第二章 金属的晶体结构缺陷
- 格式:ppt
- 大小:5.98 MB
- 文档页数:51
第二章 晶体结构与晶体中的缺陷1、证明等径圆球面心立方最密堆积的空隙率为25.9%。
解:设球半径为a ,则球的体积为4/3πa 3,求的z=4,则球的总体积(晶胞)4×4/3πa 3,立方体晶胞体积:33216)22(a a =,空间利用率=球所占体积/空间体积=74.1%,空隙率=1-74.1%=25.9%。
2、金属镁原子作六方密堆积,测得它的密度为1.74克/厘米3,求它的晶胞体积。
解:ρ=m/V =1.74g/cm 3,V=1.37×10-22。
3、 根据半径比关系,说明下列离子与O 2-配位时的配位数各是多少? 解:Si 4+ 4; K + 12; Al 3+ 6; Mg 2+ 6。
4、一个面心立方紧密堆积的金属晶体,其原子量为M ,密度是8.94g/cm 3。
试计算其晶格常数和原子间距。
解:根据密度定义,晶格常数)(0906.0)(10906.094.810023.6/(43/13/183230nm M cm M M a =⨯=⨯⨯=- 原子间距= )(0641.02/0906.0)4/2(223/13/1nm M M a r ==⨯=5、 试根据原子半径R 计算面心立方晶胞、六方晶胞、体心立方晶胞的体积。
解:面心立方晶胞:3330216)22(R R a V ===六方晶胞(1/3):3220282/3)23/8()2(2/3R R R c a V =•••=•= 体心立方晶胞:333033/64)3/4(R R a V ===6、MgO 具有NaCl 结构。
根据O 2-半径为0.140nm 和Mg 2+半径为0.072nm ,计算球状离子所占据的体积分数和计算MgO 的密度。
并说明为什么其体积分数小于74.05%?解:在MgO 晶体中,正负离子直接相邻,a 0=2(r ++r -)=0.424(nm)体积分数=4×(4π/3)×(0.143+0.0723)/0.4243=68.52%密度=4×(24.3+16)/[6.023×1023×(0.424×10-7)3]=3.5112(g/cm 3)MgO 体积分数小于74.05%,原因在于r +/r -=0.072/0.14=0.4235>0.414,正负离子紧密接触,而负离子之间不直接接触,即正离子将负离子形成的八面体空隙撑开了,负离子不再是紧密堆积,所以其体积分数小于等径球体紧密堆积的体积分数74.05%。
第二章晶体结构与晶体中的缺陷内容提要:通过讨论有代表性的氧化物、化合物和硅酸盐晶体结构,用以掌握与本专业有关的各种晶体结构类型。
介绍了实际晶体中点缺陷分类;缺陷符号和反应平衡。
固熔体分类和各类固熔体、非化学计量化学化合物的形成条件。
简述了刃位错和螺位错。
硅酸盐晶体结构是按晶体中硅氧四面体在空间的排列方式为孤岛状、组群状、链状、层装和架状五类。
这五类的[SiO4]四面体中,桥氧的数目也依次由0增加到4, 非桥氧数由4减至0。
硅离子是高点价低配位的阳离子。
因此在硅酸盐晶体中,[SiO4] 只能以共顶方式相连,而不能以共棱或共面方式相连。
表2-1列出硅酸盐晶体结构类型及实例表2-1 硅酸盐晶体的结构类型真实晶体在高于0K的任何温度下,都或多或少地存在着对理想晶体结构的偏离,即存在着结构缺陷。
晶体中的结构缺陷有点缺陷、线缺陷、面缺陷和复合缺陷之分,在无机材料中最基本和最重要的是点缺陷。
点缺陷根据产生缺陷的原因分类,可分为下列三类:(1)热缺陷(又称本征缺陷)热缺陷有弗仑克儿缺陷和肖特基缺陷两种基本形式。
弗仑克儿缺陷是指当晶格热震动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗仑克儿缺陷。
肖特基缺陷是指如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,而在原正常格点上留下空位,这种缺陷称为肖特基缺陷。
(2)杂质缺陷(非本征缺陷)(3)非化学计量化学化合物为了便于讨论缺陷反应,目前广泛采用克罗格-明克(Kroger-Vink)的点缺陷符号(见表2-2)。
表2-2 Kroger-Vink 缺陷符号(以MTX2-为例)缺陷反应方程式书写规则:(1)位置关系。
(2)质量平衡。
(3)电荷守恒。
热缺陷平衡浓度n/N :n/N二exp(- : G t/2kT)其中n——TK时形成n个孤立空位;G t――热缺陷形成自由焓;h――波儿兹曼常数。
五、具体晶体结构与位错(一)、实际晶体结构中的位错以上所述的位错,只是考虑在连续介质或简单立方晶体中的情况。
而实际上大部分金属具有面心立方、体心立方或密集六方的晶体结构。
下面讨论具体晶体结构中有位错存在的情况,他们的性质和行为与简单立方晶体结构的情况是不相同的。
(1)完全位错和分位错完全位错---柏氏矢量为单位点阵矢量或其倍数的称为全位错。
其中,柏氏矢量恰好等于单位点阵矢量的称为单位位错。
不全位错---柏氏矢量不等于点阵矢量整数倍的称为不全位错;柏氏矢量小于点阵矢量的称为部分位错。
实际晶体结构中,位错的柏氏矢量不能是任意的,它要符合晶体的结构条件和能量条件。
结构条件---柏氏矢量必须连接一个原子平衡位置到另一平衡位置。
在某一种晶体结构中,力学平衡位置很多,故柏氏矢量可取很多。
能量条件---由于位错能量正比于2b,柏氏矢量越小越好。
能量较高的位错是不稳定的,往往通过位错反应分解为能量较底的位错组态。
因而实际晶体中存在的位错的柏氏矢量限于少数最短的点阵矢量。
(2)与晶体结构有关的位错柏氏向量的表示与具体晶体结构有关的位错其柏氏向量可用以下方法表示,,,νμw 表示晶胞边的长度,如相应的取X 、Y 、Z 轴作此晶体的坐标,柏氏向量在X 、Y 、Z 轴上的分量假定为ωνμc c c ,,,则可以用[]μνωc 表示柏氏向量的方向和大小。
例如,面心立方晶体,其晶格常数为a ,而它的全位错的柏氏向量的大小是面对角线的1/2,即a 22。
沿[]110方向的柏氏向量在X ,Y ,Z 轴上的分量为2,0,.2a a -,因此柏氏向量可以表示为[]1102a ,如以晶格常数a 作单位,也可写为[]11021。
柏氏向量的大小可以表示为222ωνμ++c 。
面心立方点阵,最短的点阵矢量为原点到]0,21,21[,可用1102a表示,其长度为22a b =;次短的点阵矢量为100a ,长度为b=a 。
从能量角度来看,柏氏矢量为1102a的位错只有100a 的一半,所以在面心立方晶体中单位位错是1102a 。
56第二章 晶体结构缺陷我们在讨论晶体结构时,是将晶体看成无限大,并且构成晶体的每个粒子(原子、分子或离子)都是在自己应有的位置上,这样的理想结构中,每个结点上都有相应的粒子,没有空着的结点,也没有多余的粒子,非常规则地呈周期性排列。
实际晶体是这样的吗?测试表明,与理想晶体相比,实际晶体中会有正常位置空着或空隙位置填进一个额外质点,或杂质进入晶体结构中等等不正常情况,热力学计算表明,这些结构中对理想晶体偏离的晶体才是稳定的,而理想晶体实际上是不存在的。
结构上对理想晶体的偏移被称为晶体缺陷。
实际晶体或多或少地存在着缺陷,这些缺陷的存在自然会对晶体的性质产生或大或小的影响。
晶体缺陷不仅会影响晶体的物理和化学性质,而且还会影响发生在晶体中的过程,如扩散、烧结、化学反应性等。
因而掌握晶体缺陷的知识是掌握材料科学的基础。
晶体的结构缺陷主要类型如表2—1所示。
这些缺陷类型,在无机非金属材料中最基本和最重要的是点缺陷,也是本章的重点。
表2—1 晶体结构缺陷的主要类型2.1 点缺陷研究晶体的缺陷,就是要讨论缺陷的产生、缺陷类型、浓度大小及对各种性质的影响。
60年代,F .A .Kroger 和H .J .Vink 建立了比较完整的缺陷研究理论——缺陷化学理论,主要用于研究晶体内的点缺陷。
点缺陷是一种热力学可逆缺陷,即它在晶体中的浓度是热力学参数(温度、压力等)的函数,因此可以用化学热力学的方法来研究晶体中点缺陷的平衡问题,这就是缺陷化学的理论基础。
点缺陷理论的适用范围有一定限度,当缺陷浓度超过某一临界值(大约在0.1原子%左右)时,由于缺陷的相互作用,会导致广泛缺陷(缺陷簇等)的生成,甚至会形成超结构和分离的中间相。
但大多数情况下,对许多无机晶体,即使在高温下点缺陷的浓度也不会超过上述极限。
缺陷化学的基本假设:将晶体看作稀溶液,将缺陷看成溶质,用热力学的方法研究各种缺陷在一定条件下的平衡。
也就是将缺陷看作是一种化学物质,它们可以参与化学反应——准化学反应,一定条件下,这种反应达到平衡状态。