第二章 随机过程总结
- 格式:ppt
- 大小:1.46 MB
- 文档页数:136
随机过程个人总结随机过程是一个数学模型,用来描述随机现象的演化规律。
它在许多领域中都有广泛应用,在概率论、统计学、物理学、工程学等领域中都有重要的地位。
1. 定义和特征:随机过程是一族随机变量的集合,表示随机现象在不同时间发生的情况。
每个随机变量表示某个时刻或某个时间段内的随机事件的结果。
它具有两个维度:时间和状态。
2. 分类:根据状态空间的特征,可以将随机过程分为离散随机过程和连续随机过程。
离散随机过程的状态空间是离散的,而连续随机过程的状态空间是连续的。
根据时间的连续性,可以将连续随机过程分为时齐随机过程和时变随机过程。
时齐随机过程的统计特性不随时间变化,而时变随机过程的统计特性与时间有关。
3. 状态转移概率:随机过程的核心是状态转移概率,描述了随机过程在不同状态之间进行转移的概率。
状态转移概率可以用转移矩阵或转移函数表示,它描述了随机过程的演化规律。
4. 随机过程的性质:随机过程有许多重要的性质,包括平稳性、独立性、马尔可夫性、鞅性等。
这些性质可以帮助我们分析和理解随机过程的行为。
5. 应用:随机过程在概率论、统计学和工程学中有广泛的应用。
在概率论中,随机过程用于描述随机事件的演化过程。
在统计学中,随机过程用于建立模型和进行统计推断。
在工程学中,随机过程用于分析和设计系统,例如通信系统、控制系统和金融系统等。
总之,随机过程是一个重要的数学工具,可以帮助我们建立数学模型,描述和分析随机现象的演化过程。
它在各个领域中都有广泛应用,并且具有丰富的理论基础和实际应用价值。
第 2 章 随机过程2.1 引言•确定性信号是时间的确定函数,随机信号是时间的不确定函数。
•通信中干扰是随机信号,通信中的有用信号也是随机信号。
•描述随机信号的数学工具是随机过程,基本的思想是把概率论中的随机变量的概念推广到时间函数。
2.2 随机过程的统计特性一.随机过程的数学定义:•设随机试验E 的可能结果为)(t g ,试验的样本空间S 为{x 1(t), x 2(t), …, x n (t),…}, x i (t)是第i 次试验的样本函数或实现,每次试验得到一个样本函数,所有可能出现的结果的总体就构成一随机过程,记作)(t g 。
随机过程举例:二.随机过程基本特征其一,它是一个时间函数;其二,在固定的某一观察时刻1t ,)(1t g 是随机变量。
随机过程具有随机变量和时间函数的特点。
● 随机过程)(t g 在任一时刻都是随机变量; ● 随机过程)(t g 是大量样本函数的集合。
三.随机过程的统计描述设)(t g 表示随机过程,在任意给定的时刻T t ∈1, )(1t g 是一个一维随机变量。
1.一维分布函数:随机变量)(t g 小于或等于某一数值x 的概率,即})({);(1x t g P t x P ≤= 2.2.12.一维概率密度函数:一维概率分布函数对x 的导数.xt x P t x p ∂∂=);(),(11 2.2.2 3.对于任意两个时间1t 和2t ,随机过程的对应的抽样值)(1t g )(2t g 为两个随机变量.他们的联合分布定义为)(t g 的二维分布})(;)({),;,(221121212x t g x t g P t t x x P ≤≤= 2.2.34.二维分布密度定义为212121221212),;,(),;,(x x t t x x P t t x x p ∂∂∂=2.2.4四.随机过程的一维数字特征设随机过程)(t g 的一维概率密度函数为),(1t x p .1.数学期望(Expectation)dx t x xp t g E t g );()]([)(1⎰∞∞-==μ 2.2.52.方差(Variance)dx t x p t x t t g E t g Var t g g g ),()]([]))()([()]([)(1222μμσ-=-==⎰∞∞- 2.2.6五.随机过程的二维数字特征1.自协方差函数(Covariance)•21212122211221121),;,())())((())]()())(()([(),(dx dx t t x x p t x t x t t g t t g E t t C g g g g g μμμμ--=--=⎰⎰∞∞-∞∞- 2.2.72. 自相关函数(Autocorrelation)•2121212212121),;,()]()([),(dx dx t t x x p x x t g t g E t t R g ⎰⎰∞∞-∞∞-== 2.2.83.自相关函数和自协方差函数的关系)]([)]([),(),(212121t g E t g E t t R t t C g g •-= 2.2.9 4.设两个随机过程分别为)(),(t h t g ,在时刻1t 和2t ,对)(),(t h t g 抽样,两个随机过程的互相关函数(Cross-correlation)定义为)]()([),(2121t h t g E t t R gh = 2.2.105.两个随机过程的互协方差函数(Cross-covariance)定义为)]()())(()([(),(221121t t h t t g E t t C h g gh μμ--= 2.2.112.3 平稳随机过程一.狭义平稳的随机过程(严平稳的随机过程)对于任意的正整数n 和实数τ,若随机过程)(t g 的n 维概率密度函数满足),,;,,(),,;,,,(21212121n n n n n n t t t x x x p t t t x x x p ⋅⋅⋅⋅⋅⋅=+⋅⋅⋅++⋅⋅⋅τττ 2.3.1则称)(t g 为狭义平稳的随机过程.统计特性不随时间的推移而变化的随机过程称为平稳随机过程。