随机过程第二章
- 格式:pdf
- 大小:108.74 KB
- 文档页数:40
第⼆章随机过程第 2 章随机过程2.1 引⾔确定性信号是时间的确定函数,随机信号是时间的不确定函数。
?通信中⼲扰是随机信号,通信中的有⽤信号也是随机信号。
描述随机信号的数学⼯具是随机过程,基本的思想是把概率论中的随机变量的概念推⼴到时间函数。
2.2 随机过程的统计特性⼀.随机过程的数学定义:设随机试验E 的可能结果为)(t g ,试验的样本空间S 为{x 1(t), x 2(t), …, x n (t),…}, x i (t)是第i 次试验的样本函数或实现,每次试验得到⼀个样本函数,所有可能出现的结果的总体就构成⼀随机过程,记作)(t g 。
随机过程举例:⼆.随机过程基本特征其⼀,它是⼀个时间函数;其⼆,在固定的某⼀观察时刻1t ,)(1t g 是随机变量。
随机过程具有随机变量和时间函数的特点。
●随机过程)(t g 在任⼀时刻都是随机变量;●随机过程)(t g 是⼤量样本函数的集合。
三.随机过程的统计描述设)(t g 表⽰随机过程,在任意给定的时刻T t ∈1, )(1t g 是⼀个⼀维随机变量。
1.⼀维分布函数:随机变量)(t g ⼩于或等于某⼀数值x 的概率,即})({);(1x t g P t x P ≤= 2.2.12.⼀维概率密度函数:⼀维概率分布函数对x 的导数.xt x P t x p ??=);(),(11 2.2.2 3.对于任意两个时间1t 和2t ,随机过程的对应的抽样值)(1t g )(2t g 为两个随机变量.他们的联合分布定义为)(t g 的⼆维分布})(;)({),;,(221121212x t g x t g P t t x x P ≤≤= 2.2.34.⼆维分布密度定义为212121221212),;,(),;,(x x t t x x P t t x x p = 2.2.4 四.随机过程的⼀维数字特征设随机过程)(t g 的⼀维概率密度函数为),(1t x p .1.数学期望(Expectation)dx t x xp t g E t g );()]([)(1?∞∞-==µ 2.2.5 2.⽅差(Variance)dx t x p t x t t g E t g Var t g g g ),()]([]))()([()]([)(1222µµσ-=-==?∞∞- 2.2.6五.随机过程的⼆维数字特征1.⾃协⽅差函数(Covariance)21212122211221121),;,())())((())]()())(()([(),(dx dx t t x x p t x t x t t g t t g E t t C g g g g g µµµµ--=--=??∞∞-∞∞- 2.2.72. ⾃相关函数(Autocorrelation)2121212212121),;,()]()([),(dx dx t t x x p x x t g t g E t t R g ∞∞-∞∞-== 2.2.83.⾃相关函数和⾃协⽅差函数的关系)]([)]([),(),(212121t g E t g E t t R t t C g g ?-= 2.2.94.设两个随机过程分别为)(),(t h t g ,在时刻1t 和2t ,对)(),(t h t g 抽样,两个随机过程的互相关函数(Cross-correlation)定义为)]()([),(2121t h t g E t t R gh = 2.2.105.两个随机过程的互协⽅差函数(Cross-covariance)定义为)]()())(()([(),(221121t t h t t g E t t C h g gh µµ--= 2.2.112.3 平稳随机过程⼀.狭义平稳的随机过程(严平稳的随机过程)对于任意的正整数n 和实数τ,若随机过程)(t g 的n 维概率密度函数满⾜ ),,;,,(),,;,,,(21212121n n n n n n t t t x x x p t t t x x x p=+???++???τττ 2.3.1 则称)(t g 为狭义平稳的随机过程.统计特性不随时间的推移⽽变化的随机过程称为平稳随机过程。
2随机过程的基本概念§2.1 基本概念随机过程是指一族随机变量.对随机过程的统计分析称为随机过程论,它是随机数学中的一个重要分支,产生于本世纪的初期.其研究对象是随机现象,而它特别研究的是随“时间”变化的“动态”的随机现象.一随机过程的定义1 定义设E为随机试验,S为其样本空间,如果(1)对于每个参数t∈T, X(e,t)为建立在S上的随机变量,(2)对每一个e∈S, X(e,t)为t的函数,那么称随机变量族{X(e,t), t∈T, e∈S}为一个随机过程,简记为{X(e,t), t∈T}或X(t)。
()()()()(){}{}[]()为随机序列。
时,通常称,取可列集合当可以为无穷。
通常有三种形式:参数一般表示时间或空间,或有时也简写为一个轨道。
随机过程的一个实现或过程的样本函数,或称随机的一般函数,通常称为为对于:上的二元单值函数。
为即若用映射来表示注意:t X T T T b a b a T T T T t X t X t e X T t e X S e S T t e X RS T t e X t21321,,,,3,2,1,0,1,2,3,,3,2,1,0T ,.4,.3,,2,:,.1=---==ÎÎ×δ®´L L L为一个随机过程。
则令掷一均匀硬币,例),()(cos )(},{1t e X t X Rt T e t H e t t X T H S =Îîíì====p 2 随机过程举例îíì=====为随机变量的函数均为和解释:T e t He t t e X t t t T X t t H X 000cos ),(),(cos ),((p p 2121cos ),(000p t t t e X p 并且:例2:用X(t)表示电话交换台在(0,t)时间内接到的呼唤的次数,则(1)对于固定的时刻t, X(t)为随机变量,其样本空间为{0,1,2,…..},且对于不同的t,是不同的随机变量.(2)对于固定的样本点n, X(t)=n是一个t的函数.(即:在多长时间内来n个人?)所以{X(t),t>0}为一个随机过程.相位正弦波。