可变配气相位控制系统
- 格式:ppt
- 大小:4.25 MB
- 文档页数:52
可变配气系统是一种引擎技术,旨在通过调整气门的开闭时间和升程,以优化燃烧过程、提高发动机性能和燃油经济性。
以下是可变配气系统的一般工作原理:
1. 气门控制:可变配气系统使用一套气门控制机构,例如液压控制装置或电动
执行器,来控制气门的开闭时间和升程。
这些机构通过传感器和控制单元获取引擎的工作参数,如转速、负荷和温度等。
2. 相位调节:可变配气系统可以调节气门的相位,即气门开启和关闭的时间点。
通过改变相位,可以优化进气和排气过程,以适应不同工况下的发动机要求。
例如,在高速运行时,可以提前气门关闭时间,以增加进气阻力和排气排放效率。
3. 升程调节:可变配气系统还可以调节气门的升程,即气门开启的距离。
通过
改变升程,可以控制气门的开度,从而调节进气和排气量。
在低负荷情况下,可以减小气门升程以降低进气阻力和减少燃油消耗,而在高负荷情况下,可以增加气门升程以增加气缸充气量和提高功率输出。
4. 智能控制:可变配气系统通常与电子控制单元(ECU)集成,以实现智能控制和优化。
ECU根据传感器反馈的数据和预设的算法,确定最佳的气门开闭时间和
升程,以满足性能和燃油经济性要求。
这种智能控制可以根据驾驶条件和环境变化实时调整气门的工作参数。
通过调整气门的开闭时间和升程,可变配气系统可以改善进气和排气过程的效率,提高发动机的燃烧效率和动力输出。
这有助于降低燃油消耗、减少排放和提高驾驶性能,使发动机更加灵活适应不同的工作条件和要求。
实训课题二十八可变配气相位控制系统的故障诊断与排除一、实训准备
帕萨特的整车或发动机试验台架、V.A.G1552故障诊断仪、万用表、机油压力表、实习报告。
二、实训要求
通过实训,掌握可变配气相位控制系统的故障诊断与排除
方法,完成实习报告。
三、操作步骤
1.使用V.A.G1552故障诊断仪,检查是否有与可变配气相位控制系统相关的故障码。
如果有故障码,则对相关部件进
行检查。
2.如果没有故障码,应对可变配气相位控制系统的油路及传动部件等进行检查。
3大众可变气门正时系统结构。
可变配气相位发动机的转速变化范围较大固定的配气相位和气门升程不能将发动机的性能发挥到最佳。
这就要求发动机具有可变配气机构,而各种的可变气门技术原理是一致的无非是气门正时可变或气门升程可变两种。
各自的特点无非就是实现的机构不同有的是机械式的、有的是液压式、有的是电子式的辅以液压类构件。
可变配气相位气门驱动可变正时气门是通过使凸轮轴和曲轴相位改变一个角度来实现的,各种正时气门机构的主要差异在于实现凸轮轴调相的方式不同。
(1)液压驱动方式发动机曲轴正时齿正时齿轮之间采用齿形带轮与凸轮轴传动,机构需要用张紧轮张紧,在张紧轮基础上,外加一个调整惰轮。
通过调整惰轮,可以改变`齿形带两端的长度。
当一边变长而另一边变短时,会使凸轮轴相对曲轴发生角位移,实现配气相位的改变。
该机构的优点是结构较为简单,对原发动机的改动小。
目前国内外已有个别发动机配气机构采用了液压张紧器,如德国奥迪和大众公司已将液压张紧器可变配气相位机构用于其实际产品中。
(2)电子驱动方式另外一种典型的凸轮轴调相机构是通过谐波传动实现。
谐波传动调相机构主要有刚轮、柔轮和波发生器3个构件,柔轮是易变形的薄壁外齿圈,刚轮是刚性内齿轮,波发生器由椭圆盘和柔性轴承组成。
3个构件中任何一,个都可作为主动件,其余两个一个为固定件,一个为从动件;亦可以任意两个为主动件,其余一个从动。
它通过使波发生器转动,使柔轮及凸轮轴相对于刚轮及正时皮带轮转过一定角度,而达到调相的目的。
Nelson/Elrod和清华大学都进行过这种凸轮轴调相机构的研究。
可变升程气门驱动为一种通过改变摇臂比而可变气门驱动机构示意图。
这种机构通过改变摇臂绞接点的位置来改变摇臂比,仅可改变气门升程,而不能改变气门正时和开启持续期。
本机构的优点是结构简单,缺点是气门正时未得到优化。
变配气相位和升程气门驱动配气相位可变气门驱动机构能提高中低速转矩,改善低速稳定性,但由于最大气门升程仍保持不变,所以燃油经济性的改善很小。
VVTI-概况VVTIVVT-i是Variable Valve Timing-intelligent的缩写,它代表的含义就是智能正时可变气门控制系统。
这一装置提高了进气效率,实现了低、中转速范围内扭矩的充分输出,保证了各个工况下都能得到足够的动力表现。
另一个先进之处在于全铝合金缸体带来的轻量化,不仅减小了质量,也降低了发动机的噪声。
可变配气正时控制机构的主要目的是在维持发动机怠速性能情况下,改善全负荷性能。
这种机构是保持进气门开启持续角不变,改变进气门开闭时刻来增加充气量。
(1)凌志LS400汽车可变配气正时控制机构(VVT-i)VVT-i系统用于控制进气门凸轮轴在50°范围内调整凸轮轴转角,使配气正时满足优化控制发动机工作状态的要求,从而提高发动机在所有转速范围内的动力性、经济性和降低尾气的排放。
VVT-i系统由VVT-i控制器、凸轮轴正时机油控制阀和传感器三部分组成,如下图所示。
其中传感器有曲轴位置传感器、凸轮轴位置传感器和VVT传感器。
LS400汽车的发动机是8缸V型排列4气门式的,有两根进气凸轮轴和两根排气凸轮轴。
在工作过程中,排气凸轮轴由凸轮轴齿形带轮驱动,其相对于齿形带轮的转角不变。
曲轴位置传感器测量曲轴转角,向ECU提供发动机转速信号;凸轮轴位置传感器测量齿形带轮转角;VVT传感器测量进气凸轮轴相对于齿形带轮的转角。
它们的信号输入ECU,ECU根据转速和负荷的要求控制进气凸轮轴正时控制阀,控制器根据指令使进气凸轮轴相对于齿形带旋转一个角度,达到进气门延迟开闭的目的,用以增大高速时的进气迟后角,从而提高充气效率。
1)结构VVT-i控制器的结构如下图所示,它包括由正时带驱动的外齿轮和与进气凸轮轴刚性连接的内齿轮,以及一个内齿轮、外齿轮之间的可动活塞。
活塞的内、外表面上有螺旋形花键。
活塞沿轴向的移动,会改变内、外齿轮的相对位置,从而产生配气相位的连续改变。
VVT外壳通过安装在其后部的剪式齿轮驱动排气门凸轮轴。
技术背景气门重叠的角度往往对发动机性能产生较大的影响,发动机转速越高,每个气缸一个工作循环内留给吸气和排气的绝对时间也越短,因此要达到更高的充气效率,就需要延长发动机的吸气和排气时间。
显然,当转速越高时,要求的气门重叠角度越大。
但在低转速工况下,过大的气门重叠角则会使得废气过多的泻入进气端,吸气量反而会下降,气缸内气流也会紊乱,此时ECU也会难以对空燃比进行精确的控制,从而导致怠速不稳,低速扭矩偏低。
相反,如果配气机构只对低转速工况进行优化,那么发动机的就无法在高转速下达到较高的峰值功率。
所以发动机的设计都会选择一个折衷的方案,不可能在两种截然不同的工况下都达到最优状态。
为了解决这个问题,就要求配气相位可以根据发动机转速和工况的不同进行调节,高低转速下都能获得理想的进、排气效率,这就是可变气门正时技术开发的初衷。
市面上使用较多的有丰田公司生产的D-VVT技术。
其原理是通过液压电控相结合的方式使内转子相对外转子转过一定的角度来实现配气相位随转速变化而优化,但是由于液控使得控制时间相对滞后,不能及时进行调控,而且不同转速下很难达到精准的角度控制;本田公司的VTEC技术是我们所熟知的,其在凸轮轴上设置大小两套凸轮,随着转速的不同控制气门的生程和开启时刻,但其控制只能实现两级调节(高速和低速),不能全程随转速变化进行调节;奥迪公司的AVS技术与本田的VTEC技术相似,其采用两个电磁驱动器来控制螺旋沟槽套筒来实现大小凸轮的工作,其缺点与VTEC 一样。
本设计工作原理本设计在进排气凸轮轴上分别装有正时调节器,如图所示,正时调节器由主动盘和从动盘组成,主动盘的外圈有与正时皮带匹配的齿,主动盘内部有两个传动销,与从动盘上的两个传动飞锤的弧形面相连接,从动盘通过花键与凸轮轴相连接,飞锤通过飞锤销轴与从动盘连接,飞锤可以绕销轴转动。
动力传递路线是:正时皮带——主动盘——传动销——飞锤——飞锤销轴——从动盘——凸轮轴。
课时教案
山东凯文科技职业学院教案附页
山东凯文科技职业学院教案附页板书:
发动机电控简介
1、回顾上节课知识
怠速控制系统的功能与组成
节气门制动时怠速控制系统
旁通道式怠速控制系统
2、本节内容
德国大众可变进气相位及气门升程控制系统积碳过多
1.可变进气相位控制系统
2.奥迪可变气门升程控制系统爆燃的控制与爆燃传感器
丰田VVTL-i控制系统磁致伸缩式报然传感器
1.可变配气相位系统VVT
2.可变进气门升程控制机构
3.VVT正时阀电路与检修要点爆燃的检测与控制
丰田VTEC系统的组成
1.凸轮
2.进气摇臂总成
3.正时板
4.VTEC系统的工作原理
(1)低速工况时
(2)高速工况时
(3)VTEC系统的控制原理
(4)改变进气门的配气相位和气门升成条件
扩展i-VTEC系统
(1)VTC系统的组成及工作原理
(2)VTC系统的工作过程
最佳怠速/稀薄燃烧区域,最佳油耗、排气控制区域,最佳扭矩控制区域。
汽车新技术: 可变配气相位引言近年来,随着汽车工业的快速发展,汽车的性能和效率要求也越来越高。
为了满足这些需求,汽车制造商一直在努力寻找新技术,其中之一就是可变配气相位技术。
本文将详细介绍可变配气相位技术以及它对汽车性能和效率的影响。
什么是可变配气相位技术?可变配气相位技术是指通过控制发动机进气和排气门的开启和关闭时间,来调整气门的开启和关闭时机以及持续时间。
传统配气相位是固定的,不随发动机工况的变化而变化。
而可变配气相位技术则根据发动机负荷、转速和其他因素来实时调整气门的开启和关闭时间,以优化燃烧过程。
实现可变配气相位的方法实现可变配气相位的方法有多种,下面是几种常见的方法:1. 可变气门正时系统(VVT)可变气门正时系统是一种通过控制凸轮轴相对于曲轴的角度来实现可变配气相位的技术。
通过调整凸轮轴的角度,可以改变气门的开启和关闭时机,以适应不同的工况。
VVT技术可以提供更好的动力和燃油经济性。
2. 可变进气歧管(VIM)可变进气歧管是一种通过改变进气歧管的形状和长度,来实现可变配气相位的技术。
不同的进气歧管形状和长度可以改变进气道的流向和速度,从而影响燃烧过程。
VIM技术可以提供更好的动力和响应性。
3. 可变排气歧管(VEM)可变排气歧管是一种通过改变排气歧管的形状和长度,来实现可变配气相位的技术。
不同的排气歧管形状和长度可以改变排气道的流向和速度,从而影响排气过程。
VEM技术可以提供更好的动力和排放性能。
4. 电子控制单元(ECU)电子控制单元是控制发动机运行的核心设备。
通过控制ECU的软件,可以实现对可变配气相位的精确控制。
ECU利用传感器来监测发动机工况,并根据参数来调整配气相位,以达到最佳性能和效率。
可变配气相位技术的优势可变配气相位技术具有许多优势,对汽车性能和效率的改善有着显著的影响:1. 动力提升可变配气相位技术可以调整气门的时机和持续时间,使得燃烧过程更加充分,更加高效。
这可以提升发动机的动力输出,提高汽车加速性能和爬坡能力。