中医药论文中常见统计学分析方法应用错误辨析
- 格式:ppt
- 大小:6.83 MB
- 文档页数:97
(精品收藏)医学论文中常见统计学概念误用分析医学统计学作为一种认识医学现象数量特征的重要工具,在医学研究的过程中起着非常重大的作用。
但国内外研究者通过调查发现,在现代医学期刊中,统计方法的运用及表述却存在着较多的问题[1,2]。
笔者在医学论文的编辑过程中,也发现有些作者对统计学中最常见、最基本的概念常混淆不清,因此其论文很难符合刊用的要求。
我们知道,概念是逻辑思维的基本要素,只有概念明确,才能准确地表达思想,才能对事物的本质进行客观的描述,才能作出正确的判断和推理,从而得出科学的结论。
为与作者共同提高论文质量,现对编辑工作中经常碰到的一些概念方面的误用问题,试图进行一些粗略的分析。
1概念混淆1.1以比代率比与率是临床医学研究中最常用的相对数指标。
比是表示某一事物或现象各组成部分之间或各个部分在全体中所占的比重或分布。
较常用的有构成比、相对比等。
而率是指某种现象或事件在一定条件下,其实际发生数与可能发生此现象或事件总数的比例。
临床医学论文中很多作者常把构成比当作率进行比较,造成对疾病的发生作出错误估计。
如在研究性别与其疾病发病率的关系文章中,作者把男女的构成比当作发病率,从而得出某种性别的发病率高的错误结论。
还有作者由于对构成比与率的概念不明确,造成计算错误。
如某农村卫生单位对7250名少儿进行粪检,检出蛔虫卵者4300人,需要进行治疗。
因各种原因,有900人未行治疗。
结果:已治率为79.07%,未治率为20.93%。
很明显,这是典型的以构成比代率的例子。
我们根据定义,可计算如下:出现这种错误的原因,是因为不能正确理解比与率的区别所致。
一般来说,率的分子源于分母,但分子、分母具有不同的事件属性,构成比虽然分子也源于分母,但分子、分母具有相同的事件属性。
1.2不同率混用在临床医学研究中,一些具有特殊性质的率很容易用错。
最常见的有发病率与患病率,死亡率与病死率。
发病率与患病率相混淆的原因主要是没有把握住观察、统计的时间。
医学论文常见统计学错误与纠正一、设计与实施1.对象合格标准不明确●只报告来源和时间段,总体不清晰:大杂烩,得不到科学结论;●事前未规定合格标准和排除标准,事后排除;●不报告按照合格标准和排除标准筛选对象的过程。
2.结局指标多而杂--是事先规定的最重要的结局指标,通常以此为准来计算样本量。
常见错误:终点指标过多, 大海捞针临床试验时,不知道哪个指标在组与组间有差异;“确定某个指标后,万一组间没有差异,岂不被动?!”生理、生化、组织学、基因,都做;“内容丰富,显得水平高?!”许多仪器一下子可以做许多项目;“许多项目一一分析,哪个有意义,就报告哪个指标?!”哪些指标可能有组间差异,必须心中有数。
假说:预计将要得到的结论——假说是科研的灵魂心中无数,不要“先上马再说”●指标多,实验工作量大。
大海捞针——碰运气,不是科研!●指标多,翻来覆去分析,制造假阳性!Nature杂志统计学指南:➢常见错误之一。
仅分析1个指标时,P(假阳性)=0.05,P(1次分析不犯错误)=0.95 λ,同时分析2个指标时,P(2次分析均不犯错误) = [P(1 次分析不犯错误)] 2 P(假阳性)=1 - 0.952 ≈ 0.10, 同时分析3 个指标时,P(假阳性)=1 - 0.953 ≈ 0.14 λ同时分析10个指标时,P(假阳性)=1 - 0.9510 ≈ 0. 40➢常见错误之一(Nature) ----多重比较不校正多重比较: 对一组数据作多项比较时,必须说明如何校正α水平,以避免增大第一类错误的机会---- Bonfferoni校正(α/k来校正,k为两两比较次数)3 不重视对照为何必需对照?●消除非研究因素的混杂实验组和对照组受非研究因素的影响尽可能相同,使两组的差异主要反映研究因素的效应。
●鉴别研究因素的效应和自然发展结果。
例如,研究某药物对口腔溃疡模型兔的疗效,口腔溃疡有自愈的倾向,必须有对照扣除自愈效应。
常见错误➢没有对照!千方百计省去对照组,以减少一半工作量!? ω自身前后对照/历史对照/文献对照/ “标准”对照➢对照不当ω对照太弱:安慰剂对照/对照过强:西药+加中药~西药/对照剂量有争议:试验药,大剂量~对照药,中小剂量/对照基线不可比:试验组年轻、病轻~ 对照组年老、病重应当如何?ω事先明确研究假说,例如,新药比常规药好:以常规药为对照ω设计:研究组新药~ 对照组常规药可比性:基线可比、过程可比、终点可比ω保证可比性措施:干预性研究: 随机化观察性研究:匹配4样本量无根据ω干预性研究:“ 500 例患者随机分成两组……” 为什麽500 例?不多不少?500 例从天而降?现成送上门来?ω观察性研究:“ 10年期间A组3000例,B组258例……” ---- 有多少用多少!?应当如何?---- 报告最小样本量估算及其依据1. 比较两组测定值的均数依据:(1)预计欲比较的两总体参数的差值δ(2)预计总体标准差σ(3)允许出现假阳性结果的机会α(4)允许出现假阴性结果的机会β :例:格列美脲、格列苯脲对比研究以HbA1c 为主要终点报告依据✓欲检出HbA1c临床差异≥0.65%✓假定标准差为1.3%✓双侧检验水平0.05✓功效80% ω✓退出率20% 计算:157例2. 比较两组达标率依据:(1)预计一组发生某结局的百分比为π1(2)预计另一组发生某结局的百分比为α(3)允许犯假阳性错误的机会β(4)允许犯假阴性错误的机会π2例:格列美脲、格列苯脲对比研究以HbA1c达标为主要终点(1)预计一组发生某结局的百分比为45%(2)预计另一组发生某结局的百分比为25%(3)允许犯假阳性错误的机会α= 5%(4)允许犯假阴性错误的机会β= 20% 计算: 176 例5. 随机化,说而不做,做而不严处理分配的随机化为什么这么重要?(1) 消除分配处理有意或无意的偏倚。
医学论文中常用统计分析方法错误大全在医学研究领域,准确合理地运用统计分析方法对于得出可靠的研究结论至关重要。
然而,在实际的医学论文中,却存在着各种各样的统计分析方法错误,这些错误可能会导致研究结果的偏差,甚至得出错误的结论。
下面,我们就来详细探讨一下医学论文中常见的统计分析方法错误。
一、数据类型判断错误数据类型的正确判断是选择合适统计分析方法的基础。
医学研究中常见的数据类型包括计量资料、计数资料和等级资料。
然而,很多研究者在数据类型判断上出现失误。
例如,将原本应该是计数资料的数据(如疾病的治愈、好转、无效等)当成计量资料进行分析,错误地使用了均值和标准差等统计指标,而应该使用频率和百分比等指标,并采用卡方检验等方法。
二、样本量计算不合理样本量的大小直接影响到研究结果的可靠性和准确性。
一些医学论文在研究设计阶段没有充分考虑样本量的计算,导致样本量过小或过大。
样本量过小,可能会使研究结果缺乏统计学意义,无法检测出真实存在的差异;样本量过大,则会造成资源的浪费,同时增加研究的难度和成本。
正确的样本量计算应该综合考虑研究的设计类型、预期效应大小、检验水准和检验效能等因素。
三、选择错误的统计方法这是医学论文中常见的错误之一。
例如,对于两组独立样本的均数比较,应该使用 t 检验,但如果两组数据的方差不齐,就需要使用校正的 t 检验或者非参数检验方法(如 Wilcoxon 秩和检验)。
然而,很多研究者在这种情况下仍然使用了普通的 t 检验,导致结果不准确。
再比如,对于多组均数的比较,如果方差分析结果有统计学意义,还需要进一步进行多重比较。
但有些研究在这一步没有进行恰当的多重比较方法选择,导致结论不够准确。
四、忽视数据的正态性检验在进行某些统计分析(如 t 检验、方差分析等)时,要求数据服从正态分布。
然而,很多研究者在使用这些方法之前,没有对数据进行正态性检验。
如果数据不服从正态分布,却仍然使用基于正态分布假设的统计方法,就会得出错误的结论。
医学论文中常用统计分析方法错误大全在医学研究领域,准确和恰当的统计分析是得出可靠结论的关键。
然而,在众多医学论文中,却存在着各种各样的统计分析方法错误,这些错误可能会导致研究结果的偏差甚至错误解读,从而影响医学研究的质量和临床实践的指导价值。
接下来,我们就来详细探讨一下医学论文中常见的统计分析方法错误。
一、样本量计算错误样本量的合理计算对于研究的可靠性和有效性至关重要。
许多研究在设计阶段未能充分考虑研究的主要目的、预期效应大小、检验效能以及显著性水平等因素,导致样本量过小或过大。
样本量过小可能使研究无法检测到真实存在的差异,从而得出假阴性结论;样本量过大则会造成资源浪费,同时可能增加研究的复杂性和误差。
例如,在一项比较新药物与传统药物疗效的临床试验中,如果预期的疗效差异较小,而研究者没有充分考虑这一点,计算出的样本量不足,那么即使新药物实际上更有效,也可能由于样本量的限制而无法得出有统计学意义的结果。
二、数据类型错误医学研究中数据类型多样,包括计量资料(如身高、体重、血压等)、计数资料(如疾病的发生例数、治愈例数等)和等级资料(如疾病的严重程度分为轻、中、重)。
错误地判断数据类型会导致选择错误的统计分析方法。
例如,将原本属于计数资料的数据(如疾病的治愈与未治愈),错误地当作计量资料进行 t 检验,这样得出的结果是不准确的。
反之,将计量资料当作计数资料处理,也会造成同样的问题。
三、选择错误的统计检验方法不同的研究问题和数据类型需要相应的统计检验方法。
常见的错误包括:在多个组间比较时,错误地使用 t 检验而不是方差分析;在非正态分布的数据中使用参数检验方法;在不符合独立性假设的情况下使用独立样本检验等。
比如,在比较三种不同治疗方法对患者生存率的影响时,应该使用方差分析或非参数的KruskalWallis 检验,而不是多次进行两两t 检验,因为这样会增加一类错误(即假阳性)的概率。
四、忽视方差齐性检验在进行 t 检验和方差分析时,通常需要先进行方差齐性检验。
医学统计论文15篇医学科技论文统计学误用分析医学统计论文摘要:医学统计学是医学与统计学的交叉学科,是一门运用统计学的原理和方法,研究医学中有关数据的收集、整理和分析的应用科学[1]。
随着现代医疗信息化,大量的医疗数据及生命现象,均需要借助统计学和计算机去探寻规律。
因此,医学统计学在医疗大数据和循证医学中发挥着越来越重要的作用。
为了应对大数据时代的挑战,医学各专业学生都应培养统计学思维,掌握一些统计学方法及应用技能。
关键词医学统计统计论文统计医学统计论文:医学科技论文统计学误用分析1统计学应用中存在的常见问题1.1单因素方差分析(ANOVA)两两比较误用独立样本t检验单因素方差分析设计3组以上的均数比较,如果总体比较有差异,需进行两两比较,一般用SNK法或LSD法。
但部分研究者却将资料进行拆分,应用独立样本t检验进行两两比较,导致第Ⅰ类统计学错误发生率(假阳性率)增加,从而掉进了一个常见的“统计陷阱”,使所得结论可信度大大降低甚至得出错误结论。
SNK法与LSD法虽然并非等价,实质是一致的。
SNK法一般用于经方差分析结果具有统计学意义时才决定进行的两两事后比较,而LSD法可用于方差分析不足以具有统计学意义时也能进行两两比较[1]。
比较两种方法在SPSS的输出结果形式,SNK是“分堆”比较,一目了然,对于组别数较多的研究更为好用,但没有具体P值,而LSD是在进行“两两”比较时,能给出具体的P值。
1.2两两比较时检验水准的重新调定χ2检验或秩和检验3组以上整体比较有差异时,需应用分割法进行两两比较,这时检验水准应由原0.05调定为0.0167,否则会增加第Ⅰ类统计学错误的发生率。
特别当P值处于0.0167~0.05时,按照P<0.0167的标准,差异无统计学意义,而按照P<0.05的标准,却有意义,与事实相悖,出现假阳性,很容易得出错误结论。
这种分割法有时很保守,当行列表资料分组多且为有序时可用Mantel-Haenszel卡方检验,也称线性趋势检验(testforlineartrend)或定序检验(Linear-by-Lineartest)[2]。
两阶段交叉设计误用t检验将临床诊断符合皮肤划痕症的患者36例随机分为两组,A组咪唑斯汀片,10 mg,po qd,共2周;B组酮替芬片,l mg,po bid,共2周。
洗脱期1周。
然后A组与B组患者的服用药物交换,各药用法和服药时间相同。
观察治疗前、第l 周期末及第2周期末每例患者瘙痒程度、风团横径、风团持续时间和嗜睡程度,并作统计学处理。
咪唑斯汀治疗皮肤划痕症临床观察.pdf9存在问题:(1)临床医学研究中,常会遇到将两种不同处理措施交叉实施给同一受试者, 即一半受试者先接受A 处理后接受B 处理, 而另一半受试者先接受B 再接受A ,A 、B 两种处理先后以同等的机会出现在两个试验阶段中, 故称为两阶段交叉设计。
这种设计类型的资料,其总变异包括了:A 、B 处理间的变异, Ⅰ、Ⅱ阶段间变异,受试者间变异及误差四部分, 对于这类资料的统计分析应该采用两阶段设计的方差分析。
上述文献所采用的设计明显为两阶段交叉设计,但文献却采用配对t检验的方法进行差异比较,这种处理方法是错误的。
10(2)文献题目不恰当。
文献的主要内容是咪唑斯汀片和酮替芬片两种药物交叉作用于患者后的效果的比较。
辨析:统计分析采用两阶段交叉设计的方差分析,得出正确的统计结果。
文献的研究内容与文献题目应保持一致。
文献题目可以改为咪唑斯汀片与酮替芬片治疗皮肤划痕症的作用比较。
11⏹存在问题(1)作者将40只制成烧冻复合伤的家兔随机分成2组,1组为单纯植皮组,2组为复合高压氧植皮组,分别于伤后2、4、8、10、14d观察皮片向四周生长情况,统计分析采用t检验,结果为复合高压氧植皮组皮片生长在2、4、8、10d均快于单纯植皮组,差别具有统计学意义(P<0.001)。
(2)作者将两组家兔创面皮片愈合情况采用t检验判断两组有显著性差异。
⏹分析:家兔创面皮片愈合情况属于计数资料,作者用t检验来判断两组间的显著性差异显然是不正确的。
并且没有写出检验结果的具体数据。