当前位置:文档之家› 半导体金属氧化物气敏材料的研究进展

半导体金属氧化物气敏材料的研究进展

半导体金属氧化物气敏材料的研究进展
半导体金属氧化物气敏材料的研究进展

气敏材料

气敏材料 气敏材料指的是当某一种材料吸附某种气体后,该材料的电阻率发生变化的一种功能材料。它是用二氧化锡等材料经压制烧结而成的,对许多气体反映十分灵敏,可应用于气敏检漏仪等装置进行自动报警。在生活中,它的应用越来越多,可保障人们的生命财产。 在地球的表层,埋藏着大量的煤炭资源,勤劳勇敢的煤矿工人夜以继日地在井下作业,地下的“乌金”被源源不断地送往电厂、钢厂及千家万户,给人类送来光明和温暖。但是,在煤矿的矿井中有一种危害矿工生命的气体——瓦斯。它不仅会令人窒息,而且一旦爆炸,后果不堪设想。在寒冷的冬天,居民用煤炭取暖,稍不注意会造成煤气中毒。在许多城市中做饭烧水都用上了煤气,这种煤气主要是由一氧化碳和氢气组成的,煤气给人们的生活带来了方便,但是这种有毒、易燃、易爆气体一旦泄漏也会造成巨大的危害。如果能对这些有害气体早发现、早预报该多好啊!为此,科技工作者研制出了专门预报这些有毒、易燃、易爆气体的“电鼻子”。这种“电鼻子”学名叫气敏检漏仪。它的“鼻子”是一块“气敏陶瓷”,亦称气敏半导体。这种气敏陶瓷是用二氧化锡等材料经压制烧结而成的。它的表面和内部吸附着氧分子,当遇到易燃易爆的还原性气体时,这些气体就会与其吸附的氧结合,从而引起陶瓷电阻的变化。在这种情况下,气敏检漏仪就会自动报警。这种“电鼻子”对许多气体反映十分灵敏,如对百万分之一浓度的氢气即能显示。 有了这种“电鼻子”,矿井、工厂和家庭再也不会为这些还原性有害气体而提心吊胆了。因为只要空气中还原性气体超标,指示灯就会闪亮,报警器就会鸣响,人们就可以采取通风、检漏、堵漏等措施。这样,就会化险为夷,生命财产得到了保障。 产品由来编辑 人们在研制试验各种陶瓷时,发现半导体陶瓷作为气敏材料的灵敏度非常高。如薄膜状氧化锌气敏材料可检测氢气、氧气、乙烯和丙烯气体;以铂作催化剂时可检测乙烷和丙烷等烷烃类可燃性气体;氧化锡气敏材料可检测甲烷、乙烷等可燃性气体。氧化铱系材料是测氧分压最常用的敏感材料。此外,氧化铁、氧化钨、氧化铝、氧化铝等氧化物都有一定的气敏特性。它们通过有选择地吸附气体,使半导体的表面能态发生改变,从而引起电导率的变化,以此确定某种未知气体及其浓度。目前探测诸如一氧化碳、酒精、煤气、苯、丙烷、氢、二氧化硫等气体的气敏陶瓷已经获得了成功。 半导体陶瓷气敏材料在工业上有着极为广阔的应用前景。如对煤矿开采中的瓦斯进行控制与检测,对煤气输送和化工生产中管道气体泄漏进行监测等。 气敏陶瓷通常分为半导体式和固体电解质式两大类。 1)按制造方法又分为烧结型、厚膜型和薄膜型。 2)按材料成分分为金属氧化物系列(ZnO、材料成分分为金属氧化物系列(SnO2、ZnO和 复合氧化物系列(通式为A BO F e2O3、ZrO2)和复合氧化物系列(通式为ABO3)。 半导体气敏陶瓷的导电机理主要有能级生成理论和接触粒界势垒理论。按能级生成理论,当Sn O2、Zn O等N型半导体陶瓷表面吸附还原性气体时,气体将电子给予半导体,并以正电荷与半导体相吸,而进入N型半导体内的电子又束缚少数载流子空穴,使空穴与电子的复合率降低,增大电子形成电流的能力,使陶瓷电阻值下降;当N型半导体陶瓷表面吸附氧化性气体时,气体将其空穴给予半导体,并以负离子形式与半导体相吸,而进入N型半导体内的空穴使半导体内的电子数减少,因而陶瓷电阻值增大。接触粒界势垒理论则依据多晶半导体能带模型,在多晶界面存在势垒,当界面存在氧化性气体时势垒增加,存在还原性气体时势垒降低,从而导致阻值变化。

半导体材料专题介绍

深圳大学考试答题纸 (以论文、报告等形式考核专用) 二○~二○学年度第学期 课程编号课程名称主讲教师评分学号姓名专业年级 题目:

目录 摘要 (4) 1.ZnO的发展历史与基本性质 (5) ZnO的发展历史 (5) ZnO的基本性质 (5) ZnO的晶体结构 (5) ZnO的物理化学性质 (6) ZnO的其他性质 (7) 紫外受激发射特性 (7) 透明导体特性 (8) 气敏性 (8) 压敏特性 (8) P-N结特性 (9) 压电特性 (9) 2.ZnO的原料的获取与提纯 (10) 原料的获取 (10) 原料的提纯 (11) 直接法(美国法) (11) 间接法(法国法) (11) 化学湿法 (12) 3.ZnO的单晶的制备 (13) 水热法 (13) 化学气相输运法 (14) 4.ZnO的薄膜的制备 (16) 脉冲激光沉积法PLD (16) 金属有机物气相外延法MOCVD (17) 喷雾热解法 (17) 磁控溅射法 (18)

溶胶-凝胶法Sol-gel (19) 5.ZnO的应用与前景 (21) 的应用方向 (21) 短波长发光材料 (21) 氮化镓薄膜的缓冲层 (22) 集成光学 (22) 电声器件与声光器件 (22) 传感器和高效率器件 (22) ZnO的问题与挑战 (23) ZnO的前景 (24) 谢辞 (25) 参考文献 (26)

摘要 氧化锌(ZnO)是一种具有广泛用途的新型第三代II-VI族多功能半导体材料,拥有着许多诸如宽禁带,激子结合能大,高化学稳定性和耐高温性等等优良性质,制备出来的ZnO单晶和薄膜在发光器件,透明电极,压敏电阻等等领域有着诸多的应用,在未来有着光明的应用前景,引起了社会各界的广泛关注。 本论文着重介绍了氧化锌半导体材料的材料来源,晶体结构,物理化学性质,单晶与薄膜的制备,具体在各个领域应用与发展和目前制备薄膜以及应用于市场所遇到的难题。 关键词:氧化锌,材料来源,晶体结构,物理化学性质,单晶,薄膜,应用,难题。

半导体行业常用气体介绍

半导体常见气体的用途1、硅烷(SiH4):有毒。硅烷在半导体工业中主要用于制作高纯多晶硅、通过气相淀积制作二氧化硅薄膜、氮化硅薄膜、多晶硅隔离层、多晶硅欧姆接触层和异质或同质硅外延生长原料、以及离子注入源和激光介质等,还可用于制作太阳能电池、光导纤维和光电传感器等。 2、锗烷(GeH4):剧毒。金属锗是一种良好的半导体材料,锗烷在电子工业中主要用于化学气相淀积,形成各种不同的硅锗合金用于电子元器件的制造。 3、磷烷(PH3):剧毒。主要用于硅烷外延的掺杂剂,磷扩散的杂质源。同时也用于多晶硅化学气相淀积、外延GaP材料、离子注入工艺、化合物半导体的MOCVD工艺、磷硅玻璃(PSG)钝化膜制备等工艺中。 4、砷烷(AsH3):剧毒。主要用于外延和离子注入工艺中的n型掺杂剂。 5、氢化锑(SbH3):剧毒。用作制造n型硅半导体时的气相掺杂剂。 6、乙硼烷(B2H6):窒息臭味的剧毒气体。硼烷是气态杂质源、离子注入和硼掺杂氧化扩散的掺杂剂,它也曾作为高能燃料用于火箭和导弹的燃料。 7、三氟化硼(BF3):有毒,极强刺激性。主要用作P型掺杂剂、离子注入源和等离子刻蚀气体。 8、三氟化氮(NF3):毒性较强。主要用于化学气相淀积(CVD)装置的清洗。三氟化氮可以单独或与其它气体组合,用作等离子体工艺的蚀刻气体,例如,NF3、NF3/Ar、NF3/He用于硅化合物MoSi2的蚀刻;NF3/CCl4、NF3/HCl既用于MoSi2的蚀刻,也用于NbSi2的蚀刻。

9、三氟化磷(PF3):毒性极强。作为气态磷离子注入源。 10、四氟化硅(SiF4):遇水生成腐蚀性极强的氟硅酸。主要用于氮化硅(Si3N4)和硅化钽(TaSi2)的等离子蚀刻、发光二极管P型掺杂、离子注入工艺、外延沉积扩散的硅源和光导纤维用高纯石英玻璃的原料。11、五氟化磷(PF5):在潮湿的空气中产生有毒的氟化氢烟雾。用作气态磷离子注入源。 12、四氟化碳(CF4):作为等离子蚀刻工艺中常用的工作气体,是二氧化硅、氮化硅的等离子蚀刻剂。 13、六氟乙烷(C2H6):在等离子工艺中作为二氧化硅和磷硅玻璃的干蚀气体。 14、全氟丙烷(C3F8):在等离子蚀刻工艺中,作为二氧化硅膜、磷硅玻璃膜的蚀刻气体。 半导体工业常用的混合气体 1、外延(生长)混合气:在半导体工业中,在仔细选择的衬底上选用化学气相淀积的方法,生长一层或多层材料所用的气体叫作外延气体。常用的硅外延气体有二氯二氢硅()、四氯化硅()和硅烷等。主要用于外延硅淀积、氧化硅膜淀积、氮化硅膜淀积,太阳能电池和其它光感受器的非晶硅膜淀积等。外延是一种单晶材料淀积并生长在衬底表面上的过程。常用外延混合气组成如下表:

半导体气敏材料的研究现状与发展趋势

龙源期刊网 https://www.doczj.com/doc/848101419.html, 半导体气敏材料的研究现状与发展趋势 作者:赖小勇郭茹 来源:《科技创新导报》2017年第35期 摘要:半导体气敏传感器在各种气敏传感器中具有许多优势,如价格低、高灵敏度、操 作简单、适宜小型化(便携化)等,因此备受关注。开发具有优异性能的半导体纳米结构气敏材料正成为当前研究的热点。本文简单介绍了纳米结构半导体气敏材料的研究现状与发展趋势。 关键词:气敏传感器半导体石墨烯纳米结构 中图分类号:O484 文献标识码:A 文章编号:1674-098X(2017)12(b)-0072-02 气体传感器在现代传感器技术领域扮演着非常重要的角色,在医疗诊断、工农业生产、环境监控与保护等领域有着广泛需求和应用。半导体气敏传感器具有价格低、高灵敏度、操作简单、适宜小型化(便携化)等特点而备受关注。目前半导体气敏传感器研究主要集中在对现有气敏材料从骨架尺寸、孔隙结构、化学组成到表面性质的改善、设计和合成新型气敏材料以及气敏元件构型的设计和相关工艺改进[1-4]。 随着纳米科学技术的发展,各种具有优良敏感特性的低维金属氧化物半导体气敏材料被广泛报道。1991年,Xu等[5]报道了SnO2纳米粒子对氢气(H2)、一氧化碳(CO)、甲烷(CH4)等气体的灵敏度与它的粒径尺寸(D)和耗尽层厚度(L)有关,当D接近2L时,灵敏度会显著增加。Chiu等[6]利用粒径3nm左右的SnO2纳米粒子装配了高灵敏度的乙醇 (C2H5OH)气体传感器,检测下限可达1.7×10-6。一方面,粒子的表面积随着粒径的减小而显著增大,与材料发生相互作用的气体分子也增多;另一方面,当D接近2L时,粒子中绝大部分电子处于耗尽层中,载流子浓度非常低,材料中的电子传输受表面-气体相互作用的影响较大,因此灵敏度显著提高。类似地,Bianchi等[7]利用In2O3纳米线装配成NO2传感器,其灵敏度随着纳米线直径的减小而显著增加。Wan等[8]利用直径25nm的ZnO纳米线装配成 C2H5OH气体传感器,发现它对C2H5OH的灵敏度非常高,检测下限可达1×10-6。Xu等[9]利用溶剂热法制备的SnO2纳米棒装配成气体传感器,发现它对硫化氢(H2S)的灵敏度非常高,检测下限可达5×10-6。Du等[10]利用碳纳米管为模板制备了管壁厚度为5nm的In2O3纳米管,发现它在室温下对氨气(NH3)有非常高的敏感性,检测下限可达5×10-6。Hoa等[11]利用厚度为20nm的介孔NiO纳米片装配成气体传感器,可以检测浓度为1×10-6的NO2气体。 另外,由简单纳米单元构成的三维超结构材料也被广泛关注。这类材料除了拥有简单纳米材料尺寸小、比表面积大等的特性外,通常兼具丰富的“传输通道”和“自支撑”结构,有利于气体在材料中的传输扩散,能减少简单纳米材料易团聚和烧结长大所带来的比表面积损失和灵敏度下降,因此对待测气体表现出高的灵敏度和快速的响应以及良好的热稳定性。Li等[12]利用

气敏陶瓷

气敏陶瓷

————————————————————————————————作者:————————————————————————————————日期: ?

定义:气敏陶瓷,亦称气敏半导体是用于吸收某种气体后电阻率发生变化的一种功能陶瓷。它是用二氧化锡等材料经压制烧结而成的,对许多气体反映十分灵敏,可应用于气敏检漏仪等装置进行自动报警。 举例:人们在研制试验各种陶瓷时,发现半导体陶瓷作为气敏材料的灵敏度非常高。如薄膜状氧化锌气敏材料可检测氢气、氧气、乙烯和丙烯气体;以铂作催化剂时可检测乙烷和丙烷等烷烃类可燃性气体;氧化锡气敏材料可检测甲烷、乙烷等可燃性气体。氧化铱系材料是测氧分压最常用的敏感材料。此外,氧化铁、氧化钨、氧化铝、氧化铝等氧化物都有一定的气敏特性。它们通过有选择地吸附气体,使半导体的表面能态发生改变,从而引起电导率的变化,以此确定某种未知气体及其浓度。目前探测诸如一氧化碳、酒精、煤气、苯、丙烷、氢、二氧化硫等气体的气敏陶瓷已经获得了成功。半导体陶瓷气敏材料在工业上有着极为广阔的应用前景。如对煤矿开采中的瓦斯进行控制与检测,对煤气输送和化工生产中管道气体泄漏进行监测等。 分类: 气敏陶瓷通常分为半导体式和固体电解质式两大类。 按制造方法又分为烧结型、厚膜型和薄膜型。 制造方法又分为烧结型、厚膜型和薄膜型。

按材料成分分为金属氧化物系列( ZnO、材料成分分为金属氧化物系列(SnO2、ZnO和复合氧化物系列(通式为ABO Fe2O3、ZrO2)和复合氧化物系列(通式为ABO3)。 原理: 半导体气敏陶瓷是利用半导体陶瓷与气体接触时电阻的变化来检测的,低浓度气体的电阻值取决于表面态密度和晶粒大小影响气敏陶瓷。 半导体气敏陶瓷的导电机理主要有能级生成理论和接触粒界势垒理论。按能级生成理论,当SnO2、ZnO等N型半导体陶瓷表面吸附还原性气体时,气体将电子给予半导体,并以正电荷与半导体相吸,而进入N型半导体内的电子又束缚少数载流子空穴,使空穴与电子的复合率降低,增大电子形成电流的能力,使陶瓷电阻值下降;当N型半导体陶瓷表面吸附氧化性气体时,气体将其空穴给予半导体,并以负离子形式与半导体相吸,而进入N型半导体内的空穴使半导体内的电子数减少,因而陶瓷电阻值增大。接触粒界势垒理论则依据多晶半导体能带模型,在多晶界面存在势垒,当界面存在氧化性气体时势垒增加,存在还原性气体时势垒降低,从而导致阻值变化。 常用的气敏陶瓷材料有SnO2、ZnO和ZrO2。SnO2气敏陶瓷的特点是灵敏度高,且出现最高灵敏度的温度Tm较低(约300℃),最适于检测微量浓度气体,对气体的检测是可逆的,吸附、解析时间短。

相关主题
文本预览
相关文档 最新文档