21 几何不变体系和几何可变体系.
- 格式:ppt
- 大小:291.50 KB
- 文档页数:6
第4章平面体系的几何组成分析4.1几何不变与几何可变体系的概念通常平面体系可以分成三类,即几何不变体系、几何可变体系和瞬变体系。
在不考虑材料微小变形的条件下,体系受力后,能保持其几何形状和位置的不变,而不发生刚体形式的运动,这类体系称为几何不变体系。
图4-2所示在荷载F的作用下,该体系必然发生刚体形式的运动。
此时无论F值如何小,它的几何形状和位置都要发生变化。
这样的体系称为几何可变体系。
图4-1 图4-2图4-3所示体系,这种在原来的位置上发生微小位移后不能再继续移动的体系称为瞬变体系。
(a)(b)(c)图4-34.2刚片·自由度·联系的概念刚片:对体系进行几何组成分析时,由于不考虑材料的变形,所以各个构件均为刚体,由若干个构件组成的几何不变体系也是一个刚体。
研究平面体系时,将刚体称为刚片。
自由度是确定体系位置时所需要的独立参数的数目。
当对刚片施加约束时,它的自由度将减少。
能减少一个自由度的约束称为一个联系。
4 .3 几何不变体系的组成规则无多余联系是指体系内的约束恰好使该体系成为几何不变体系,几何不变体系的基本组成规则有三条。
规则一:二刚片规则。
两刚片用既不完全平行,也不相交于一点的三根链杆联结。
所组成的体系是几何不变的。
规则二:三刚片规则。
三个刚片用不在一条直线的铰两两相联结组成的体系是几何不变的。
规则三:二杆结点规则。
在刚片上加或减去二杆结点时,形成的体系是几何不变的。
4 .4 静定结构和超静定结构·常见的结构形式4.4.1静定结构和超静定结构几何不变体系可分为无多余联系和有多余联系两类。
无多余联系的几何不变体系称为静定结构,有多余联系的几何不变体系则称为超静定结构。
4.4.2常见的结构形式1.梁板体系2.桁架体系3.拱结构体系4.框架、筒体体系5.悬索体系6.薄壳体系7. 膜结构8.树状结构小结(1)体系可以分为几何不变体系和几何可变体系,只有几何不变体系才能用作结构,几何可变及瞬变体系不能用作结构。
第2章平面杆件体系的几何组成分析(知识点小结)一、几何组成分析的几个概念1、几何不变体系与几何可变体系几何不变体系是指受到任意荷载作用下,若不考虑材料的应变,其几何形状和位置均能保持不变的体系。
几何可变体系是指即使不考虑材料的应变,在微小的荷载作用下也会产生刚体位移,而不能保持原有的几何形状和位置。
几何可变体系分为几何常变体系和几何瞬变体系。
几何可变体系在很小的荷载作用下会产生位移,经微小位移后仍能继续发生刚体运动,这样的几何可变体系称为几何常变体系。
若原为几何可变体系,经微小位移后即转化为几何不变体系,这类几何可变体系为几何瞬变体系。
工程结构绝不能采用几何瞬变体系,而且也应避免采用接近于瞬变的体系。
2、自由度指体系在所受限制的许可条件下独立的运动方式,即能确定体系几何位置的彼此独立的几何坐标数目。
平面内一点的自由度为2,一个刚片的自由度为3。
3、约束(联系)约束是指指限制体系运动的各种装置。
约束包括外部约束(支座约束)和内部约束。
(1)外部约束一个活动铰支座、固定铰支座和固定支座分别相当于1、2、3个约束。
(2)内部约束一根单链杆相当于1个约束;连接m(m>2)个结点的复链杆,相当于2m-3个单链杆,即相当于2m-3个约束;一个单铰相当于2个约束;连接m(m>2)个刚片的复铰,可折合成(m-1)个单铰,即相当于2(m-1)个约束作用;一单刚结点相当于三个约束;联结m(m>2)个刚片的刚结点称为复刚结点,可折合成(m-1)个单刚结点,即相当于3(m-1)个约束。
约束从能否减少体系的自由度方面来划分,可分为必要约束和多余约束。
为保持体系几何不变所必须具有的约束称为必要约束,不能使体系的自由度数目减少的约束称为多余约束。
4、瞬铰(虚铰)两个刚片间用两个不共线链杆相联,其约束作用相当于这两根链杆交点位置处的一个铰所起的约束作用,这个铰称为虚铰或瞬铰(图2-1a)。
在几何组成分析中,尤其要注意这样特殊情况:两刚片间用两根相互平行的链杆相连,两根平行链杆所起的约束作用相当于无穷远处的瞬铰所起的约束作用,如图2-1b所示。
《结构力学》平面体系的几何组成分析知识重点及习题解析一、基本概念1.1、几何不变体系若不考虑材料变形,在任意荷载作用下几何形状和位置均能保持不变的体系。
1.2、几何可变体系即使不考虑材料变形,在很小的荷载作用下,也会发生机械运动而不能保持原有几何形状和位置的体系。
1.3、瞬变体系原可发生形状或位置的改变,但经微小位移后即转化为几何不变的体系。
1.4、刚片平面杆件体系中的几何不变的部分,也可以是一根杆件或大地等。
1.5、虚铰连接两个刚片的两根链杆的作用相当于在其交点处的一个单铰,不过这个铰的位置随着链杆的转动而改变,这种铰称为虚铰。
1.6、自由度物体运动时可以独立变化的几何参数的数目,也即确定物体位置所需的独立坐标数目。
1.7、约束减少自由度的装置,称为联系或约束。
1.8、必要约束能改变体系自由度的约束,也即使体系成为几何不变而必须的约束。
1.9、多余约束不能减少体系自由度的约束。
1.10、计算自由度并非体系的真实自由度,而是体系的自由度数目减约束数目。
计算公式如下:W=3m-(2h+r)式中W一计算自由度;m一刚片数;h—单铰数,连接n个杆件的复铰相当于n-1个单铰;r—支座链杆数。
对于铰结链杆体系,还可用如下公式计算:W=2j-(b+r)式中j一结点数;b一杆件数二、几何不变体系的基本组成规则2.1、三刚片规则三个刚片用不在不同一条直线上的三个单铰两两铰连,组成的体系是几何不变的。
2.2、二刚片规则两个刚片用一个铰和一根不通过此铰的链杆相连,为几何不变体系;或者两个刚片用三根不全平行也不交于同一点的链杆相连,为几何不变体系。
2.3、二元体规则在一个体系上增加或拆除二元体,不会改变原有体系的几何构造性质。
三、几何构造与静定性的关系所谓体系的静定性,是指体系在任意荷载作用下的全部反力和内力是否可以根据静力平衡条件确定。
静定结构的几何构造特征是几何不变且无多余约束,而有多余约束的几何不变体系则是超静定结构。
[几何可变体系与几何不变体系]几何可变体系——在任意荷载的作用下,即使不考虑材料的应变,它的形状和位置也是可以改变的。
几何不变体系——如果不考虑材料的应变,它的形状和位置是不能改变的。
[机动分析的目的](1)判断体系是否可变;(2)研究不变体系的基体组成规律;(3)确定结构的静定次数;(4)进行组成分析,选择简单的计算次序。
[自由度与刚片]物体在运动时决定其位置的几何参变数称为自由度。
几何形状不变的平面体称为刚片。
一个刚片在平面内运动有三个自由度;一个点在平面内运动有两个自由度;一个点在空间内运动有三个自由度;一个刚体在空间内运动有六个自由度。
[约束]减少自由度的装置称为约束。
[约束的影响](1)支座约束可动铰支座相当于一个约束,减少一个自由度;固定铰支座相当于两个约束,减少两个自由度;固定端支座相当于三个约束,减少三个自由度;定向支座相当于两个约束,减少两个自由度。
(2)链杆两刚片加一链杆约束,减少一个自由度。
(3)铰结点单铰:两刚片加一单铰结点约束,减少两个自由度。
复铰:个刚片在同一点用铰连接,相当于个单铰的约束。
(4)刚结点单刚结点:两刚片加一刚结点约束,减少三个自由度。
复刚结点:个刚片在同一点用刚结点连接,相当于个单刚结点的约束。
[结构体系自由度的计算公式](1)一般公式各部件自由度总和-全部约束数为结构体系自由度。
(2)平面杆件体系自由度的计算公式式中为刚片个数;为单刚结点个数;为单铰结点个数;为链杆个数;为支座约束个数,如果为自由体,即无支座约束,则。
(3)平面桁架自由度的计算公式式中为结点个数;为链杆个数;为支座约束个数,如果为自由体,即无支座约束,则。
[自由度与几何不变性的关系]体系为几何不变的必要条件是自由度等于或小于零,此条件并非充分条件。
如果,则体系为几何可变体系;如果或,则不能确定。