材料科学基础-第2章晶体缺陷
- 格式:ppt
- 大小:2.62 MB
- 文档页数:81
《材料科学基础》名词解释第一章材料结构的基本知识1、晶体材料的组织:指材料由几个相(或组织单元)组成,各个相的相对量、尺寸、形状及分布。
第二章材料的晶体结构1、空间点阵:将理想模型中每个原子或原子团抽象为纯几何点,无数几何点在三维空间规律排列的阵列2、同素异构:是指有些元素在温度和压力变化时,晶体结构发生变化的特性3、离子半径:从原子核中心到其最外层电子的平衡距离。
4、离子晶体配位数:在离子晶体中,与某一考察离子邻接的异号离子的数目称为该考察离子的配位数。
5、配位数:晶体结构中任一原子周围最近邻且等距离的原子数6、致密度:晶体结构中原子体积占总体积的百分数;第三章高分子材料的结构1、聚合度:高分子化合物的大分子链是出大量锥告连成的。
大分子链中链节的重复次数叫聚合度2、官能度:指在一个单体上能和别的单体发生键合的位置数目3、加聚反应:由一种或多种单体相互加成而连接成聚合物的反应;4、缩聚反应:由一种或多种单体相互混合而连接成聚合物,同时析出(缩去)某种低分子物质(如水、氨、醉、卤化氢等)的反应;5、共聚:由两种或两种以上的单休参加聚合而形成聚合物的反应。
第四章晶体缺陷1、晶体缺陷:实际晶体中与理想的点阵结构发生偏差的区域;2、位错密度:晶体中位错的数量,是单位体积晶体中所包含的位错线总长度;3、晶界:同一种相的晶粒与晶粒的边界;4、晶界内吸附:少量杂质或合金元素在晶体内部的分布是不均匀的,它们常偏聚于晶界,称这种现象为晶界内吸附;第五章材料的相结构及相图1、固溶体:当合金相的晶体结构保持溶剂组元的晶体结构时,这种相就称为一次固溶体或端际固溶体,简称固溶体。
2、拓扑密堆积:如两种不同大小的原子堆积,利用拓扑学的配合规律,可得到全部或主要由四面体堆垛的复合相结构,形成空间利用率很高、配位数较大(12、14、15、16等)一类的中间相,称为拓扑密堆积。
3、电子浓度:固溶体中价电子数目e与原子数目之比。
4、间隙相:两组元间电负性相差大,且/1≤0.59具有简单的晶体结构的中间相5、间隙化合物:两组元间电负性相差大,且/≥0.59所形成化合物具有复杂的晶体结构。
材料科学基础A第二章晶体缺陷习题一、名词解释。
(每个2分)能量起伏位错位错线螺位错刃位错混合位错伯氏矢量伯氏回路位错的易动性可滑移面易滑移面滑移攀移晶界相界大角度晶界小角度晶界亚晶界孪晶界共格界面非共格界面界面能内吸附反内吸附二、判断题。
(每小题1分)1、点缺陷是一种热力学平衡的晶体缺陷,随温度的上升空位的浓度增大,故此空位在热力学上是不稳定的。
()2、晶体中随着空位浓度的提高,一般晶体的电阻率升高导电性变差。
()3、柏氏回路的起点任意,故此伯氏回路可以从位错线处开始,其形状和大小任意。
()4、一根不分叉的位错无论形状如何变化它只有一个恒定不变的柏氏矢量。
()5、位错线不能中止于晶体内部,只能中止于晶界、晶体表面或在晶内形成位错环、位错网络或发生位错反应。
6、螺位错在正应力的作用下可进行攀移,在切应力作用下可进行滑移。
()7、在滑移面上因为密排晶向间的间距大则P-N力也大,故此晶体中沿密排方向的位错线最稳定。
()8、基于界面能降低的原理,晶界的平直化和晶粒的长大都是自发过程。
()9、一般的大角度晶界的界面能高于小角度晶界的界面能,而共格界面的界面能高于非共格界面的界面能。
()。
10、晶界处点阵畸变较大,因此晶界具有较高的界面能导致晶面易于被腐蚀。
()三、填空题。
(每空1分)1、晶体中的缺陷按照几何特征可分为:、和三种。
2、空位的基本类型包括空位和空位,其中空位的附近往往存在间隙原子。
3、空位形成能(U v)指的是:,一般的U v越大,空位浓度越。
4、位错是一种线缺陷,按照其几何结构特征可分为型、型和型。
5、伯氏矢量代表了位错线周围点阵畸变量的总和,反映了畸变量的和,而的值越大,位错线周围点阵畸变越严重。
6、刃型位错在的作用下在滑移面上并沿滑移方向进行滑移运动;在垂直于半原子面的作用下发生正攀移运动,即半原子面的。
在垂直于半原子面的作用下发生负攀移运动,即半原子面的。
7、刃型位错滑移运动扫出晶体后,在晶体表面方向产生大小为的滑移台阶,使晶体发生变形。
《材料科学基础》习题-第2章-晶体缺陷1.铜的空位生成能1.7×10-19J ,试计算1000℃时,1cm3铜所包含的空位数,铜的密度8.9g/cm3,相对原子质量63.5,玻尔兹曼常数K=1.38×10-23J/K 。
2.画图说明F-R 位错源位错增殖过程。
3. 研究晶体缺陷有何意义?4 点缺陷主要有几种?为何说点缺陷是热力学平衡的缺陷?5. 位错概念是在什么背景下提出的?其易动性是如何实现的?6. 试述位错的性质。
7. 试述柏氏矢量的意义。
8 与位错有关的三个力的表达式各是什么?简述其求解原理。
9. 柯氏气团是如何形成的?它对材料行为有何影响?10 晶体中的界面有何共性?它对材料行为有何影响?11. 在800℃时1010个原子中有一个原子具有足够能量可在固体内移动,而在900℃时910个原子中则只有一个原子,试求其激活能(J/原子)。
12. 若将一块铁加热至850℃,然后快速冷却到20℃。
试计算处理前后空位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J )。
13. 简单回答下列各题。
1) 空间点阵与晶体点阵有何区别?2) 金属的3种常见晶体结构中,不能作为一种空间点阵的是哪种结构?3) 原子半径与晶体结构有关。
当晶体结构的配位数降低时原子半径如何变化?5) 计算位错运动受力的表达式为b f τ=,其中τ是指什么?6) 位错受力后运动方向处处垂直于位错线,在运动过程中是可变的,晶体作相对滑动的方向应是什么方向?7) 位错线上的割阶一般如何形成?8) 界面能最低的界面是什么界面?9) “小角度晶界都是由刃型位错排成墙而构成的”这种说法对吗?。
第二章晶体缺陷P2问题空位形成应该遵循物质守恒,即内部原子跑到表面上。
空位形成整体是膨胀过程,但具体机制较复杂。
一方面,缺少了原子会造成整体收缩;另一方面,跑到表面的原子使体积增加,综合效果是形成一个空位导致半个原子体积的增加。
相关问题有:1.如果测量产生空位的晶体,其点阵常数是增大还是缩小?2.将点阵常数测量结果与晶体整体膨胀的事实做对比,能够发现什么与空位浓度相关的规律?提示:由简到繁是惯用的方法,故可以考虑一维晶体。
答:①增大②随着晶体整体膨胀的增加,空位浓度增加。
-——详见潘金生《材料科学基础》P213空位的测量问题溶质原子尽管造成局部的排列偏离,但并不把它算为点缺陷,为什么?答:由对“置换原子”与“空位”的比较及“间隙溶质”与“自间隙原子”的比较可知,溶质原子的加入所产生的对于标准态的偏离比较小,因此不把它算为点缺陷。
问题图2-2中的置换原子(黑色)的尺寸画得有些随意。
假定(b)图中黑原子半径比白的小5%,而(c)图中大5%,问那种情况下基体内的应变能更大些?为什么?答:(b)图中应变能更大。
①(a)图中,周围白原子点阵常数变大,呈现拉伸状态。
(b)图中,周围白原子点阵常数变小,呈现压缩状态。
②由右结合能的图像可知,在平衡位置r0左右,曲线并非对称。
产生相同的形变,压缩引起的应变能更大。
所以(b)图中应变能更大。
P4问题Al2O3溶入MgO(具有NaCl结构)中,形成的非禀性点缺陷在正离子的位置,还是相反?答:Al 2O 3溶入MgO 晶体,由于Al 离子是+3价,,而Mg 离子是+2价,所以当两个铝离子取代两个镁离子的位置后,附近的一个镁离子必须空出,形成的非禀性点缺陷在正离子的位置。
问题 图2-3(a)的画法有些问题。
更好的画法是将图中的大小方块画在一起,即正负离子空位成对出现(参见余永宁“材料科学基础”图6-5)。
为什么成对的画法更好些?答:因为①正、负电中心成对出现的时候,可以抵消一点局部电中性的无法满足。
材料科学基础答案(精⼼整理)第1章晶体结构1.在⽴⽅晶系中,⼀晶⾯在x轴的截距为1,在y轴的截距为1/2,且平⾏于z 轴,⼀晶向上某点坐标为x=1/2,y=0,z=1,求出其晶⾯指数和晶向指数,并绘图⽰之。
2.画出⽴⽅晶系中下列晶⾯和晶向:(010),(011),(111),(231),(321),[010], [011],[111],[231],[321]。
3.纯铝晶体为⾯⼼⽴⽅点阵,已知铝的相对原⼦质量Ar(Al)=27,原⼦半径r=0.143nm,求铝晶体的密度。
4.何谓晶体?晶体与⾮晶体有何区别?5.试举例说明:晶体结构与空间点阵?单位空间格⼦与空间点阵的关系?6.什么叫离⼦极化?极化对晶体结构有什么影响?7.何谓配位数(离⼦晶体/单质)?8.何谓对称操作,对称要素?9.计算⾯⼼⽴⽅结构(111)与(100)晶⾯的⾯间距及原⼦密度(原⼦个数/单位⾯积)。
10.已知室温下α-Fe(体⼼)的点阵常数为0.286nm,分别求(100)、(110)、(123)的晶⾯间距。
11.已知室温下γ-Fe(⾯⼼)的点阵常数为0.365nm,分别求(100)、(110)、(112)的晶⾯间距。
12.已知Cs+半径为0.170nm,Cl-半径为0.181 nm,计算堆积系数。
13.MgO 属NaCl型结构,若rMg 2+=0.078nm,rO2-=0.132nm,(1)试⽤鲍林规则分析氧化镁晶体结构?(2)计算堆积密度?(3)画出氧化镁在(100)、(110)、(111)晶⾯上的结点和离⼦排布图?答案1.答:晶⾯指数为:(120),见图ABCD ⾯;晶向指数为:[102],见图OP 向。
2.答:3. 4. 5.6. 答:离⼦极化:在离⼦紧密堆积时,带电荷的离⼦所产⽣的电场必然要对另⼀离⼦的电⼦云发⽣作⽤(吸引或排斥),因⽽使这个离⼦的⼤⼩和形状发⽣了改变,这种现象叫离⼦极化。
极化会对晶体结构产⽣显著影响,主要表现为极化会导致离⼦间距离缩短,离⼦配位数降低,同时变形的电⼦云相互重叠,使键性由离⼦键向共价键过渡,最终使晶体结构类型发⽣变化。
第一章 结晶学基础 第二章 晶体结构与晶体中的缺陷1 名词解释:配位数与配位体,同质多晶、类质同晶与多晶转变,位移性转变与重建性转变,晶体场理论与配位场理论。
晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、离子极化、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应. 答:配位数:晶体结构中与一个离子直接相邻的异号离子数。
配位体:晶体结构中与某一个阳离子直接相邻、形成配位关系的各个阴离子中心连线所构成的多面体。
同质多晶:同一化学组成在不同外界条件下(温度、压力、pH 值等),结晶成为两种以上不同结构晶体的现象。
多晶转变:当外界条件改变到一定程度时,各种变体之间发生结构转变,从一种变体转变成为另一种变体的现象。
位移性转变:不打开任何键,也不改变原子最邻近的配位数,仅仅使结构发生畸变,原子从原来位置发生少许位移,使次级配位有所改变的一种多晶转变形式。
重建性转变:破坏原有原子间化学键,改变原子最邻近配位数,使晶体结构完全改变原样的一种多晶转变形式。
晶体场理论:认为在晶体结构中,中心阳离子与配位体之间是离子键,不存在电子轨道的重迭,并将配位体作为点电荷来处理的理论。
配位场理论:除了考虑到由配位体所引起的纯静电效应以外,还考虑了共价成键的效应的理论图2-1 MgO 晶体中不同晶面的氧离子排布示意图2 面排列密度的定义为:在平面上球体所占的面积分数。
(a )画出MgO (NaCl 型)晶体(111)、(110)和(100)晶面上的原子排布图; (b )计算这三个晶面的面排列密度。
解:MgO 晶体中O2-做紧密堆积,Mg2+填充在八面体空隙中。
(a )(111)、(110)和(100)晶面上的氧离子排布情况如图2-1所示。
(b )在面心立方紧密堆积的单位晶胞中,r a 220=(111)面:面排列密度= ()[]907.032/2/2/34/222==∙ππr r (110)面:面排列密度=()[]555.024/224/22==∙ππr r r(100)面:面排列密度=()785.04/22/222==⎥⎦⎤⎢⎣⎡ππr r3、已知Mg 2+半径为0.072nm ,O 2-半径为0.140nm ,计算MgO 晶体结构的堆积系数与密度。
第2章晶体缺陷晶体缺陷实际晶体中某些局部区域,原子排列是紊乱、不规则的,这些原子排列规则性受到严重破坏的区域统称为“晶体缺陷”。
晶体缺陷分类:1)点缺陷:如空位、间隙原子和置换原子等。
2)线缺陷:主要是位错。
3)面缺陷:如晶界、相界、层错和表面等。
2.1 点缺陷空位——晶体中某结点上的原子空缺了,则称为空位。
点缺陷的形成:肖特基空位:脱位原子迁移到晶体表面或者内表面的正常结点位置,从而使晶体内部留下空位,这样的空位称为肖特基(Schottky)空位。
(内部原子迁移到表面)肖特基(Schottky)空位弗仑克耳(Frenkel)空位弗仑克耳空位:脱位原子挤入点阵空隙,从而在晶体中形成数目相等的空位和间隙原子,称为弗仑克耳(Frenkel)空位。
(由正常位置迁移到间隙)外来原子:外来原子也可视为晶体的点缺陷,导致周围晶格的畸变。
外来原子挤入晶格间隙(间隙原子),或置换晶格中的某些结点(置换原子)。
空位的热力学分析:空位是由原子的热运动产生的,晶体中的原子以其平衡位置为中心不停地振动。
对于某单个原子而言,其振动能量也是瞬息万变的,在某瞬间原子的能量高到足以克服周围原子的束缚,离开其平衡位置从而形成空位。
空位是热力学稳定的缺陷点缺陷的平衡浓度系统自由能F=U- TS (U为内能,S为总熵值,T为绝对温度)平衡机理:实际上为两个矛盾因素的平衡a 点缺陷导致弹性畸变使晶体内能U增加,使自由能增加,降低热力学稳定性b 使晶体中原子排列混乱度增加,熵S增加,使自由能降低,增加降低热力学稳定性熵的变化包括两部分:①空位改变它周围原子的振动引起振动熵,Sf。
②空位在晶体点阵中的存在使体系的排列方式大大增加,出现许多不同的几何组态,使组态熵Sc增加。
空位浓度,是指晶体中空位总数和结点总数(原子总数)的比值。
随晶体中空位数目n的增多,自由能先逐渐降低,然后又逐渐增高,这样体系中在一定温度下存在一个平衡空位浓度,在平衡浓度下,体系的自由能最低。