当前位置:文档之家› 高压共轨电控柴油发动机

高压共轨电控柴油发动机

高压共轨电控柴油发动机
高压共轨电控柴油发动机

实训指导书

高压共轨电控柴油发动机

2009年6月

目录

目录 0

项目一:加速踏板位置传感器的结构原理与检修 (2)

项目二:磁电式发动机转速传感器原理与测量 (10)

项目三:霍尔式凸轮轴位置传感器原理与测量 (14)

项目四:热线式空气流量计原理与测量 (19)

项目五:水温传感器原理与测量 (24)

项目六:燃油压力传感器原理与检测 (29)

项目七:燃油供给系统的检修 (34)

实训八:电控汽油机总体结构认识 (42)

项目九:电控发动机系统的自诊断检测原理及汽车解码器的使用 (47)

项目十:故障设置及故障检修 (55)

项目一:加速踏板位置传感器的结构原理与检修

一、目的和要求

1、了解加速踏板位置传感器的结构原理与检修

2、掌握加速踏板位置传感器的测量方法

二、实训课时

实训共安排2.0课时,其中辅导老师讲解0.5课时,学生实训、试验、填写检测报告1.5课时。

《检测报告》作为考评时的主要数据,分数记入个人实训总成绩。

三、实训器材

1、工具:汽车数字万用表。

2、设备:高压共轨电控柴油发动机一台。

3、教具:加速踏板位置传感器一个。

四、原理与应用

1、结构原理

如图 1所示,节气门体主要由节气门和整体式怠速稳定装置组成。其中,整体式怠速稳定装置主要由怠速电机、齿轮减速机构、应急弹簧、节气门电位计、怠速节气门电位计和怠速开关等构成。节气门电位计相当于

传统电喷发动机的节气门位置传感器,怠速节气门电位计相当于一个高灵敏度的仅用于检测节气门怠速开度的节气门位置传感器,怠速开关则用来判定节气门是否进入怠速状态。

当ECU根据转速、水温、空调开关等信号判定需要调节节气门开度来稳定或控制发动机的怠速转速时,就会向怠速电机提供正向或反向工作电流,使怠速电机正向或反向运转,并通过齿轮减速机构驱动节气门开度增大或减小,怠速节气门电位计则将节气门怠速开度的变化情况随时反馈给ECU。当发动机转速或节气门开度达理想值时,ECU又会将怠速电机锁定,从而使节气门开度锁定。当节气门由大开度突然关闭时,怠速电机还可以减缓节气门的关闭速度,起到节气门缓冲器的作用。在控制电路或怠速电机等发生故障的情况下,应急弹簧还可将节气门拉开到某一预定的开度,保证了发动机能以较高怠速应急运转,从而避免了熄火。

2、控制电路

节气门体上的整体式怠速稳定装置通过一个8端子电插件与ECU相连,各端子排列及电路连接原理如图 2(a)、图 2(b)所示。ECU的62端子向节气门电位计和怠速节气门电位计提供5V工作电压,67端子则通过ECU内部搭铁,75端子和74端子分别接收来自节气门电位计和怠速节气门电位计的信号,69端子与怠速开关相连,用来判定节气门是否进入怠速状态。怠速开关闭合,69端子电位为0V的情况下,ECU通过66端子和59端子间怠速电机输出正向或反向的工作电流,使怠速电机驱动节气门开大或关小,达到稳定和调节怠速的目的。当需要锁定怠速电机从而锁定节气门开度时,

ECU通过内部将66端子与59端子短接,即将怠速电机的两个输入端子短接,利用电机电枢感应电流所产生的磁场,形成电机的转动阻力,从而产生制动效果。

如果怠速电机或其控制电路发生断路故障,电机制动效果将不复存在,整体式怠速稳定装置的应急弹簧则可拉动节气门至某特定开度,使发动机能够保持应急高怠速运转状态。

另外,ECU具有自适应学习功能。在稳定的怠速工况下,电脑可将对应的怠速节气门开度位置存储记忆,以便下次起动后在稳定怠速控制过程中参考。在发动机磨损等情况下,要维持同样的怠速转速所需要的节气门开度可能会发生变化,这种自适应学习功能则可保证在发动机技术状态发生变化的情况下,其怠速转速基本维持不变。

断电熄火状态下,应急弹簧将节气门拉开至某特定开度,保证下次起动后,发动机处于高怠速运转状态,随着水温的升高,ECU通过怠速电机将节气门开度逐渐减小,发动机逐渐到正常怠速状态。

3、检修3.1 测电阻

拔开ECU电插件,测线束侧插件66与59端子之间的电阻,应为5Ω,否则查线路或怠速电机;测线束侧插件62与74端子,62与75端子之间的电阻,在节气门开度变化时,阻值连续变化;测69与67端子之间电阻,在节气门打开和关闭情况下,应通断变化。不符合要求时查ECU与节气门体之间线路,线路正常的情况下换节气门体。

3.2 测电压

拔下整体式怠速稳定装置电插件,点火开关ON,测线束侧插件4端子对地电压,就为4.5-5.5V;测线束侧插件3端子对地电压,应为9V以上,否则查线路,线路正常时查ECU电源电路,电源电路正常时则换ECU;测线束侧插件7端子对地电阻,应接近0Ω,否则查线路,线路正常时换ECU。

在整体式怠速稳定装置电插件拔开的情况下启动发动机,并将线束侧插件3端子与7端子短接,水温升高后,测线束侧插件1端子与2端子之间的电压,应有12V的工作电压,否则查线路,线路正常则换ECU。

上述操作后,ECU内会存储故障代码,应在熄火后断开电池负极引线10s以上,以清除故障代码。

五、实训步骤

1、讲解

由辅导老师结合捷达2V发动机整体式节气门实物、电路图、电控燃油喷射发动机教学实验台等讲解捷达2V发动机整体式节气门工作原理、检

测方法及故障现象。

2、演示

(1) 拔下节气门位置传感器插头。

(2) 测量节气门位置传感器的信号线与节气门位置传感器的电源线之间的阻值。

(3) 测量在节气门全关时怠速触点与节气门位置传感器的搭铁线应导通。

(4) 开启节气门时怠速触点与节气门位置传感器的搭铁线应断开。

(5) 插好节气门位置传感器插头,打开点火开关。

(6) 档测量节气门位置传感器的搭铁线与节气门位置传感器的电源线之间的电压值标准值为5伏左右。

(7) 测量节气门位置传感器的搭铁线与节气门位置传感器的信号线之间的电压。

(8) 测量怠速触点与节气门位置传感器的搭铁线应1伏以下。

(9)拨动节气门拉索,改变节气门开度。

(10) 改变节气门开度,节气门信号电压改变。

(11) 改变节气门开度,怠速触点开关信号电压应为11伏左右。

3、考核

采用点名抽查、举手问答或单独回答的方式,结合捷达2V发动机整体式节气门实物、电路图、电控燃油喷射发动机教学实验台,由学生回答捷达2V发动机整体式节气门的结构,原理以及检测方法。

4、教学延伸

辅导老师结合现有的电控燃油喷射发动机教学实验台,介绍欧、美、亚各国车型使用的不同类型捷达2V发动机整体式节气门结构及特点。

六、注意事项

1.遵守实验室规章制度,未经许可,不得移动和拆卸仪器与设备。

2.注意人身安全和教具完好。

3.严禁未经许可,擅自扳动教具、设备的电器开关、点火开关和起动开关。

七、实训小结

项目二:磁电式发动机转速传感器原理与测量

一、目的和要求

1、了解磁电式发动机转速传感器的结构与原理

2、掌握磁电式发动机转速传感器的测量方法

二、实训课时

实训共安排2.0课时,其中辅导老师讲解0.5课时,学生实训、试验、填写检测报告1.5课时。

《检测报告》作为考评时的主要数据,分数记入个人实训总成绩。

三、实训器材

1、工具:汽车数字万用表。

2、设备:高压共轨电控柴油发动机一台。

3、教具:磁电式发动机转速传感器一个。

四、原理与应用

磁电式发动机转速传感器,在利用永久磁铁作用产生的一定强度的磁场中,当转子转动时利用与转速成正比的磁头与转子外齿的间隙发生变化,从而使磁头与转子构成的磁路中磁阻发生相应变化。其结果是流经该磁路的磁通量发生周期性增减,与磁通量的增减速度成正比的感应电压在线圈两端产生,经过其内部电路转换成电脑可以识别的电压信号,电脑根据这个

电压信号来计算发动机转速。

发动机转速传感器的测量方法

1、电阻测量法

(1)拔下发动机转速传感器插头。

(2)用数字万用表测量发动机转速传感器的两条信号线之间的阻值(1000欧左右)。

(3)用数字万用表分别测发动机速度传感器两条信号线与搭铁线之间的电阻应为无穷大。

(4)测量完插好发动机转速传感器插头。

2、电压测量法:

(1)打开点火开关,不启动发动机。

(2)将万用表档位调至交流电压(一般调至20伏)档测量发动机转速传感器两条信号线之间的电压此时电压应为0。

(3)启动发动机,怠速时万用表上的电压应显示1伏左右,开启节气门提供发动机的转速,万用表上的电压应会随之发动机转速升高而增加。

五、实训步骤

1、讲解

由辅导老师结合磁电式发动机转速传感器实物、电路图、电控燃油喷射发动机教学实验台等讲解磁电式发动机转速传感器工作原理、检测方法及故障现象。

2、演示

(1) 拔下发动机转速传感器插头。

(2) 用数字万用表测量发动机转速传感器的两条信号线之间的阻值(1000欧左右)。

(3) 用数字万用表分别测发动机速度传感器两条信号线与屏蔽线之间的电阻应为无穷大。

(4) 测量完插好发动机转速传感器插头。

(5) 打开点火开关,不启动发动机将万用表档位调至交流电压(一般调至20伏)档测量发动机转速传感器两条信号线之间的电压此时电压应为0。

(6) 启动发动机,怠速时万用表上的电压应显示1伏左右,开启节气门提供发动机的转速,万用表上的电压应会随之发动机转速升高而增加。

3、考核

采用点名抽查、举手问答或单独回答的方式,结合磁电式发动机速度传感器实物、电路图、高压共轨电控柴油发动机实训台,由学生回答节磁电式发动机速度传感器的结构,原理以及检测方法。

4、教学延伸

辅导老师结合现有的高压共轨电控柴油发动机实训台,介绍欧、美、亚各国车型使用的不同类型发动机速度传感器结构及特点。

六、注意事项

1.遵守实验室规章制度,未经许可,不得移动和拆卸仪器与设备。

2.注意人身安全和教具完好。

3.严禁未经许可,擅自扳动教具、设备的电器开关、点火开关和起动开关。

七、实训小结

项目三:霍尔式凸轮轴位置传感器原理与测量

一、目的和要求

1、了解霍尔式凸轮轴位置传感器的结构与原理

2、掌握霍尔式凸轮轴位置传感器的测量方法

二、实训课时

实训共安排2.0课时,其中辅导老师讲解0.5课时,学生实训、试验、填写检测报告1.5课时。

《检测报告》作为考评时的主要数据,分数记入个人实训总成绩。

三、实训器材

1、工具:汽车数字万用表。

2、设备:高压共轨电控柴油发动机一台。

3、教具:霍尔式凸轮轴位置传感器一个

四、原理与应用

霍尔式凸轮轴位置传感器是利用霍尔效应的原理,产生与凸轮轴转角相对应的电压脉冲信号的。它是利用触发叶片或轮齿改变通过霍尔元件的磁场强度,从而使霍尔元件产生脉冲的霍尔电压信号,经放大整形后即为凸轮轴位置传感器的输出信号。

霍尔式凸轮轴位置传感器的检测

霍尔式凸轮轴位置传感器的检测方法有一个共同点,即主要通过测量有无输出电脉冲信号来判断其是否良好。

霍尔式凸轮轴位置传感器与ECU有三条引线相连。其中一条是ECU 向传感器加电压的电源线,输入传感器的电压为5V;另一条是传感器的输出信号线,当凸轮轴正时轮的信号槽通过传感器时,霍尔传感器输出脉冲信号,高电位为5V,低电位为0.3V左右;第三条是通往传感器的接地线。

霍尔式凸轮轴位置传感器的测量方法

(1)电阻检测

点火开关置于“OFF”位置,拔下凸轮位置传感器导线连接器,用万用表Ω档跨接在传感器侧的端子搭铁线线与信号线或搭铁线与电源线间,此时万用表显示读数为∞(开路),如果指示有电阻,则应更换凸轮位置传感器。(2)传感器电源、电压的测试

点火开关置于“ON”,用万用表电压档测量ECU侧霍尔式凸轮轴位置传感器电源线端子的电压应为5V,信号线与搭铁线端子间的电压值在发动机转动时,在0.3-5V之间变化,且数值显示呈脉冲性变化,最高电压5v,最低电压0.3V左右。

五、实训步骤

1、讲解

由辅导老师结合霍尔式凸轮轴位置传感器实物、电路图、高压共轨电控柴油发动机实训台等讲解霍尔式凸轮轴位置传感器工作原理、检测方法及故障现象。

2、演示

1、拔下霍尔式凸轮轴位置传感器插头。

2、用数字万用表测量霍尔式凸轮轴位置传感器的电源线与搭铁线之间的阻值(应为无穷大)。

3、用数字万用表分别测霍尔式凸轮轴位置传感器信号线与搭铁线之间的电阻(应为无穷大)。

4、测量完插好霍尔式凸轮轴位置传感器插头。

5、打开点火开关,不启动发动机测量霍尔式凸轮轴位置传感器的电源电压。

6、打开点火开关,不启动发动机测量霍尔式凸轮轴位置传感器的信号电压(5伏或0.3伏)。

7、启动发动机测量霍尔式凸轮轴位置传感器的信号电压(应为0.3-5伏之间的脉动电压)。

3、考核

采用点名抽查、举手问答或单独回答的方式,结合霍尔式凸轮轴位置传感器实物、电路图、高压共轨电控柴油发动机实训台,由学生回答霍尔式凸轮轴位置传感器的结构,原理以及检测方法。

4、教学延伸

辅导老师结合现有的高压共轨电控柴油发动机实训台,介绍欧、美、亚各国车型使用的不同类型凸轮轴位置传感器结构及特点。

六、注意事项

1.遵守实验室规章制度,未经许可,不得移动和拆卸仪器与设备。

2.注意人身安全和教具完好。

3.严禁未经许可,擅自扳动教具、设备的电器开关、点火开关和起动开关。

七、实训小结

项目四:热线式空气流量计原理与测量

一、目的和要求

1、了解热线式空气流量计的结构与原理

2、掌握热线式空气流量计的测量方法

二、实训课时

实训共安排2.0课时,其中辅导老师讲解0.5课时,学生实训、试验、填写检测报告1.5课时。

《检测报告》作为考评时的主要数据,分数记入个人实训总成绩。

三、实训器材

1、工具:汽车数字万用表。

2、设备:高压共轨电控柴油发动机一台。

3、教具:热线式空气流量计一个。

四、原理与应用

空气流量计(MAF)在L型电控燃油喷射系统中,由空气流量计测量发动机的进气量,并将进气量信号输入ECU。根据空气流量计测量原理不同,空气流量计可分为叶片式、热式和卡门旋涡成三种类型。空气流量计是EFI系统最重要的传感器。在维修和检查时,应特别注意,切忌碰撞,不要让污物进入流量计内,也不能随意将手或工具伸入流量计内,以免造

玉柴高压共轨系统维修柴油机培训材料

共轨系统概述BOSCH高压共轨技术 柴油共轨系统特性 传统柴油喷射系统其压力的产生与喷油量跟凸轮与柱塞联系在一起,喷油的压力随着发动机转速与喷油量的增加而增加。这种柴油系统已经无法满足日益严格的排放法规和降低油耗的愿望。 共轨系统(Common Rail Systems,简称CRS)将燃油在高压下贮存在蓄压器(高压油轨)中,从本质上克服了传统柴油机喷射系统的缺陷,其特性有: 喷油压力的产生不依赖于发动机转速与系统喷油量,可根据发动机不同的工况灵活控制喷射压力和油量,从而实现低转速高喷射压力,达到低速高扭矩,低排放及优化燃油经济性的目的。 通过电子控制单元算出理想的喷油量和喷油时间,再由喷油器精确地喷射,甚至多次喷射。更高的系统压力,更好的排放能力,更低的燃油消耗 柴油共轨系统组成 柴油共轨喷射系统由液力系统和电子控制系统构成。其中液力系统又分低压液力系统和高压液力系统。 液力系统 低压液力系统 —油箱 —输油泵 —燃油滤清器 —低压油管 高压液力系统 —高压泵 —高压油轨 —喷油器 —高压油管 电子控制系统(Electronic Diesel Control,简称EDC)

—传感器 —电控单元(Electronic Control Unit,简称ECU) —执行器,包括带电磁阀的喷油器、压力控制阀、预热塞控制单元、 增压压力调节器、废气循环调节器、节流阀等 —线束 其中,喷油器、高压泵、高压油轨、电控单元为柴油共轨系统四大核心的部件。 轨系统示意图 喷油器 喷油器是将燃油雾化并分布在发动机燃烧室的部件。共轨喷油器的喷油时刻和持续时间均经电控单元精确计算后给出信号,再由电磁阀控制。 高压泵 高压泵的作用是将燃油由低压状态通过柱塞将其压缩成高压状态,以满足系统和发动机对燃油喷射压力和喷油量的要求。 高压油轨 高压油轨的作用是存贮燃油,同时抑制由于高压泵供油和喷油器喷油产生的压力波动,确保系统压力稳定。高压油轨为各缸共同所有,其为共轨系统的标志。 电控单元 电控单元就像发动机的大脑,它收集发动机的运行工况参数,结合已存储的特性图谱进行计算处理,并把信号传递给执行器,实现发动机的运行控制、故障诊断等功能。

柴油发动机电控

柴油发动机电控 21世纪是绿色柴油机的时代,传统的燃油系统已经不能适应柴油机技术发展的需要,机械技术与电子技术的结合使得汽车技术发生了一系列深刻的变化。柴油机电控系统,是必然之选。到目前为止,世界上许多发达国家已经研究并生产了很多功能各异的柴油机电控系统。柴油机电子控制的内容已由当初的燃油喷射系统单一控制,逐步发展到了各个系统控制,如可变气门驱动系统、可变进气涡轮控制系统以及废气再循环等。21世纪柴油机电子控制系统将进入发展的鼎盛时期。目前我国生产的宝来、奥迪轿车以及长城哈弗、华泰圣达菲等一些SUV都已采用了柴油机电控技术,其中很多技术处于世界先进水平,如高压共轨喷射技术、泵喷嘴技术等。本篇突出了柴油机电控部分的构原理和目前先进的柴油机电控技术。 电控柴油共轨系统的主要特点 1 改善柴油机的经济性 由于柴油机具有优异的节油特性,行驶成本远远低于汽油轿车。在原油价格不断上涨的情况下,它的经济性无论是对社会还是个人,都显示出巨大的价值。 2 提高控制精度 控制系统的控制精度越高,被控对象的功能指标就越容易接近最

优值。计算机控制的精度主要体现在三个方面:输入信号的高保真、信号均以数字形式传输,只要计算机的位数够高,就能保证足够的精度、高分辨率的输出信号。 3 控制策略灵活 对于不同的柴油机,其控制策略往往不同,当需要改进或与其他机型匹配时,传统的办法是改变机械控制系统,周期长成本高。计算机控制系统需要改变的仅仅是EPROM中的软件程序。有些情况下,甚至不需要变更便能用于不同的柴油机。 4 电子控制 整个系统有传感器、电控单元和执行器三大部分组成。最明显的特点是柴油电控喷射系统的多样化,具有高压、高频、脉动等特点喷射压力高达60-150MPa,甚至200MPa。柴油机电控喷油系统的组成 柴油机电控系统由传感器、执行器和电控单元组成。传感器检测出发动机或喷油泵的运行状态,ECU根据个传感器信息,控制发动机的最佳喷油量、最佳喷油时间,执行器根据计算机的指令,准确的控制喷油量和喷油时间。 电控燃油共轨系统的组成 电控高压共轨燃油系统可分成两大部分:电控系统和燃油供给系统。 1 电控系统

电控高压共轨柴油机标定步骤

一、标准学习 GB 17691-2005车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段) 二、柴油机台架标定。 1 外特性工况点油量的初步限制 首先确定机型的外特性曲线,然后对各转速下的外特性工况点进行初步的油量限制,确保柴油机在以后的标定过程中不出现不正常的现象。此时要监控发动机的爆压、涡轮后排温、机油压力、出水温度等参数不得超过柴油机规定的限值。 台架标定相关修改或监控的INCA参数: EngPrt_swtTrq_C = 0 EngPrt_qLim_CUR InjCrv_phiMI1Bas1_MAP Rail_pSetPointBase_MAP InjCtl_qLim CoEng_stCurrLimActive 2 ESC(European steady state cycle欧洲稳态测试循环)的标定 根据外特性曲线定出A、B、C三点的转速和100%的扭矩。在主喷的轨压和提前角的MAP图里面插入这三个转速。可根据需要把这与三个转速加到其他相关的MAP和CUR中,如InjCtl_tiET_MAP,EngPrt_qLim_CUR,EngPrt_TrqLim_CUR等,然后进行13工况各排放点的标定。 在台架标定时,可对标定点附近的主喷轨压和提前角设置成一致,这样可以保证各排放工况点的稳定。记录该排放点在某一主喷轨压和提前角时的各试验参数:大气压力/温度/相对或者绝对湿度、中冷后温度/压力、油耗量、空气流量、NOx的浓度值、爆压、烟度、涡轮后排温等,然后根据相应的NOx的计算公式得到该排放点的NOx值。标定的目标就是在保证各点的NOx在小于5g/前提下,尽可能的使烟度值降低,即保证颗粒的排放也要小。 一般说来主喷的轨压越高(提前角越大),NOx值就会越高,但烟度和油耗会降低。因此要综合权衡NOx和烟度的关系。如果不能达到理想的效果,就要考虑喷油器、燃烧室以及增压器等部件的匹配问题。 由于进行ESC试验时,需要在A和C转速之间的工况点任意加测三个点的排放,因此也需要对A、C区域的其他转速下工况点的轨压和提前角进行标定,使得这些转速下的工况点的NOx和烟度值不能和其相邻四个排放点的NOx和烟度值差别过大。 台架标定时注意轨压在发动机转速100r/min间隔不得高于200bar;喷油量在10mg/cyc间隔的轨压不得高于200bar。 相关修改或监控的INCA参数: InjCrv_phiMI1Bas1_MAP Rail_pSetPointBase_MAP EngPrt_qLim_CUR EngM_nAvrg InjCrv_phiMI1Bas RailCD_pPeak InjCtl_qSetUnBal CoEng_stCurrLimActive 3 ET-MAP的标定: 由于喷油器的加电MAP图是在油泵试验台上得到的,跟喷油器实际工作环境不同,因此需要对从台架得到的加电MAP的数据进行修改,使ECU显示的喷油量跟台架实测的燃油消耗率的结果等效: (mg/cyc*3*60*n)/(1000*P)= g/ 即:mg/cyc =(g/*Trq)/ 1719 SMG remark:设置SV101=BSFC*Torque/1719 该方法只适用于喷油量大于15mg/cyc以上的加电时间的标定,不适合小喷油量对应加电时间的标定,因为此时油耗仪测量的结果不稳,再就是还有部分燃油没有燃烧,因此需要利用碳平衡法(可根据欧III标准编制计算公式)测量尾气中HC、CO、CO2的浓度,计算得到小负荷工况下的油耗率,然后根据上面的公式,对小油量的加电时间进行标定。 标定方法:选择一个固定转速,如B点,然后根据InjVCD_tiET_MAP中x坐标轨压的显示值,确定需要进行标定的轨压,例如下图,可以选择350bar、550bar、750bar、950bar和1300bar作为标定的轨压。把B点的轨压全部设为350bar,根据y轴的喷油量选择需要标定的工况点,监控ECU显示的喷油量和实测油耗率,如果该工况点显

电控高压共轨柴油发动机原理及特点

电控高压共轨柴油发动机原理及特点

前言 电控柴油发动机进入海气已有十个年头了,我们的汽车维修工还没有正确认识它。目前进入我国燃油喷射系统技术有博世、电装、德尔福等几家柴油机用电控技术来控制供油,并非想象中的那么神秘,它的发动机工作原理是一样的。我们常见电控柴油发动机均采用电控共轨或单体泵技术,其主要差异在于发动机的燃油喷射系统,发动机的外形差异不是很大,电控部分的实现、更加有利于整正性能的优化,减少排放、经济性、动力性、以及整车的舒适性等。 第一章电控发动机与普通发动机的差异 一、技术原理上的差异性。 1、高压共轨与四气门技术结合。 电控发动机目前一般采用高压共轨、四气门和涡轮增压中冷技术相结合,四气门结构(二进、二排)不仅可以提高充气效率,更由于喷油嘴可以居中布置,使多孔油未均匀分布,可为燃油和空气良好混合创造条件,同时可以在四气门缸盖上将进气道设计成两个独立的具有圆形状的结构以实现可变涡流。这些因素的协调配合,可大大提高混合气的形成质量(品质),有效降低碳烟颗粒(HC)碳氢和(NOX)氮氧化物排放,并提高热效率。 2、高压喷油和电控喷射技术。 高压喷射和电控喷射技术的有效采用,可使燃油充分雾化,各缸的燃油和空气混合达到最佳,从而降低排放,提高整车性能。二、部件构成上的差异。 电控高压共轨技术是指在高压油泵、共轨管、压力传感器和

ECU(电脑控制)组成的闭环系统中,将喷射压力的产生和喷射过程彼此分开的一种技术。由高压油泵把高压燃油输送到共轨管,通过对共轨管内的油压进行闭环控制,喷油压力独立可调。 三、高压共轨系统的特点。 高压共轨系统改变了传统的喷油系统的组成结构,最大的特点就是将燃油压力产生和燃油喷射分离,以此对轨管内的油压实现精确控制。 1、可靠性:对轻型车来说系统零部件成熟且有长期使用考核验证,中型比较成熟。 2、继承性:结构简单,安装方便。 3、灵活性:高压共轨油压独立于发动机转速控制,整车控制功能强。 4、喷油压力:共轨管压力1600bar、普通压力180kgf/cm2。 5、多次喷油:可以实现多次喷射,目前最好的共轨系统可以进行6次喷射,共轨系统的灵活性好。 6、升级潜力:多次喷油特别是后喷能力使得共轨系统特别方便与后处理系统配合。 7、匹配适合性:结构移植方便,适应范围广,与柴油机均能很好匹配。 8、时间控制:时间控制系统抛弃了传统喷油系统的泵、管、嘴、系统,用高速电磁阀直接控制高压燃油的通与断,喷油量由电磁阀开启和切断的时间来确定,时间控制系统结构简单,将喷油量和喷油正时的控制合二为一,控制的自由度更大,同时能较大地提高喷

电控高压共轨柴油机标定步骤

电控高压共轨柴油机的标定 一、标准学习 GB 17691-2005车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段) 二、柴油机台架标定。 1 外特性工况点油量的初步限制 首先确定机型的外特性曲线,然后对各转速下的外特性工况点进行初步的油量限制,确保柴油机在以后的标定过程中不出现不正常的现象。此时要监控发动机的爆压、涡轮后排温、机油压力、出水温度等参数不得超过柴油机规定的限值。 台架标定相关修改或监控的INCA参数: EngPrt_swtTrq_C = 0 EngPrt_qLim_CUR InjCrv_phiMI1Bas1_MAP Rail_pSetPointBase_MAP InjCtl_qLim CoEng_stCurrLimActive 2 ESC(European steady state cycle欧洲稳态测试循环)的标定 根据外特性曲线定出A、B、C三点的转速和100%的扭矩。在主喷的轨压和提前角的MAP图里面插入这三个转速。可根据需要把这与三个转速加到其他相关的MAP和CUR中,如InjCtl_tiET_MAP,EngPrt_qLim_CUR,EngPrt_TrqLim_CUR等,然后进行13工况各排放点的标定。 在台架标定时,可对标定点附近的主喷轨压和提前角设置成一致,这样可以保证各排放工况点的稳定。记录该排放点在某一主喷轨压和提前角时的各试验参数:大气压力/温度/相对或者绝对湿度、中冷后温度/压力、油耗量、空气流量、NOx的浓度值、爆压、烟度、涡轮后排温等,然后根据相应的NOx的计算公式得到该排放点的NOx值。标定的目标就是在保证各点的NOx在小于5g/kW.h前提下,尽可能的使烟度值降低,即保证颗粒的排放也要小。 一般说来主喷的轨压越高(提前角越大),NOx值就会越高,但烟度和油耗会降低。因此要综合权衡NOx和烟度的关系。如果不能达到理想的效果,就要考虑喷油器、燃烧室以及增压器等部件的匹配问题。 由于进行ESC试验时,需要在A和C转速之间的工况点任意加测三个点的排放,因此也需要对A、C区域的其他转速下工况点的轨压和提前角进行标定,使得这些转速下的工况点的NOx和烟度值不能和其相邻四个排放点的NOx和烟度值差别过大。 台架标定时注意轨压在发动机转速100r/min间隔不得高于200bar;喷油量在10mg/cyc间隔的轨压不得高于200bar。

浅谈柴油机高压共轨技术

浅谈柴油机高压共轨技术 一、高压共轨技术简介 我们先来了解下传统柴油发动机燃油喷射系统的局限性: 传统柴油发动机燃油喷射系统的工作过程是:柴油通过高压油泵提高油压后,再按照一定的供油定时和供油量通过喷油器,喷入气缸燃烧室。在燃油喷射过程中,由于压力波动,存在二次喷油现象。由于二次喷油不可能完全燃烧,于是增加了烟度和碳氢化合物的排放量,油耗也增高。此外,每次喷射循环后高压油管内的残压都会发生变化,随之引起不稳定的喷射,尤其在低转速区域容易产生上述现象,严重时不仅喷油不均匀,而且会发生间歇性不喷射现象。 随着发动机自动控制技术的发展和进步,为了解决柴油机燃油压力变化所造成的燃油喷射燃烧缺陷,现代柴油机采用了一种高压共轨电控燃油喷射技术,使柴油机的性能得到了全面提升。 柴油机在机械喷射、增压喷射和普通电喷后,近几年来出现了共轨高压喷射。高压共轨(Common Rail)电喷技术是指在高压油泵、压力传感器和电子控制单元(ECU)组成的闭环系统中,相比于一般的喷油系统,它的压力建立、喷射压力控制和喷油过程相互独立,并可以灵活地控制。它是由高压油泵将高压燃油输送到公共供油管(Rail),通过公共供油管内的油压实现精确控制,使高压油管压力(Pressure)大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速变化的程度。 另外,共轨喷油系统的高精度零部件的表面加工质量要求高,几何精度高,特殊要求多,其加工都是微米、亚纳米级的精度,代表了目前机械制造行业的最高加工水平。 二、高压共轨系统的组成和工作原理 2.1、高压共轨喷射系统组成 高压共轨喷射系统主要由高压油泵、共轨管、电控喷油器、各种传感器和电控单元ECU 等组成,如图1所示。发动机工作时,高压油泵上自带的齿轮泵通过负压从油箱中吸油,并以一定的压力(约5~7bar)将过滤后燃油送入高压油泵。燃油进入高压柱塞腔后被压缩,通过高压油管进入共轨管形成高压,每缸喷油器通过高压油管与共轨管相连,以实现高压喷射。 2.1.1 高压油泵(High pressure pump) 高压油泵是高压共轨系统中的关键部件之一,它的主要作用是将低压燃油加压成为高压燃油,储存在油轨内等待ECU的喷射指令。高压油泵由齿轮泵、油量计量单元、溢流阀、进出油阀和高压柱塞等部分组成。以Bosch目前广泛应用于中国商用车市场并已开始本地化生产的CPN2.2BL为例,其结构如图2所示[12]。

柴油发动机电控系统

柴油发动机的电控系统 柴油机电控系统以柴油机转速和负荷作为反映柴油机实际工况的基本信号,参照由试验得出的柴油机各工况相对应的喷油量和喷油定时MAP来确定基本的喷油量和喷油定时,然后根据各种因素(如水温、油温、、大气压力等)对其进行各种补偿,从而得到最佳的喷油量和喷油正时,然后通过执行器进行控制输出。 柴油机电控系统概述 【任务目标】 (1)柴油机电控技术的发展。 (2)柴油机电控技术的特点。 (3)柴油机电控系统的基本组成。 (4)应用在柴油机上的电控系统。 【学习目标】 (1)了解柴油机电控技术的发展。 (2)了解柴油机电控技术的特点。 (3)了解柴油机电控系统的基本组成。 (4)掌握应用在柴油机上的电控系统。 柴油机电控技术的发展 1.柴油机电控技术的发展 1)柴油机技术的发展历程 柴油用英文表示为Diesel,这是为了纪念柴油发动机的发明者――鲁道夫·狄塞尔(RudolfDiesel)如图8-1所示。 狄塞尔生于1858年,德国人,毕业于慕尼黑工业大学。1879年,狄塞尔大学毕业,当上了一名冷藏专业工程师。在工作中狄塞尔深感当时的蒸气机效率极低,萌发了设计新型发动机的念头。在积蓄了一些资金后,狄塞尔辞去了制冷工程师的职务,自己开办了一家发动机实验室。 针对蒸汽机效率低的弱点,狄塞尔专注于开发高效率的内燃机。19世纪末,石油产品在欧洲极为罕见,于是狄塞尔决定选用植物油来解决机器的燃料问题(他用于实验的是花生油)。因为植物油点火性能不佳,无法套用奥托内燃机的结构。狄塞尔决定另起炉灶,提高内燃机的压缩比,利用压缩产生的高温高压点燃油料。后来,这种压燃式发动机循环便被称为狄塞尔循环。

柴油机高压共轨电控燃油喷射技术介绍

柴油机高压共轨电控燃油喷射技术介绍 摘要:传统机械发动机的喷油系统凭借其可靠性、易维护性一直在不断地发展和使用。进入21世纪以来,随着人们对能源、环保的意识和要求日益提高,传统发动机的脉动喷油系统已经不能够满足现代发动机的要求。因此,现代发动机的共轨燃油喷射技术在避免了传统发动机缺点的基础上,得到了快速的发展,已经成为燃油喷射的主要发展趋势。为了更好的对高压共轨电控发动机燃油喷射系统的理解,现对高压共轨电控燃油喷射系统进行系统的介绍。 1 引言 随着世界各国工程机械、运输车辆等数量增加,柴油机排放的尾气已经成为对地球环境的主要污染原因之一,如何采取措施保护人类赖以生存的地球环境已是当务之急。我国从八十年代起相应制订了有关的标准,将环境保护作为大事来抓。与此同时,世界各国也已开始寻找和探究其他方法和采取其他有效的技术措施主动地减少和控制污染物的排放。共轨式电控燃油喷射技术正是从众多方法和措施中脱颖而出的一项较为成功的控制柴油机污染排放的新技术。 2 高压共轨电控燃油喷射技术发展过程 20世纪40年代电控共轨燃油喷射技术首先在航空发动机上应用,20世纪50年代在赛车发动机上广泛应用。20世纪90年代,柴油机的电控供油系统开始在实际应用中大量使用。主要有日本电装公司和丰田汽车公司ECD-U2系统、博世公司和D-C公司电控共轨式燃油喷射系统。 国外在柴油机电控高压共轨燃油喷射系统方面的研究开展得较早而且比较深入,有多种共轨系统已经投产,并与整车进行了匹配应用。日本电装公司的ECD-U2系统是电控高压共轨燃油喷射系统的典型代表,该系统还能实现预喷射和靴型喷射。 共轨喷射的发展大体经历了3个阶段,如表1所示。 从表1中可以看出:共轨喷射的最高喷射压力在不断提高,这样对于喷射品质的提高有着重要的意义。压力越高,燃料雾化越好,颗粒越小越均匀,燃烧越充分,经济性、动力性和排放性均好,但这对喷射系统的要求也越高;喷射的次数不断增加,可以实现满足发动机燃烧和排放的多次喷射,可以控制燃烧的不同阶段喷油量和喷油速率,使燃烧更充分,热效率提高;在最小稳定喷射量上,3个阶段的每次的喷射量在下降,这说明每次喷射时候可以使喷射更均匀、更细密,喷油和断油更干脆,反应灵敏,响应特性好,这样有利于燃烧,减少积炭的产生。

柴油发动机电控系参考试题及答案

第六章习题 一、填空题 . ___、喷油量、喷油正时____是影响柴油机动力性和经济性的重要因素。 2.柴油机电控系统中,进气控制主要包括___、进气节流控制、可变进气涡流控制、可变配气正时控制 ___控制。 3.在柴油机电控燃油喷射系统中,ECU以柴油机____转速信号、负荷信号_____作为主控制信号,按设定的程序确定最佳的供油速率和供油规律。 4.柴油机的怠速控制主要包括_____.怠速转速控制、怠速时各缸均匀性______的控制。 5.柴油机的起动控制主要包括_______供油量控制、供油正时控制、预热装置、____ 、控制。 6.常用的加速踏板位置传感器有___电位计式、差动电感式___。 7.差动电感式加速踏板位置传感器主要由____、铁心、感应线圈、线束连接器____等组成。 8.柴油机中的燃油温度传感器一般采用的是_______热敏电阻式_________。 9. 第一代柴油机电控燃油喷射系统主要以______电控直列柱塞泵、电控转子分配泵 __为特征。 10. “位置控制”的直列柱塞泵供油量控制一般采用_____.占空比控制型______电磁阀。 11.柴油机电控系统的控制模式可分为_____、开环控制、闭环控制、开环—闭环综合控制______三大类。 12.最佳喷油提前角受_____、发动机转速、负荷、冷却水温度、___燃油温度、进气温度、及压力等多种因素的影响。 13.柴油机电控系统是由____、输入装置、电子控制模块、执行器____三部分组成。 14.加速踏板位置传感器用以检测__发动机负荷___信号。 15.发动机负荷信号和___发动机转速____信号共同决定柴油机的喷油量及喷油提前角。 16.柴油机电子控制系统的执行器由________执行电器、机械执行机构、_______两部分组成。 17.柴油机执行器中所使用的执行电器主要有____电磁铁、螺线管、直流电机、步进电机___ 、________和力矩电机等。 18.最早的柴油机电控燃油喷射系统就是以____直列柱塞式喷油泵___为基础改造的。 19.在装用电子调速器的柱塞泵电控系统中,喷油量控制是由ECU通过控制_____电子调速器___来实现的。 20.直流电动机式电子调速器主要由_____.电动助推器、杠杆机构____ 和控制杆等组成。 21.电动助推器实际上就是直线运动的____直流电动机___。 22.控制杆位置传感器安装在____内,用来检测_____的位置。(电子调节器、控制杆) 23.柱塞泵正时控制器的组成主要由___缸体、活塞、偏心轮、凸轮轴法兰、驱动盘___、调整弹簧等组成。 24.直列柱塞泵供油正时电控系统的两个电磁阀分别安装在__正时控制器进、回油路中___中。 25.直列柱塞泵供油正时电控系统的转速传感器安装在____喷油泵驱动轴上__上。 26.直列柱塞泵常用的正时控制器为_____电控液压式___。 27.电控柴油机燃油喷射控制主要包括____控制;_____控制; ____控制等。(供(喷)油量;供(喷)油正时;供(喷)油速率喷油压力) 28.第二代柴油机电控燃油喷射系统包括________燃油喷射系统; ____燃油喷射系统和____燃油喷射系统。(电控共轨式;(电控单体泵电控P-T喷油器)

柴油机电控技术发展三个阶段的技术简介.doc

柴油机电控技术发展三个阶段的技术简介 柴油机电控技术的发展 柴油机电控技术是在解决能源危机和排放污染两大难题的背景下,在飞速发展的电子控制技术平台上发展起来的。汽油机电控技术的发展为柴油机电控技术的发展提供了宝贵经验。 柴油机电控技术发展的三个阶段:位置控制、时间控制、时间—压力控制(压力控制)

第一代柴油机电控燃油喷射系统(常规压力电控喷油系统) 优点:结构不需改动,生产继承性好,便于对现有柴油机进行升级换代。 缺点:系统响应慢、控制频率低、控制自由度小、控制精度不够高,喷油压力无法独立控制。 第二代柴油机电控燃油喷射系统(高压电控喷油系统) 改变了传统燃油供给系统的组成和结构,主要以电控共轨(各缸喷油器共用一个高压油管)式喷油系统为特征,直接对喷油器的喷油量、喷油正时、喷油速率和喷油规律、喷油压力等进行“时间-压力控制”或“压力控制”。 特点:通过设置传感器、电控单元、高速电磁阀和相关电/液控制执行元件等,组成数字式高频调节系统,有电磁阀的通、断电时刻和通、断电时间控制喷油泵的供油量和供油正时。但供油压力还无法独立控制。 ●柴油机电控燃油喷射系统的优点 1.改善低温起动性。 电子控制系统能够以最佳的程序替代驾驶员进行这种麻烦的起动操作,使柴油机低温起动更容易。 2.降低氮氧化物和烟度的排放。 采用柴油机电控技术,可精确地将喷油量控制在不超过冒烟界限的适当范围内,同时根据发动机工况调节喷油时刻,从而有效地抑制排烟。 3.提高发动机运转稳定性。 4.提高发动机的动力性和经济性。 采用柴油机电控系统,无论负荷怎样增减,都能保证发动机怠速工况下以最低的转速稳定运转,有利于提高其经济性。 5.控制涡轮增压。 柴油机电控系统中,ECU根据传感器信号精确计算喷油量和喷油正时。从而提高发动机的动力性和经济性。采用电子控制技术可以对增压装置进行精确的控制。 6.适应性广。

柴油机电子控制系统的发展

目录 1前言......................................................................................................................... 2电子控制柴油机概述............................................................................................... 2.1何谓电喷柴油机 ............................................................................................ 2.2柴油机电子控制技术的发展状况 ................................................................ 2.3柴油机电子控制技术的目的及优点 ............................................................ 2.3.1柴油机电子控制技术的目的.............................................................. 2.3.2柴油机电子控制技术的优点.............................................................. 2.4柴油机电控技术的特点 ................................................................................ 2.4.1柴油机是一种热效率比较高的动力机械.......................................... 2.4.2柴油机的喷射系统形式多样.............................................................. 2.5电控柴油喷射系统分类 ................................................................................ 2.5.1位置控制系统...................................................................................... 2.5.2时间控制方式...................................................................................... 2.5.3时间-压力控制方式.......................................................................... 2.5.4压力控制方式...................................................................................... 3电子控制柴油机技术介绍....................................................................................... 3.1单体泵技术 .................................................................................................... 3.1.1单体泵控制油路.................................................................................. 3.1.2单体泵系统的另一个优势.................................................................. 3.2泵喷嘴技术 .................................................................................................... 3.3高压共轨技术 ................................................................................................ 4柴油机电子控制技术的发展趋势........................................................................... 4.1高的喷射压力 ................................................................................................ 4.2独立的喷射压力控制 .................................................................................... 4.3改善柴油机燃油经济性 ................................................................................ 4.4独立的燃油喷射正时控制 ............................................................................ 4.5可变的预喷射控制能力 ................................................................................ 4.6最小油量的控制能力 .................................................................................... 4.7快速断油能力 ................................................................................................ 4.8降低驱动扭矩冲击载荷 ................................................................................ 5结论......................................................................................................................... 6参考文献................................................................................................................... 摘要 柴油机的发展水平一直是车辆发展水平的重要标志,随着国家对环保的重视和国际石油价格高涨,我国应对柴油机的发展引起足够重视。车用柴油机面临着日趋严格的排

浅谈柴油机高压共轨技术

浅谈柴油机高压共轨技术 浅谈柴油机高压共轨技术 一、高压共轨技术简介我们先来了解下传统柴油发动机燃油喷射 系统的局限性:传统柴油发动机燃油喷射系统的工作过程再按照一定是:柴油通过高压油泵提高油压后,喷入气缸燃的供油定时

和供油量通过喷油器, 烧室。在燃油喷射过程中,由于压力波动,存在二次喷油现象。由于二次喷油不可能完全燃烧,油耗于是增加了烟度和碳氢化合物的排放量, 每次喷射循环后高压油管内的残此外,也增高。尤其随之引起不稳定的喷射,压都会发生变化,严重时不仅喷在低转速区域容易产生上述现象,油不均匀,而且会发生间歇性不喷射现象。为随着发动机自动控制技术的发展和进步,了解决柴油机燃油压力变化所造成的燃油喷射现代柴油机采用了一种 高压共轨电控燃烧缺陷,燃油喷射技术,使柴油机的性能得到了全面提升。,柴油机在机械喷射、增压喷射和普通电喷后轨共。射高压喷高共现来几近年出了轨压电喷技术 是指在高压油泵、压力Rail)Common (- 1 - 传感器和电子控制单元(ECU)组成的闭环系统中,相比于一般的喷油系统,它的压力建立、喷射压力控制和喷油过程相互独立,并

可以灵活地控制。它是由高压油泵将高压燃油输送到公共供油管(Rail),通过公共供油管内的油压实现精确控制,使高压油管压力(Pressure)大小与发动机的转速无关,可 以大幅度减小柴油机供油压力随发动机转 速变化的程度。 另外,共轨喷油系统的高精度零部件的表面加工质量要求高,几何精度高,特殊要求多,其加工都是微米、亚纳米级的精度,代表了目前机械制造行业的最高加工水平。 二、高压共轨系统的组成和工作原理 2.1、高压共轨喷射系统组成 高压共轨喷射系统主要由高压油泵、共轨ECU管、电控喷油器、各种传感器和电控单元- 2 -

柴油机高压共轨喷油系统的现状及发展

柴油机高压共轨喷油系统的现状及发展 陈然 摘要:随着排放法规的日益严格和柴油机电控技术的不断进步,高压共轨喷油系统作为一种高度柔性控制的燃油喷射系统,以其显著的优越性,已经成为现代柴油机技术的主要发展方向之一。本文介绍了电控高压共轨喷油系统的组成、工作原理和特点,概括了国内外的研究状况,最后提出了未来的研究目标和发展趋势。 关键词:柴油机;喷射系统;高压共轨;发展趋势 能源危机和环境污染问题以及世界各国日益严格的排放法规促使人们进一步改善柴油机的燃烧过程,而影响燃烧过程的关键是燃油喷射系统的性能。电控高压共轨喷油系统通过各种传感器检测出发动机的实际运行状况,由计算机计算和处理,可以精确、柔性地控制柴油机喷油量、喷油定时和喷射压力,与传统的喷射技术相比,进一步降低了燃油消耗和排放,增强了动力性能,实现了柴油机综合性能的又一次飞跃。柴油机高压共轨系统在整个内燃机行业被公认为20世纪三大突破之一[1],是21世纪柴油喷射系统的主流。 1电控高压喷油系统的原理和结构 与前两代喷油系统相比,电控共轨燃油喷射系统克服了燃油压力受柴油机转速的影响,不再采用传统的柱塞泵脉动供油原理,而采用了公共控制油道——共轨管,高压油泵只是向公共油道供油以保持所需的共轨压力,通过连续调节共轨压力来控制喷射压力,使其达到与工况相适应的最优数值,而且还使得喷油压力和喷油速率的控制成为

可能,且系统的控制自由度及精度得到了大幅度提高。 高压共轨喷油系统的结构见图1,为典型的电控高压共轨喷射系统,主要由高压泵、带调压阀的共轨管、带电磁阀的喷油器、各种传感器和电控单元(ECU)组成。 图1 高压共轨喷射系统结构 2 国外主要的高压共轨喷射系统 目前,国外在柴油机电控共轨喷射系统方面的研究进展很快,并有多种共轨喷射系统设计并投产。德国Bosch公司、意大利菲亚特集团、英国LUCAS、日本电装公司、美国德尔福公司等世界著名油泵油嘴制造商相继开发了高压共轨系统。 2.1 德国Bosch公司的高压共轨系统 目前为止,Bosch公司总共规划和设计了3代高压共轨系统。如图2所示为Bosch公司的高压共轨喷射系统。第一代已经上世纪批量投放市场,主要应用于轿车,喷射压力达135MPa。第二代于2000年开始批量生产,开始使用具有油量调节功能的高压泵和经改进的电磁阀喷油器,喷射循环由预喷射、主喷射和多级喷射等多次喷射组成,最大

详谈柴油机高压共轨电喷技术

详谈柴油机高压共轨电喷技术高压共轨(Common Rail)电喷技术是指在高压油泵、压力传感器和电子控制单元(ECU)组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式。它是由高压油泵将高压燃油输送到公共供油管(Rail),通过公共供油管内的油压实现精确控制,使高压油管压力(Pressure)大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速变化的程度. 共轨技术是指高压油泵、压力传感器和ECU组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式,由高压油泵把高压燃油输送到公共供油管,通过对公共供油管内的油压实现精确控制,使高压油管压力大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速的变化,因此也就减少了传统柴油机的缺陷。ECU控制喷油器的喷油量,喷油量大小取决于燃油轨(公共供油管)压力和电磁阀开启时间的长短。 共轨系统将燃油压力产生和燃油喷射分离开来,如果把单体泵柴油喷射技术比做柴油技术的革命的话,那共轨就可以称作反叛了,因为它背离了传统的柴油系统而近似于顺序汽油喷射系统。共轨系统开辟了降低柴油发动机排放和噪音的新途径。 欧洲可以说是柴油车的天堂,在德国柴油轿车占了39%。柴油轿车已有了近70年的历史,而最近10年可以说柴油发动机有了突飞猛进的发展。在1997年,博世与奔驰公司联合开发了共轨柴油喷射系统(Common Rail System)。今天在欧洲,众多品牌的轿车都配有共轨柴油发动机,如标致公司就有HDI共轨

柴油发动机,菲亚特公司的JTD发动机,而德尔福则开发了Multec DCR柴油共轨系统。 共轨系统与柴油喷射系统的区别 共轨系统与之前以凸轮轴驱动的柴油喷射系统不同,共轨式柴油喷射系统将喷射压力的产生和喷射过程彼此完全分开。电磁阀控制的喷油器替代了传统的机械式喷油器,燃油轨中的燃油压力由一个径向柱塞式高压泵产生,压力大小与发动机的转速无关,可在一定范围内自由设定。共轨中的燃油压力由一个电磁压力调节阀控制,根据发动机的工作需要进行连续压力调节。电控单元作用于喷油器电磁阀上的脉冲信号控制燃油的喷射过程。喷油量的大小取决于燃油轨中的油压和电磁阀开启时间的长短,及喷油嘴液体流动特性。 燃油喷射压力是柴油发动机的重要指标,因为它联系着发动机的动力、油耗、排放等。共轨柴油喷射系统已将燃油喷射压力提高到1800巴 近年发展 最近2年,匹配直喷柴油发动机的轿车在欧洲得到了显著发展,有着高效和出色的燃油经济性,并降低了发动机噪音。直喷柴油发动机使用的是泵喷嘴系统,国内生产的1.9TDI宝来就应用这一系统,最高喷射压力可达到1800巴。泵喷嘴直喷系统好虽好,但燃油压力不能保持恒定,随着排放控制的更加苛刻,就需要更高及恒定的柴油喷射压力和更完善的电子控制,于是众多制造商们就把优点更多的柴油共轨系统作为柴油发动机的发展方向。这一系统有很高的燃油压力,并能提供弹性燃油分配控制,通过ECU灵活地控制燃油分配、燃油喷射时间、

柴油机高压共轨喷油系统的现状与发展

柴油机高压共轨喷油系统的现状及发展 然 摘要:随着排放法规的日益严格和柴油机电控技术的不断进步,高压共轨喷油系统作为一种高度柔性控制的燃油喷射系统,以其显著的优越性,已经成为现代柴油机技术的主要发展方向之一。本文介绍了电控高压共轨喷油系统的组成、工作原理和特点,概括了国外的研究状况,最后提出了未来的研究目标和发展趋势。 关键词:柴油机;喷射系统;高压共轨;发展趋势 能源危机和环境污染问题以及世界各国日益严格的排放法规促使人们进一步改善柴油机的燃烧过程,而影响燃烧过程的关键是燃油喷射系统的性能。电控高压共轨喷油系统通过各种传感器检测出发动机的实际运行状况,由计算机计算和处理,可以精确、柔性地控制柴油机喷油量、喷油定时和喷射压力,与传统的喷射技术相比,进一步降低了燃油消耗和排放,增强了动力性能,实现了柴油机综合性能的又一次飞跃。柴油机高压共轨系统在整个燃机行业被公认为20世纪三大突破之一[1],是21世纪柴油喷射系统的主流。 1电控高压喷油系统的原理和结构 与前两代喷油系统相比,电控共轨燃油喷射系统克服了燃油压力受柴油机转速的影响,不再采用传统的柱塞泵脉动供油原理,而采用了公共控制油道——共轨管,高压油泵只是向公共油道供油以保持所需的共轨压力,通过连续调节共轨压力来控制喷射压力,使其达到与工况相适应的最优数值,而且还使得喷油压力和喷油速率的控制成为

可能,且系统的控制自由度及精度得到了大幅度提高。 高压共轨喷油系统的结构见图1,为典型的电控高压共轨喷射系统,主要由高压泵、带调压阀的共轨管、带电磁阀的喷油器、各种传感器和电控单元(ECU)组成。 图1 高压共轨喷射系统结构 2 国外主要的高压共轨喷射系统 目前,国外在柴油机电控共轨喷射系统方面的研究进展很快,并有多种共轨喷射系统设计并投产。德国Bosch公司、意大利菲亚特集团、英国LUCAS、日本电装公司、美国德尔福公司等世界著名油泵油嘴制造商相继开发了高压共轨系统。 2.1 德国Bosch公司的高压共轨系统 目前为止,Bosch公司总共规划和设计了3代高压共轨系统。如图2所示为Bosch公司的高压共轨喷射系统。第一代已经上世纪批量投放市场,主要应用于轿车,喷射压力达135MPa。第二代于2000年开始批量生产,开始使用具有油量调节功能的高压泵和经改进的电磁阀喷油器,喷射循环由预喷射、主喷射和多级喷射等多次喷射组成,最大

柴油机高压共轨系统

高压共轨(Common Rail)电喷技术是指在高压油泵、压力传感器和电子控制单元(ECU)组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式。它是由高压油泵将高压燃油输送到公共供油管(Rail),通过公共供油管内的油压实现精确控制,使高压油管压力(Pressure)大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速变化的程度. 结构及原理 高压共轨系统利用较大容积的共轨腔将油泵输出的高压燃油蓄积 起来,并消除燃油中的压力波动,然后再输送给每个喷油器,通过控 制喷油器上的电磁阀实现喷射的开始和终止。 其主要特点可以概括如下: 共轨腔内的高压直接用于喷射,可以省去喷油器内的增压机构; 而且共轨腔内是持续高压,高压油泵所需的驱动力矩比传统油泵小得 多。 通过高压油泵上的压力调节电磁阀,可以根据发动机负荷状况 以及经济性和排放性的要求对共轨腔内的油压进行灵活调节,尤其优 化了发动机的低速性能。 通过喷油器上的电磁阀控制喷射定时,喷射油量以及喷射速率,还可以灵活调节不同工况下预喷射和后喷射的喷射油量以及与主喷射的间隔。 高压共轨系统由五个部分组成,即高压油泵、共轨腔及高压油管、喷油器、电控单元、各类传感器和执行器。供油泵从油箱将燃油泵入高压油泵的进油口,由发动机驱动的高压油泵将燃油增压后送入共轨腔内,再由电磁阀控制各缸喷油器在相应时刻喷油。 预喷射在主喷射之前,将小部分燃油喷入气缸,在缸内发生预混合或者部分燃烧,缩短主喷射的着火延迟期。这样缸内压力升高率和峰值压力都会下降,发动机工作比较缓和,同时缸内温度降低使得NOx排放减小。预喷射还可以降低失火的可能性,改善高压共轨系统的冷起动性能。 主喷射初期降低喷射速率,也可以减少着火延迟期内喷入气缸内的油量。提高主喷射中期的喷射速率,可以缩短喷射时间从而缩短缓燃期。 主要生产商 目前世界上主要有三大公司在研发和生产柴油机高压共轨系统,日本电装、德国博世和美国德尔福。共轨系统将燃油压力产生和燃油喷射分离开来,如果把单体泵柴油喷射技术比做柴油技术的革命的话,那共轨就可以称作反叛了,因为它背离了传统的柴油系统而近似于顺序汽油喷射系统。共轨系统开辟了降低柴油发动机排放和噪音的新途径。 由于其强大的技术潜力,今天各制造商已经把目光定在了共轨系统第3代——压电式(piezo)共轨系统,压电执行器代替了电磁阀,于是得到了更加精确的喷射控制。没有了回油管,在结构上更简单。压力从200~2000帕弹性调节。最小喷射量可控制在0.5mm3,减小了烟度和NOX的排放。 应用背景 日趋严重的能源危机,成为全世界内燃机行业关注的焦点,也使柴油机越来越受到用户青睐。与汽油机相比柴油机有很多优势:能减少20%~25%的CO2废气排放,车速较低时的加速性能更有优势,平均燃油消耗低25%~30%,能提供更多的驾驶乐趣。因此,有人大胆对全球汽车产量中柴油机的发展趋势进行了预测,并按区域划分世界汽车产量中的柴油机比例。但是,与汽油机相比,柴油机的排放控制又是一个难点。为满足排放标准,柴油机先进的燃油喷射系统———高压共轨技术成为业内人士关注的焦点。前些年,高压共轨技术是外资一统天下,现在这种局面被打破了。 排放标准的提升必然推动发动机技术的发展 发展前景

相关主题
文本预览
相关文档 最新文档