法测量频率,两者引起的误差相等,则该信号的频率定义为~。
若测频时扩大闸门时间n 倍,测周时周期倍乘k 倍:c M kf f nT。
信号频率的测量方法与误差【摘要】本文介绍了几种信号频率的测量方法,并对实现电路的构成和特点进行比较,探讨了误差引起的原因。
【关键词】电桥;谐振;差拍;时标信号信号频率的测量在电子测量技术领域中具有重要的地位,深入了解信号频率的测量方法可以帮助我们掌握其它物理量的测量。
1.直接法直接法是利用电路频率响应特性的可调无源网络测量频率值。
如果电路的频率特性为:(式中为己知参数),根据函数关系式可以求出频率。
这种测频方法的优点是简单、价廉,但精确度不高。
无源测频法常用的有电桥测频法和谐振测频法,主要用于频率粗测。
1.1 电桥测频法电桥法测频是利用交流电桥平衡条件和电桥电源频率有关这一特性来测量频率的,原理电路如图1.1所示,调节电桥平衡的可变电阻和电容的调节旋钮,电桥指示平衡时,被测频率值为。
在高频时,由于电阻或电容带来的寄生参数影响比较严重,会大幅降低测量精度,所以电桥法测频一般只适用于低频段10kHz以下的音频范围的测量。
1.2 谐振测频法谐振法测量频率的原理和测量方法都比较简单,可作为频率粗测,误差来源主要有:(1)实际中电感、电容损耗越大,品质因数越低,不容易找出真正的谐振点。
(2)面板上的频率刻度是在规定的标定条件下刻度的,当环境温度和湿度等因数变化时,将使电感、电容的实际值发生变化,从而使回路的固有频率变化。
(3)由于频率刻度不能分得无限细,人眼读数常常有一定误差。
2.比较法利用标准频率与被测频率比较测量,测量是要求标准频率连续可调,并能保持其准确度。
比较法可以为差拍法、差频法、示波器法。
2.1 差拍法差拍法是利用已知的参考频率和被测频率进行差拍,产生差频,再精确差频来确定频率值,拍频法通常只用于音频的测量,而不宜用于高频测量。
差拍法通过提取待测信号相对于参考信号的相位差信息作为差拍信号,差拍信号的频率值远小于原待测信号,较之直接测量待测信号,差拍法提高了测量的分辨率,但不能测量两个频率的相位差。
频率测量原理
频率测量原理是通过计算在单位时间内波形信号重复的次数来计算信号的频率。
常用的频率测量原理包括计数法、对比法和计时法。
1. 计数法:计数法是通过计算在单位时间内波形信号重复的次数来得到频率。
通常使用计数器与时钟信号配合,将波形信号输入计数器,通过计数器记录的脉冲数来计算频率。
2. 对比法:对比法是通过将待测信号与已知频率的标准信号进行比较,来得到待测信号的频率。
常见的对比法包括谐振法、锁相法和自抗扰法等。
- 谐振法:利用谐振特性,调整待测信号与参考信号之间的相位差,使其达到最大谐振幅度,进而得到待测信号的频率。
- 锁相法:通过比较待测信号与参考信号的相位差,通过锁相环等电路将相位差控制在稳定范围内,从而得到待测信号的频率。
- 自抗扰法:将待测信号与参考信号相互叠加,通过滤波等处理,将干扰信号抑制,得到待测信号的频率。
3. 计时法:计时法是通过测量波形信号的周期或脉冲宽度来计算频率。
常见的计时法包括周期测量法和脉宽测量法。
- 周期测量法:通过测量波形信号两个连续上升沿或下降沿的时间差,再通过倒数计算得到频率。
- 脉宽测量法:通过测量脉冲信号的宽度来计算频率。
可以
使用时间间隔计数器或者脉冲宽度测量器来实现。
这些频率测量原理可以根据实际需求选择合适的方法进行测量,提供准确可靠的频率值。
电子计数法测量频率原理及误差分析
摘要:频率是电信号的基本特性之一. 在各种对频率的测量方法中 , 电子计数法测频具有测量精度高 , 读数直观 , 测量迅速 , 以及便于实现测量过程自动化等优点.电子计数法测频的基本方法有两种 , 即直接测频和通过测周期得到频率.
测频原理
直接测频的原理是依照频率的定义 :若某一信号在 T 秒时间内重复变化 N 次 , 则(注意: 适用于测量较高的频率)
基于此原理的测量框图如图
.
电子计数器测频原理方框图
T
N f x
误差分析:
设主门的开启时间为T , 被测信号周期为Tx , 主门开启时刻至下一个计数脉冲的前沿为Δt1 , 主门关闭时刻至下一个计数脉冲的前沿为Δt2 , 如图2 所示.
由图 2
由式得到, 被测频率越高, 闸门时间越长, 则量化误差越小. 但闸门时间太长, 则降低测量速度, 且受到显示位数的限制.
式中第二项为闸门时间相对误差
f c 为石英晶体振荡器的频率. 闸门时间误差大小主要取决于晶体振荡器的频率误差. 由此得到计数法测频的最大相对误差为
结论:由以上分折, 基本计数法测频的误差除忽略由高稳定度的晶振引起的频率误差外, 主要是量化误差, 为了提高测频的精度可采取如下措施:
(1) 提高晶振频率的准确度以减小闸门的时间误差.
(2) 被测频率较高时采用直接测频法, 并可在计数显示不溢出的条件下扩大闸门时间或倍频被测
信号以减小量化误差.
(3) 被测频率较低时采用测周期的方法测频, 并选择较高频率的时标信号或分频被测信号以减小量化误差. 但增大时标信号频率受到计数器计数速度的限制.。