2016届《创新设计》数学一轮(文科)人教A版配套作业 第2章 阶段回扣练2 函数概念与基本初等函数Ⅰ
- 格式:doc
- 大小:185.50 KB
- 文档页数:9
第4讲 二次函数与幂函数基础巩固题组(建议用时:40分钟)一、选择题1.二次函数y =-x 2+4x +t 图象的顶点在x 轴上,则t 的值是 ( )A .-4B .4C .-2D .2解析 二次函数图象的顶点在x 轴上,所以Δ=42-4×(-1)×t =0,解得t =-4. 答案 A2.(2014·郑州检测)若函数f (x )=x 2+ax +b 的图象与x 轴的交点为(1,0)和(3,0),则函数f (x )( )A .在(-∞,2]上递减,在[2,+∞)上递增B .在(-∞,3)上递增C .在[1,3]上递增D .单调性不能确定解析 由已知可得该函数的图象的对称轴为x =2,又二次项系数为1>0,所以f (x )在(-∞,2]上是递减的,在[2,+∞)上是递增的. 答案 A3.若a <0,则0.5a,5a,5-a 的大小关系是 ( )A .5-a <5a <0.5aB .5a <0.5a <5-aC .0.5a <5-a <5aD .5a <5-a <0.5a解析 5-a=⎝ ⎛⎭⎪⎫15a ,因为a <0时,函数y =x a单调递减,且15<0.5<5,所以5a<0.5a <5-a . 答案 B4.(2015·蚌埠模拟)若二次函数f (x )=ax 2+bx +c 满足f (x 1)=f (x 2),则f (x 1+x 2)等于 ( )A .-b 2aB .-b aC .cD .4ac -b 24a解析 ∵f (x 1)=f (x 2)且f (x )的图象关于x =-b 2a 对称,∴x 1+x 2=-ba . ∴f (x 1+x 2)=f ⎝ ⎛⎭⎪⎫-b a =a ·b 2a 2-b ·b a +c =c . 答案 C5.(2014·山东师大附中期中)“a =1”是“函数f (x )=x 2-4ax +3在区间[2,+∞)上为增函数”的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分又不必要条件解析 函数f (x )=x 2-4ax +3在区间[2,+∞)上为增函数,则满足对称轴--4a2=2a ≤2,即a ≤1,所以“a =1”是“函数f (x )=x 2-4ax +3在区间[2,+∞)上为增函数”的充分不必要条件. 答案 B 二、填空题6.二次函数的图象过点(0,1),对称轴为x =2,最小值为-1,则它的解析式是________.答案 y =12(x -2)2-17.当α∈⎩⎨⎧⎭⎬⎫-1,12,1,3时,幂函数y =x α的图象不可能经过第________象限.解析 当α=-1、1、3时,y =x α的图象经过第一、三象限;当α=12时,y =x α的图象经过第一象限. 答案 二、四8.(2014·江苏卷)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.解析 作出二次函数f (x )的图象,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎨⎧f (m )<0,f (m +1)<0,即⎩⎨⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0, 解得-22<m <0. 答案 ⎝ ⎛⎭⎪⎫-22,0三、解答题9.已知函数f (x )=x 2+2ax +3,x ∈[-4,6]. (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数. 解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6], ∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增, ∴f (x )的最小值是f (2)=-1, 又f (-4)=35,f (6)=15, 故f (x )的最大值是35.(2)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4.10.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,求a 的值. 解 函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1, 对称轴方程为x =a .(1)当a <0时,f (x )max =f (0)=1-a , ∴1-a =2,∴a =-1.(2)当0≤a ≤1时,f (x )max =a 2-a +1,∴a2-a+1=2,∴a2-a-1=0,∴a=1±52(舍).(3)当a>1时,f(x)max=f(1)=a,∴a=2.综上可知,a=-1或a=2.能力提升题组(建议用时:25分钟)11.已知函数f(x)=mx2+(m-3)x+1的图象与x轴的交点至少有一个在原点右侧,则实数m的取值范围是()A.(0,1) B.(0,1]C.(-∞,1) D.(-∞,1]解析用特殊值法.令m=0,由f(x)=0得x=13适合,排除A,B.令m=1,由f(x)=0得x=1适合,排除C.答案 D12.(2014·武汉模拟)已知函数f(x)=ax2+2ax+b(1<a<3),且x1<x2,x1+x2=1-a,则下列说法正确的是() A.f(x1)<f(x2)B.f(x1)>f(x2)C.f(x1)=f(x2)D.f(x1)与f(x2)的大小关系不能确定解析f(x)的对称轴为x=-1,因为1<a<3,则-2<1-a<0,若x1<x2≤-1,则x1+x2<-2,不满足x1+x2=1-a且-2<1-a<0;若x1<-1,x2≥-1时,|x2+1|-|-1-x1|=x2+1+1+x1=x1+x2+2=3-a>0(1<a<3),此时x2到对称轴的距离大,所以f(x2)>f(x1);若-1≤x1<x2,则此时x1+x2>-2,又因为f(x)在[-1,+∞)上为增函数,所以f(x1)<f(x2).答案 A13.(2015·江门、佛山模拟)已知幂函数f(x)=xα,当x>1时,恒有f(x)<x,则α的取值范围是________.解析 当x >1时,恒有f (x )<x ,即当x >1时,函数f (x )=x α的图象在y =x 的图象的下方,作出幂函数f (x )=x α在第一象限的图象,由图象可知α<1时满足题意.答案 (-∞,1)14.(2014·辽宁五校联考)已知函数f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+2x .现已画出函数f (x )在y 轴左侧的图象,如图所示,请根据图象:(1)写出函数f (x )(x ∈R )的增区间; (2)写出函数f (x )(x ∈R )的解析式;(3)若函数g (x )=f (x )-2ax +2(x ∈[1,2]),求函数g (x )的最小值. 解 (1)f (x )在区间(-1,0),(1,+∞)上单调递增.(2)设x >0,则-x <0,函数f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+2x ,∴f (x )=f (-x )=(-x )2+2×(-x )=x 2-2x (x >0),∴f (x )=⎩⎨⎧x 2-2x (x >0),x 2+2x (x ≤0).(3)g (x )=x 2-2x -2ax +2,对称轴方程为x =a +1, 当a +1≤1,即a ≤0时,g (1)=1-2a 为最小值;当1<a +1≤2,即0<a ≤1时,g (a +1)=-a 2-2a +1为最小值; 当a +1>2,即a >1时,g (2)=2-4a 为最小值. 综上,g (x )min =⎩⎨⎧1-2a (a ≤0),-a 2-2a +1 (0<a ≤1),2-4a (a >1).。
第9讲函数模型及其应用基础巩固题组(建议用时:40分钟)一、选择题1.下表是函数值y随自变量x变化的一组数据,它最可能的函数模型是()A.一次函数模型B.幂函数模型C.指数函数模型D.对数函数模型解析根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.答案 A2.(2015·合肥调研)某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是()解析前3年年产量的增长速度越来越快,说明呈高速增长,只有A,C图象符合要求,而后3年年产量保持不变,故选A.答案 A3.(2014·北京东城期末)某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为()A.10 B.11 C.13 D.21解析 设该企业需要更新设备的年数为x ,设备年平均费用为y ,则x 年后的设备维护费用为2+4+…+2x =x (x +1),所以x 年的平均费用为y =100+0.5x +x (x +1)x =x +100x +1.5,由均值不等式得y =x +100x +1.5≥2 x ·100x +1.5=21.5,当且仅当x =100x ,即x =10时取等号,所以选A.答案 A4.(2014·孝感模拟)物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T 内完成预测的运输任务Q 0,各种方案的运输总量Q 与时间t 的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是( )解析 由运输效率(单位时间的运输量)逐步提高得,曲线上的点的切线斜率应逐渐增大,故函数的图象应一直是下凹的,故选B.答案 B5. 某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t (分钟)与打出电话费s (元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差( )A .10元B .20元C .30元 D.403元解析 设A 种方式对应的函数解析式为s =k 1t +20,B 种方式对应的函数解析式为s =k 2t ,当t =100时,100k 1+20=100k 2,∴k 2-k 1=15,t =150时,150k 2-150k 1-20=150×15-20=10.答案 A6.(2014·辽宁六校联考)A 、B 两只船分别从在东西方向上相距145 km 的甲乙两地开出.A 从甲地自东向西行驶.B 从乙地自北向南行驶,A 的速度是40 kmh ,B 的速度是 16 kmh ,经过________小时,AB间的距离最短.解析 设经过x h ,A ,B 相距为y km ,则y =(145-40x )2+(16x )2(0≤x ≤298),求得函数的最小值时x 的值为258.答案 2587.(2015·长春模拟)一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为 y =a e -bt (cm 3),经过 8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一.解析 当t =0时,y =a ,当t =8时,y =a e -8b =12a ,∴e -8b =12,容器中的沙子只有开始时的八分之一时, 即y =a e -bt =18a ,e -bt =18=(e -8b )3=e -24b ,则t =24,所以再经过16 min.答案 168.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.解析 设内接矩形另一边长为y ,则由相似三角形性质可得x 40=40-y 40,解得y =40-x ,所以面积S =x (40-x )=-x 2+40x =-(x -20)2+400(0<x <40),当x =20时,S max =400.答案 209.(2014·郑州模拟)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=x25-48x+8000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?解(1)每吨平均成本为yx(万元).则yx=x5+8 000x-48≥2x5·8 000x-48=32,当且仅当x5=8 000x,即x=200时取等号.∴年产量为200吨时,每吨平均成本最低为32万元.(2)设年获得总利润为R(x)万元.则R(x)=40x-y=40x-x25+48x-8 000=-x25+88x-8 000=-15(x-220)2+1 680(0≤x≤210).∵R(x)在[0,210]上是增函数,∴x=210时,R(x)有最大值为-15(210-220)2+1 680=1 660.∴年产量为210吨时,可获得最大利润1 660万元.10.在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以 5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如图所示;③每月需各种开支2 000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?解 设该店月利润余额为L 元,则由题设得L =Q (P -14)×100-3 600-2 000,由销量图易得Q =⎩⎪⎨⎪⎧-2P +50 (14≤P ≤20),-32P +40 (20<P ≤26), 代入①式得L =⎩⎪⎨⎪⎧(-2P +50)(P -14)×100-5 600 (14≤P ≤20),⎝ ⎛⎭⎪⎫-32P +40(P -14)×100-5 600(20<P ≤26), (1)当14≤P ≤20时,L max =450元,此时P =19.5元;当20<P ≤26时,L max =1 2503元,此时P =613元.故当P =19.5元时,月利润余额最大,为450元.(2)设可在n 年后脱贫,依题意有12n ×450-50 000-58 000≥0,解得n ≥20.即最早可望在20年后脱贫.能力提升题组(建议用时:25分钟)11.为了预防信息泄露,保证信息的安全传输,在传输过程中都需要对文件加密,有一种为加密密钥密码系统(Private Key Cryptosystem),其加密、解密原理为:发送方由明文→密文(加密),接收方由密文→明文(解密).现在加密密钥为 y=kx 3,如“4”通过加密后得到密文“2”,若接受方接到密文“1256”,则解密后得到的明文是( ) A.12 B.14 C .2D.18 解析 由题目可知加密密钥y =kx 3是一个幂函数型,由已知可得,当x =4时,y =2,即2=k ×43,解得k =243=132.故y =132x 3,显然令y =1256,则1256=132x 3,即x 3=18,解得x =12.答案 A12.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x ,y 应为( ) A .x =15,y =12B .x =12,y =15C .x =14,y =10D .x =10,y =14解析 由三角形相似得24-y 24-8=x 20.得x =54(24-y ), ∴S =xy =-54(y -12)2+180,∴当y =12时,S 有最大值,此时x =15.答案 A13.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x (x ∈N *)件.当x ≤ 20时,年销售总收入为(33x -x 2)万元;当x >20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元,则y (万元)与x (件)的函数关系式为________,该工厂的年产量为________件时,所得年利润最大(年利润=年销售总收入-年总投资).解析 当0<x ≤20时,y =(33x -x 2)-x -100=-x 2+32x -100;当x >20时,y =260-100-x =160-x .故y =⎩⎨⎧-x 2+32x -100,0<x ≤20,160-x ,x >20(x ∈N *). 当0<x ≤20时,y =-x 2+32x -100=-(x -16)2+156,x =16时,y max =156.而当x >20时,160-x <140,故x =16时取得最大年利润.答案 y =⎩⎨⎧-x 2+32x -100,0<x ≤20,160-x ,x >20(x ∈N *) 16 14.已知某物体的温度θ(单位:摄氏度)随时间t (单位:分钟)的变化规律:θ=m ·2t +21-t (t ≥0,并且m >0).(1)如果m =2,求经过多少时间,物体的温度为5摄氏度;(2)若物体的温度总不低于2摄氏度,求m 的取值范围.解 (1)若m =2,则θ=2·2t +21-t =2⎝ ⎛⎭⎪⎫2t +12t , 当θ=5时,2t +12t =52,令2t =x ≥1,则x +1x =52,即2x 2-5x +2=0,解得x =2或x =12(舍去),此时t =1.所以经过1分钟,物体的温度为5摄氏度.(2)物体的温度总不低于2摄氏度,即θ≥2恒成立.亦m ·2t+22t ≥2恒成立,亦即m ≥2⎝ ⎛⎭⎪⎫12t -122t 恒成立. 令12t =x ,则0<x ≤1,∴m ≥2(x -x 2),由于x -x 2≤14,∴m ≥12. 因此,当物体的温度总不低于2摄氏度时,m 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞.。
第7讲 函数的图象基础巩固题组(建议用时:40分钟)一、选择题1.(2015·本溪模拟)函数y =21-x 的大致图象为 ( )解析 y =21-x =⎝ ⎛⎭⎪⎫12x -1,因为0<12<1,所以y =⎝ ⎛⎭⎪⎫12x -1为减函数,取x =0时,则y =2,故选A.答案 A2.函数f (x )=ln(x 2+1)的图象大致是( )解析 函数f (x )=ln(x 2+1)的定义域为(-∞,+∞),又因为f (-x )=f (x ),故f (x )为偶函数且f (0)=ln 1=0,综上选A.答案 A3.为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点 ( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度解析 y =lg x +310=lg(x +3)-1,将y =lg x 的图象向左平移3个单位长度得到y =lg(x +3)的图象,再向下平移1个单位长度,得到y =lg(x +3)-1的图象. 答案 C4.使log 2(-x )<x +1成立的x 的取值范围是( ) A .(-1,0) B .[-1,0)C .(-2,0)D .[-2,0)解析 在同一坐标系内作出y =log 2(-x ),y =x +1的图象,知满足条件的x ∈(-1,0),故选A.答案 A5.函数y =x ln|x ||x |的图象可能是( )解析 法一 函数y =x ln|x ||x |的图象过点(e ,1),排除C ,D ;函数y =x ln|x ||x |的图象过点(-e ,-1),排除A.法二 由已知,设f (x )=x ln|x ||x |,则f (-x )=-f (x ),故函数f (x )为奇函数,排除A ,C ,当x >0时,f (x )=ln x 在(0,+∞)上为增函数,排除D.答案 B二、填空题6.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )=________.解析 与y =e x 图象关于y 轴对称的函数为y =e -x ,依题意,f (x )图象向右平移一个单位,得y =e -x 的图象.∴f (x )的图象可由y =e -x 的图象向左平移一个单位得到.∴f (x )=e -(x +1)=e -x -1.答案 e -x -17.若方程|ax |=x +a (a >0)有两个解,则a 的取值范围是________.解析 画出y =|ax |与y =x +a 的图象,如图.只需a >1.答案 (1,+∞)8.(2015·长沙模拟)已知函数f (x )=⎩⎨⎧log 2x (x >0),2x (x ≤0),且关于x 的方程f (x )-a =0有两个实根,则实数a 的范围是________.解析 当x ≤0时,0<2x ≤1,所以由图象可知要使方程f (x )-a =0有两个实根,即函数y =f (x )与y =a 的图象有两个交点,所以由图象可知0<a ≤1.答案 (0,1]三、解答题9.已知函数f (x )=x 1+x. (1)画出f (x )的草图;(2)指出f (x )的单调区间.解 (1)f (x )=x 1+x =1-1x +1,函数f (x )的图象是由反比例函数y =-1x 的图象向左平移1个单位后,再向上平移1个单位得到,图象如图所示.(2)由图象可以看出,函数f (x )的单调递增区间为(-∞,-1),(-1,+∞).10.已知函数f (x )=|x 2-4x +3|.(1)求函数f (x )的单调区间,并指出其增减性;(2)求集合M ={m |使方程f (x )=m 有四个不相等的实根}.解 f (x )=⎩⎨⎧(x -2)2-1,x ∈(-∞,1]∪[3,+∞),-(x -2)2+1,x ∈(1,3),作出函数图象如图.(1)函数的增区间为[1,2],[3,+∞);函数的减区间为(-∞,1],[2,3].(2)在同一坐标系中作出y =f (x )和y =m 的图象,使两函数图象有四个不同的交点(如图).由图知0<m <1,∴M ={m |0<m <1}.能力提升题组(建议用时:25分钟)11.已知函数f (x )=⎩⎨⎧x 2+2x -1,x ≥0,x 2-2x -1,x <0,则对任意x 1,x 2∈R ,若0<|x 1|<|x 2|,下列不等式成立的是( ) A .f (x 1)+f (x 2)<0B .f (x 1)+f (x 2)>0C .f (x 1)-f (x 2)>0D .f (x 1)-f (x 2)<0解析 函数f (x )的图象如图所示:且f (-x )=f (x ),从而函数f (x )是偶函数且在[0,+∞)上是增函数.又0<|x 1|<|x 2|,∴f(x2)>f(x1),即f(x1)-f(x2)<0. 答案 D12.函数y=11-x的图象与函数y=2sin πx(-2≤x≤4)的图象所有交点的横坐标之和等于() A.2 B.4 C.6 D.8解析令1-x=t,则x=1-t.由-2≤x≤4,知-2≤1-t≤4,所以-3≤t≤3.又y=2sin πx=2sin π(1-t)=2sin πt.在同一坐标系下作出y=1t和y=2sin πt的图象.由图可知两函数图象在[-3,3]上共有8个交点,且这8个交点两两关于原点对称.因此这8个交点的横坐标的和为0,即t1+t2+…+t8=0.也就是1-x1+1-x2+…+1-x8=0,因此x1+x2+…+x8=8.答案 D13.已知f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=x,且在[-1,3]内,关于x的方程f(x)=kx+k+1(k∈R,k≠-1)有四个根,则k的取值范围是________.解析由题意作出f(x)在[-1,3]上的示意图如图,记y=k(x+1)+1,∴函数y=k(x+1)+1的图象过定点A(-1,1).记B(2,0),由图象知,方程有四个根,即函数y=f(x)与y=kx+k+1的图象有四个交点,故k AB<k<0,k AB=0-12-(-1)=-13,∴-13<k<0.答案 ⎝ ⎛⎭⎪⎫-13,0 14.已知函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=f (x )+a x ,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围.解 (1)设f (x )图象上任一点P (x ,y ),则点P 关于(0,1)点的对称点P ′(-x ,2-y )在h (x )的图象上,即2-y =-x -1x +2,∴y =f (x )=x +1x (x ≠0).(2)g (x )=f (x )+a x =x +a +1x ,g ′(x )=1-a +1x 2.∵g (x )在(0,2]上为减函数,∴1-a +1x 2≤0在(0,2]上恒成立,即a +1≥x 2在(0,2]上恒成立,∴a +1≥4, 即a ≥3,故a 的取值范围是[3,+∞).。
第1讲导数的概念及运算基础巩固题组(建议用时:40分钟)一、选择题1.(2015·深圳中学模拟)曲线y=x3在原点处的切线() A.不存在B.有1条,其方程为y=0C.有1条,其方程为x=0D.有2条,它们的方程分别为y=0,x=0=0,∴曲线y=x3在原点处的切线方程为y=解析∵y′=3x2,∴k=y′|x=00.答案 B2.若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为() A.4x-y-3=0 B.x+4y-5=0C.4x-y+3=0 D.x+4y+3=0解析切线l的斜率k=4,设y=x4的切点的坐标为(x0,y0),则k=4x30=4,∴x0=1,∴切点为(1,1),即y-1=4(x-1),整理得l的方程为4x-y-3=0.答案 A3.(2014·长春模拟)曲线y=x e x+2x-1在点(0,-1)处的切线方程为() A.y=3x-1 B.y=-3x-1C.y=3x+1 D.y=-2x-1解析根据导数运算法则可得y′=e x+x e x+2=(x+1)e x+2,则曲线y=x e x+2x-1在点(0,-1)处的切线斜率为y′|x=0=1+2=3.故曲线y=x e x+2x-1在点(0,-1)处的切线方程为y+1=3x,即y=3x-1.答案 A4.已知f1(x)=sin x+cos x,f n+1(x)是f n(x)的导函数,即f2(x)=f1′(x),f3(x)=f′2(x),…,f n+1(x)=f n′(x),n∈N*,则f2 015(x)等于()A.-sin x-cos x B.sin x-cos xC.-sin x+cos x D.sin x+cos x解析∵f1(x)=sin x+cos x,∴f2(x)=f1′(x)=cos x-sin x,∴f3(x)=f2′(x)=-sin x-cos x,∴f4(x)=f3′(x)=-cos x+sin x,∴f5(x)=f4′(x)=sin x+cos x,∴f n(x)是以4为周期的函数,∴f2 015(x)=f3(x)=-sin x-cos x,故选A.答案 A5.(2014·陕西卷)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为()A.y=12x3-12x2-x B.y=12x3+12x2-3xC.y=14x3-x D.y=14x3+12x2-2x解析设三次函数的解析式为y=ax3+bx2+cx+d(a≠0),则y′=3ax2+2bx +c.由已知得y=-x是函数y=ax3+bx2+cx+d在点(0,0)处的切线,则y′|x=0=-1⇒c=-1,排除B、D.又∵y=3x-6是该函数在点(2,0)处的切线,则y′|x =2=3⇒12a+4b+c=3⇒12a+4b-1=3⇒3a+b=1.只有A项的函数符合,故选A.答案 A二、填空题6.(2015·珠海一模)若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=________.解析y′=2ax-1x,∴y′|x=1=2a-1=0,∴a=12.答案 127.(2014·广东卷)曲线y =-5e x +3在点(0,-2)处的切线方程为__________________.解析 由y =-5e x +3得,y ′=-5e x ,所以切线的斜率k =y ′|x =0=-5,所以切线方程为y +2=-5(x -0),即5x +y +2=0. 答案 5x +y +2=08.(2014·江苏卷)在平面直角坐标系xOy 中,若曲线y =ax 2+b x (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是______.解析 y =ax 2+b x 的导数为y ′=2ax -b x 2,直线7x +2y +3=0的斜率为-72.由题意得⎩⎪⎨⎪⎧4a +b2=-5,4a -b 4=-72,解得⎩⎨⎧a =-1,b =-2,则a +b =-3.答案 -3 三、解答题9.已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.解 (1)∵P (2,4)在曲线y =13x 3+43上,且y ′=x 2, ∴在点P (2,4)处的切线的斜率为y ′|x =2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率为y ′|x =x 0=x 20.∴切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43.∵点P (2,4)在切线上,∴4=2x 20-23x 30+43,即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0,∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1,或x 0=2,故所求的切线方程为x -y +2=0,或4x -y -4=0.10.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解 (1)方程7x -4y -12=0可化为y =74x -3, 当x =2时,y =12.又f ′(x )=a +bx 2,于是⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74,解得⎩⎨⎧a =1,b =3.故f (x )=x -3x .(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=(1+3x 20)(x -x 0),即y-(x 0-3x 0)=(1+3x 20)(x -x 0).令x =0,得y =-6x 0,从而得切线与直线x =0交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪⎪⎪-6x 0|2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形面积为定值,且此定值为6.能力提升题组 (建议用时:25分钟)11.已知曲线y =1e x +1,则曲线的切线斜率取得最大值时的直线方程为 ( ) A .x +4y -2=0 B .x -4y +2=0 C .4x +2y -1=0D .4x -2y -1=0解析 y ′=-e x(e x +1)2=-1e x+1e x +2,因为e x >0,所以e x+1e x ≥2e x ×1e x =2(当且仅当e x =1e x ,即x =0时取等号),则e x +1e x +2≥4,故y ′=-1e x+1e x +2≤-14(当x =0时取等号).当x =0时,曲线的切线斜率取得最大值,此时切点的坐标为⎝ ⎛⎭⎪⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.故选A .答案 A12.(2014·开封二模)过点A (2,1)作曲线f (x )=x 3-3x 的切线最多有 ( )A .3条B .2条C .1条D .0条解析 由题意得,f ′(x )=3x 2-3,设切点为(x 0,x 30-3x 0),那么切线的斜率为k =3x 20-3,利用点斜式方程可知切线方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0),将点A (2,1)代入可得关于x 0的一元三次方程2x 30-6x 20+7=0.令y =2x 30-6x 20+7,则y ′=6x 20-12x 0.由y ′=0得x 0=0或x 0=2.当x 0=0时,y =7>0;x 0=2时,y =-1<0.结合函数y =2x 30-6x 20+7的单调性可得方程2x 30-6x 20+7=0有3个解.故过点A (2,1)作曲线f (x )=x 3-3x 的切线最多有3条,故选A . 答案 A13.(2014·武汉中学月考)已知曲线f (x )=x n +1(n ∈N *)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015的值为________.解析 f ′(x )=(n +1)x n ,k =f ′(1)=n +1, 点P (1,1)处的切线方程为y -1=(n +1)(x -1), 令y =0,得x =1-1n +1=n n +1,即x n =nn +1, ∴x 1·x 2·…·x 2 015=12×23×34×…×2 0142 015×2 0152 016=12 016,则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015=log 2 016(x 1x 2…x 2 015)=-1. 答案 -114.设抛物线C: y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限. (1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标. 解 (1)设点P 的坐标为(x 1,y 1),则y 1=kx 1,① y 1=-x 21+92x 1-4,②①代入②得x 21+⎝ ⎛⎭⎪⎫k -92x 1+4=0. ∵P 为切点,∴Δ=⎝ ⎛⎭⎪⎫k -922-16=0得k =172或k =12.当k =172时,x 1=-2,y 1=-17.当k =12时,x 1=2,y 1=1. ∵P 在第一象限,∴所求的斜率k =12.(2)过P 点作切线的垂线,其方程为y =-2x +5.③ 将③代入抛物线方程得x 2-132x +9=0. 设Q 点的坐标为(x 2,y 2),即2x 2=9, ∴x 2=92,y 2=-4.∴Q 点的坐标为⎝ ⎛⎭⎪⎫92,-4.。
第1讲空间几何体的三视图、直观图、表面积与体积基础巩固题组(建议用时:40分钟)一、选择题1.(2014·贵阳适应性监测)一个简单几何体的正视图、侧视图分别为如图所示的矩形、正方形,则其俯视图不可能为()A.矩形B.直角三角形C.椭圆D.等腰三角形解析依题意,题中的几何体的俯视图的长为3、宽为2,因此结合题中选项知,其俯视图不可能是等腰三角形,故选D.答案 D2.(2015·合肥质量检测)某空间几何体的三视图如图所示,则该几何体的表面积为()A .12+42B .18+8 2C .28D .20+8 2解析 由三视图可得该几何体是平放的直三棱柱,该直三棱柱的底面是腰长为2的等腰直角三角形、侧棱长为4,所以表面积为12×2×2×2+4×2×2+4×22=20+82,故选D.答案 D3. (2014·福州模拟)如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1-ABC 1的体积为 ( )A.312B .34 C.612 D .64解析 三棱锥B 1-ABC 1的体积等于三棱锥A -B 1BC 1的体积,三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312.答案 A4.(2014·四川卷)某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是( )A .3B .2C .3D .1解析 由俯视图可知,三棱锥底面是边长为2的等边三角形.由侧视图可知,三棱锥的高为 3.故该三棱锥的体积V =13×12×2×3×3=1.答案 D5.(2014·新课标全国Ⅱ卷)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B .59 C.1027 D .13解析 该零件是两个圆柱体构成的组合体,其体积为π×22×4+π×32×2=34π (cm 3),圆柱体毛坯的体积为π×32×6=54π (cm 3),所以切削掉部分的体积为54π-34π=20π (cm 3),所以切削掉部分的体积与原来毛坯体积的比值为20π54π=1027,故选C.答案 C二、填空题6.如图所示,E ,F 分别为正方体ABCD -A 1B 1C 1D 1的面ADD 1A 1、面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的正投影可能是________(填序号).解析 由正投影的定义,四边形BFD 1E 在面AA 1D 1D 与面BB 1C 1C 上的正投影是图③;其在面ABB 1A 1与面DCC 1D 1上的正投影是图②;其在面ABCD 与面A 1B 1C 1D 1上的正投影也是②,故①④错误.答案 ②③7.(2014·山东卷)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.解析 设六棱锥的高为h ,斜高为h 0.因为该六棱锥的底面是边长为2的正六边形,所以底面面积为12×2×2×sin 60°×6=63,则13×63h =23,得h =1,所以h 0=(3)2+12=2,所以该六棱锥的侧面积为12×2×2×6=12.答案 128.(2014·北京卷)某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为________.解析由三视图可知该几何体的直观图如图所示,并由三视图的形状特征及数据,可推知P A⊥面ABC,△ABC为等腰直角三角形,且P A=2,AB=BC=2,AC=2,则AD=DC=1,且BD=1,易得AB=BC= 2.所以最长的棱为PC,PC=P A2+AC2=2 2.答案2 2三、解答题9.如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体;(2)画出其侧视图,并求该平面图形的面积;(3)求出该几何体的体积.解 (1)正六棱锥.(2)其侧视图如图:其中AB =AC ,AD ⊥BC ,且BC 的长是俯视图中的正六边形对边的距离,即BC =3a ,AD 的长是正六棱锥的高,即AD =3a ,∴该平面图形的面积S =12 3a ·3a =32a 2.(3)V =13×6×34a 2×3a =32a 3.10.如图,已知某几何体的三视图如下(单位:cm):(1)画出这个几何体的直观图(不要求写画法);(2)求这个几何体的表面积及体积.解 (1)这个几何体的直观图如图所示.(2)这个几何体可看成是正方体AC 1及直三棱柱B 1C 1Q -A 1D 1P 的组合体. 由P A 1=PD 1= 2 cm ,A 1D 1=AD =2 cm ,可得P A 1⊥PD 1.故所求几何体的表面积S =5×22+2×2×2+2×12×(2)2=22+42(cm 2),体积V =23+12×(2)2×2=10(cm 3). 能力提升题组(建议用时:25分钟)11.(2015·成都诊断)如图是一个封闭几何体的三视图,则该几何体的表面积为( )A .7π cm 2B .8π cm 2C .9π cm 2D .11π cm 2解析 依题意,题中的几何体是从一个圆柱中挖去一个半球后所剩余的部分,其中该圆柱的底面半径是1 cm 、高是3 cm ,该球的半径是1 cm ,因此该几何体表面积等于12×(4π×12)+π×12+2π×1×3=9π(cm 2),故选C.答案 C12.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC=30°,则棱锥S -ABC 的体积为( )A .33B .23C .3D .1 解析 由题意知,如图所示,在棱锥S -ABC 中,△SAC ,△SBC 都是有一个角为30°的直角三角形,其中AB =3,SC =4,所以SA =SB =23,AC =BC =2,作BD ⊥SC 于D 点,连接AD ,易证SC ⊥平面ABD ,因此V =13×34×(3)2×4= 3.答案 C13.(2014·云南统一检测)已知球O 的体积等于125π6,如果长方体的八个顶点都在球O 的球面上,那么这个长方体的表面积的最大值等于________.解析 由球O 的体积为125π6=43πR 3,得球O 的半径R =52.设长方体的长、宽、高分别为x ,y ,z ,则x 2+y 2+z 2=(2R )2=25,所以该长方体的表面积2xy +2xz +2yz ≤2(x 2+y 2+z 2)=50,当且仅当x =y =z 时取等号,所以表面积的最大值为50.答案 5014.如图1,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2,将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D -ABC ,如图2所示.(1)求证:BC ⊥平面ACD ;(2)求几何体D -ABC 的体积.(1)证明 在题图中,可得AC =BC =22,从而AC 2+BC 2=AB 2,故AC ⊥BC ,又平面ADC ⊥平面ABC ,平面ADC∩平面ABC=AC,BC⊂平面ABC,∴BC⊥平面ACD.(2)解由(1)可知,BC为三棱锥B-ACD的高,BC=22,S△ACD=2,∴V B-ACD =13S△ACD·BC=13×2×22=423,由等体积性可知,几何体D-ABC的体积为42 3.。
第3讲 两角和与差的正弦、余弦、正切基础巩固题组(建议用时:40分钟)一、选择题1.(2014·皖南八校联考)若tan θ=3,则sin 2θ1+cos 2θ=( )A .3B .-3C .33D .-33解析 sin 2θ1+cos 2θ=2sin θcos θ1+2cos 2θ-1=tan θ= 3.答案 A2.(2015·东北三省三校联考)已知sin α+cos α=13,则sin 2⎝ ⎛⎭⎪⎫π4-α=( )A .118B .1718C .89D .29解析 由sin α+cos α=13两边平方得1+sin 2α=19,解得sin 2α=-89,所以sin 2⎝ ⎛⎭⎪⎫π4-α=1-cos ⎝ ⎛⎭⎪⎫π2-2α2=1-sin 2α2=1+892=1718,故选B . 答案 B3.(2014·杭州调研)已知α∈⎝ ⎛⎭⎪⎫π,32π,且cos α=-45,则tan ⎝ ⎛⎭⎪⎫π4-α等于( ) A .7 B .17 C .-17D .-7解析 因α∈⎝ ⎛⎭⎪⎫π,32π,且cos α=-45,所以sin α<0,即sin α=-35,所以tan α=34.所以tan ⎝ ⎛⎭⎪⎫π4-α=1-tan α1+tan α=1-341+34=17.答案 B4.已知tan ⎝ ⎛⎭⎪⎫α+π4=12,且-π2<α<0,则2sin 2α+sin 2αcos ⎝ ⎛⎭⎪⎫α-π4等于( )A .-255 B .-3510 C .-31010D .255解析 由tan ⎝ ⎛⎭⎪⎫α+π4=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-1010.故2sin 2α+sin 2αcos ⎝ ⎛⎭⎪⎫α-π4=2sin α()sin α+cos α22()sin α+cos α=22sin α=-255. 答案 A5.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于 ( ) A .5π12 B .π3 C .π4D .π6解析 ∵α,β均为锐角,∴-π2<α-β<π2. 又sin(α-β)=-1010,∴cos(α-β)=31010. 又sin α=55,∴cos α=255,∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =55×31010-255×⎝ ⎛⎭⎪⎫-1010=22.∴β=π4. 答案 C 二、填空题6.若sin ⎝ ⎛⎭⎪⎫π2+θ=35,则cos 2θ=________.解析 ∵sin ⎝ ⎛⎭⎪⎫π2+θ=cos θ=35,∴cos 2θ=2cos 2θ-1=2×⎝ ⎛⎭⎪⎫352-1=-725. 答案 -7257.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4-22sin 2x 的最小正周期是________.解析 ∵f (x )=22sin 2x -22cos 2x -2(1-cos 2x ) =22sin 2x +22cos 2x -2=sin(2x +π4)-2, ∴最小正周期T =2π2=π. 答案 π8.已知cos 4α-sin 4α=23,且α∈⎝ ⎛⎭⎪⎫0,π2,则cos ⎝ ⎛⎭⎪⎫2α+π3=________.解析 ∵cos 4α-sin 4α=(sin 2α+cos 2α)(cos 2α-sin 2α)=cos 2α=23,又α∈⎝ ⎛⎭⎪⎫0,π2,∴2α∈(0,π),∴sin 2α=1-cos 22α=53, ∴cos ⎝ ⎛⎭⎪⎫2α+π3=12cos 2α-32sin 2α =12×23-32×53=2-156. 答案2-156三、解答题9.(2014·江苏卷)已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55.(1)求sin ⎝ ⎛⎭⎪⎫π4+α的值;(2)求cos ⎝ ⎛⎭⎪⎫5π6-2α的值.解 (1)因为α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55,所以cos α=-1-sin 2α=-255.故sin ⎝ ⎛⎭⎪⎫π4+α=sin π4cos α+cos π4sin α=22×⎝⎛⎭⎪⎫-255+22×55=-1010. (2)由(1)知sin 2α=2sin αcos α=2×55×⎝ ⎛⎭⎪⎫-255=-45, cos 2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫552=35,所以cos ⎝ ⎛⎭⎪⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α=⎝ ⎛⎭⎪⎫-32×35+12×⎝ ⎛⎭⎪⎫-45=-4+3310.10.已知α∈⎝ ⎛⎭⎪⎫π2,π,且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝ ⎛⎭⎪⎫π2,π,求cos β的值.解 (1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12.又π2<α<π,所以cos α=-1-sin 2α=-32. (2)因为π2<α<π,π2<β<π,所以-π2<α-β<π2.又sin(α-β)=-35,得cos(α-β)=45.cos β=cos[]α-(α-β)=cos αcos(α-β)+sin αsin(α-β)=-32×45+12×⎝⎛⎭⎪⎫-35=-43+310.能力提升题组(建议用时:25分钟)11.在△ABC中,tan A+tan B+3=3tan A·tan B,则C等于()A.π3B.2π3C.π6D.π4解析由已知可得tan A+tan B=3(tan A·tan B-1),∴tan(A+B)=tan A+tan B1-tan A tan B=-3,又0<A+B<π,∴A+B=23π,∴C=π3.答案 A12.(2014·云南统一检测)cos π9·cos2π9·cos⎝⎛⎭⎪⎫-23π9=()A.-18B.-116C.116D.18解析cos π9·cos2π9·cos⎝⎛⎭⎪⎫-239π=cos 20°·cos 40°·cos 100°=-cos 20°·cos 40°·cos 80°=-sin 20°cos 20°cos 40°cos 80°sin 20°=-12sin 40°·cos 40°·cos 80°sin 20°=-14sin 80°·cos 80°sin 20°=-18sin 160°sin 20°=-18sin 20°sin 20°=-18. 答案 A 13.设f (x )=1+cos 2x 2sin ⎝ ⎛⎭⎪⎫π2-x +sin x +a 2sin ⎝ ⎛⎭⎪⎫x +π4的最大值为2+3,则常数a =________. 解析 f (x )=1+2cos 2x -12cos x +sin x +a 2sin⎝ ⎛⎭⎪⎫x +π4 =cos x +sin x +a 2sin ⎝ ⎛⎭⎪⎫x +π4=2sin ⎝ ⎛⎭⎪⎫x +π4+a 2sin ⎝ ⎛⎭⎪⎫x +π4=(2+a 2)sin ⎝ ⎛⎭⎪⎫x +π4.依题意有2+a 2=2+3,∴a =±3. 答案 ±314.(2014·惠州模拟)已知函数f (x )=cos 2x +sin x cos x ,x ∈R . (1)求f ⎝ ⎛⎭⎪⎫π6的值;(2)若sin α=35,且α∈⎝ ⎛⎭⎪⎫π2,π,求f ⎝ ⎛⎭⎪⎫α2+π24.解 (1)f ⎝ ⎛⎭⎪⎫π6=cos 2π6+sin π6cos π6=⎝ ⎛⎭⎪⎫322+12×32=3+34. (2)因为f (x )=cos 2x +sin x cos x =1+cos 2x 2+12sin 2x =12+12(sin 2x +cos 2x )=12+22sin ⎝ ⎛⎭⎪⎫2x +π4. 所以f ⎝ ⎛⎭⎪⎫α2+π24=12+22sin ⎝ ⎛⎭⎪⎫α+π12+π4=12+22sin ⎝ ⎛⎭⎪⎫α+π3=12+22⎝ ⎛⎭⎪⎫12sin α+32cos α.又因为sin α=35,且α∈⎝ ⎛⎭⎪⎫π2,π,所以cos α=-45,所以f ⎝ ⎛⎭⎪⎫α2+π24=12+22⎝ ⎛⎭⎪⎫12×35-32×45=10+32-4620.。
【创新教程】2016年高考数学大一轮复习 第二章 第3节 函数的奇偶性与周期性课时冲关 理 新人教A 版对应学生用书课时冲关理六/第243页 文六/第211页一、选择题1.(2015·四川绵阳诊断性考试)下列函数中定义域为R ,且是奇函数的是( ) A .f (x )=x 2+x B .f (x )=tan x C .f (x )=x +sin xD .f (x )=lg 1-x1+x解析:函数f (x )=x 2+x 不是奇函数;函数f (x )=tan x 的定义域不是R ;函数f (x )=lg 1-x 1+x的定义域是(-1,1).故选C. 答案:C2.(2014·新课标全国卷Ⅰ)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数解析:因为f (x )是奇函数,g (x )是偶函数,所以有f (-x )=-f (x ),g (-x )=g (x ),于是f (-x )·g (-x )=-f (x )g (x ),即f (x )g (x )为奇函数,A 错;|f (-x )|g (-x )=|f (x )|g (x ),即|f (x )|g (x )为偶函数,B 错;f (-x )|g (-x )|=-f (x )|g (x )|,即f (x )|g (x )|为奇函数,C 正确;|f (-x )g (-x )|=|f (x )g (x )|,即f (x )g (x )为偶函数,所以D 也错.答案:C3.(2015·长春调研)已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )=( )A.23 B .-23C.43D .-43解析:根据题意,f (x )=x 2+x +1x 2+1=1+x x 2+1,而h (x )=xx 2+1是奇函数,故f (-a )=1+h (-a )=1-h (a )=2-[1+h (a )]=2-f (a )=2-23=43,故选C.答案:C4.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)等于( )A .-2B .2C .-98D .98解析:∵f (x +4)=f (x ),∴f (x )是周期为4的函数,∴f (7)=f (2×4-1)=f (-1),又∵f (x )在R 上是奇函数,∴f (-x )=-f (x ),∴f (-1)=-f (1),而当x ∈(0,2)时,f (x )=2x 2,∴f (1)=2×12=2,∴f (7)=f (-1)=-f (1)=-2,故选A.答案:A5.函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在[-1,3]上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)解析:f (x )的图象如图.当x ∈(-1,0)时,由xf (x )>0得x ∈(-1,0); 当x ∈(0,1)时,由xf (x )<0得x ∈∅; 当x ∈(1,3)时,由xf (x )>0得x ∈(1,3). 故x ∈(-1,0)∪(1,3). 答案:C6.设奇函数f (x )的定义域为R ,最小正周期T =3,若f (1)≥1,f (2)=2a -3a +1,则a的取值范围是( )A .a <-1或a ≥23B .a <-1C .-1<a ≤23D .a ≤23解析:函数f (x )为奇函数,则f (1)=-f (-1). 由f (1)=-f (-1)≥1,得f (-1)≤-1; 函数的最小正周期T =3,则f (-1)=f (2), 由2a -3a +1≤-1,解得-1<a ≤23. 答案:C 二、填空题7.(2014·湖南高考)若f (x )=ln(e 3x+1)+ax 是偶函数,则a =________. 解析:由偶函数的定义可得f (-x )=f (x ),即ln(e -3x+1)-ax =ln(e 3x+1)+ax ,∴2ax =-ln e 3x=-3x ,∴a =-32.答案:-328.(2015·广州市调研)已知f (x )是奇函数,g (x )=f (x )+4,g (1)=2,则f (-1)的值是________.解析:∵g (x )=f (x )+4,∴f (x )=g (x )-4, 又f (x )是奇函数,∴f (-1)=-f (1)=-g (1)+4=2. 答案:29.(2015·嘉兴模拟)函数y =(x -2)|x |在[a,2]上的最小值为-1,则实数a 的取值范围为________.解析:y =(x -2)|x |=⎩⎪⎨⎪⎧x 2-2x ,x >0,0,x =0,-x 2+2x ,x <0.函数的图象如图所示,当x <0时,由-x 2+2x =-1,得x =1- 2.借助图形可知1-2≤a ≤1. 答案:[1-2,1]10.(文科)设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x-1),已知当x ∈[0,1]时,f (x )=⎝ ⎛⎭⎪⎫121-x,则①2是函数f (x )的周期;②函数f (x )在(1,2)上递减,在(2,3)上递增;③函数f (x )的最大值是1,最小值是0;④当x ∈(3,4)时,f (x )=⎝ ⎛⎭⎪⎫12x -3.其中所有正确命题的序号是________. 解析:由已知条件:f (x +2)=f (x ),则y =f (x )是以2为周期的周期函数,①正确; 当-1≤x ≤0时0≤-x ≤1,f (x )=f (-x )=⎝ ⎛⎭⎪⎫121+x ,函数y =f (x )的图象如图所示:当3<x <4时,-1<x -4<0,f (x )=f (x -4)=⎝ ⎛⎭⎪⎫12x -3,因此②④正确.③不正确.答案:①②④10.(理科)(2015·丽水模拟)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数.若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.解析:∵f (x )为奇函数并且f (x -4)=-f (x ).∴f (x -4)=-f (4-x )=-f (x ),即f (4-x )=f (x ),且f (x -8)=-f (x -4)=f (x ),即y =f (x )的图象关于x =2对称,并且是周期为8的周期函数.∵f (x )在[0,2]上是增函数,∴f (x )在[-2,2]上是增函数,在[2,6]上为减函数,据此可画出y =f (x )的图象,其图象也关于x =-6对称,∴x 1+x 2=-12,x 3+x 4=4,∴x 1+x 2+x 3+x 4=-8. 答案:-8 三、解答题11.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x =1对称. (1)求证:f (x )是周期为4的周期函数;(2)若f (x )=x (0<x ≤1),求x ∈[-5,-4]时,函数f (x )的解析式. 解:(1)证明:由函数f (x )的图象关于直线x =1对称, 有f (x +1)=f (1-x ),即有f (-x )=f (x +2). 又函数f (x )是定义在R 上的奇函数, 故有f (-x )=-f (x ).故f (x +2)=-f (x ). 从而f (x +4)=-f (x +2)=f (x ), 即f (x )是周期为4的周期函数.(2)解:由函数f (x )是定义在R 上的奇函数,有f (0)=0.x ∈[-1,0)时,-x ∈(0,1],f (x )=-f (-x )=--x .故x ∈[-1,0]时,f (x )=--x .x ∈[-5,-4]时,x +4∈[-1,0], f (x )=f (x +4)=--x -4.从而,x ∈[-5,-4]时,函数f (x )=--x -4. 12.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ), 于是x <0时,f (x )=x 2+2x =x 2+mx , 所以m =2.(2)由(1)知f (x )在[-1,1]上是增函数, 要使f (x )在[-1,a -2]上单调递增.结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3]. [备课札记]。
第2讲命题及其关系、充分条件与必要条件基础巩固题组(建议用时:30分钟)一、选择题1.命题“若一个数是负数,则它的平方是正数”的逆命题是() A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”解析依题意,得原命题的逆命题:若一个数的平方是正数,则它是负数.答案 B2.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是() A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3解析同时否定原命题的条件和结论,所得命题就是它的否命题.答案 A3.命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是() A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数解析由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x+y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.答案 C4.(2015·郑州检测)已知直线l,m,其中只有m在平面α内,则“l∥α”是“l∥m”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析当l∥α时,直线l与平面α内的直线m平行、异面都有可能,所以l∥m不成立;当l∥m时,根据直线与平面平行的判定定理知直线l∥α,即“l∥α”是“l∥m”的必要不充分条件,故选B.答案 B5.(2014·云南统一检测)“lg x>lg y”是“x>y”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若lg x>lg y,则x>y>0,有x>y,所以充分性成立;反之,当x>0,y=0时,有x>y,但没有lg x>lg y,所以必要性不成立,所以“lg x>lg y”是“x>y”的充分不必要条件,故选A.答案 A6.(2014·成都二诊)下列说法正确的是() A.命题“若x2>1,则x>1”的否命题为“若x2>1,则x≤1”B.命题“∃x0∈R,x20>1”的否定是“∀x∈R,x2>1”C.命题“若x=y,则cos x=cos y”的逆否命题为假命题D.命题“若x=y,则cos x=cos y”的逆命题为假命题解析A项中否命题为“若x2≤1,则x≤1”,所以A错误;B项中否定为“∀x∈R,x2≤1”,所以B错误;因为逆否命题与原命题同真假,所以C错误;易知D正确,故选D.答案 D7.(2014·广东卷)在△ABC中,角A,B,C所对应的边分别为a,b,c,则“a≤b”是“sin A≤sin B”的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件解析结合正弦定理可知,a≤b⇔2R sin A≤2R sin B⇔sin A≤sin B(R为△ABC 外接圆的半径).故选A.答案 A8.(2014·东北三省四市联考)下列命题中真命题是() A.“a>b”是“a2>b2”的充分条件B.“a>b”是“a2>b2”的必要条件C.“a>b”是“ac2>bc2”的必要条件D.“a>b”是“|a|>|b|”的充要条件解析由a>b不能得知ac2>bc2,当c2=0时,ac2=bc2;反过来,由ac2>bc2可得a>b.因此,“a>b”是“ac2>bc2”的必要不充分条件,故选C.答案 C二、填空题9.命题“若x2>y2,则x>y”的逆否命题是________.答案“若x≤y,则x2≤y2”10.“m<14”是“一元二次方程x2+x+m=0有实数解”的________条件(填“充分不必要、必要不充分、充要”).解析x2+x+m=0有实数解等价于Δ=1-4m≥0,即m≤1 4.答案充分不必要11.函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是________.解析已知函数f(x)=x2-2x+1的图象关于直线x=1对称,则m=-2;反之也成立.所以函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是m =-2.答案m=-212.下列命题:①“全等三角形的面积相等”的逆命题;②“若ab=0,则a=0”的否命题;③“正三角形的三个角均为60°”的逆否命题.其中真命题的序号是________.解析①“全等三角形的面积相等”的逆命题为“面积相等的三角形全等”,显然该命题为假命题;②“若ab=0,则a=0”的否命题为“若ab≠0,则a≠0”,而由ab≠0,可得a,b都不为零,故a≠0,所以该命题是真命题;③因为原命题“正三角形的三个角均为60°”是一个真命题,故其逆否命题也是一个真命题.答案②③能力提升题组(建议用时:15分钟)13.(2014·天津十二区县重点中学联考)设x,y∈R,则“x2+y2≥9”是“x>3且y≥3”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析当x=-4时满足x2+y2≥9,但不满足x>3,所以充分性不成立;反之,当x>3且y≥3时,一定有x2+y2≥9,所以必要性成立,即“x2+y2≥9”是“x >3且y≥3”的必要不充分条件,故选B.答案 B14.(2014·临沂模拟)已知p:x≥k,q:(x+1)(2-x)<0,如果p是q的充分不必要条件,则k的取值范围是()A.[2,+∞) B.(2,+∞)C.[1,+∞) D.(-∞,-1]解析由q:(x+1)(2-x)<0,得x<-1或x>2,又p是q的充分不必要条件,所以k>2,即实数k的取值范围是(2,+∞),故选B.答案 B15.(2014·湖南高考诊断)下列选项中,p是q的必要不充分条件的是() A.p:x=1,q:x2=xB.p:|a|>|b|,q:a2>b2C.p:x>a2+b2,q:x>2abD.p:a+c>b+d,q:a>b且c>d解析 A 中,x =1⇒x 2=x ,x 2=x ⇒x =0或x =1⇒/ x =1,故p 是q 的充分不必要条件;B 中,因为|a |>|b |,根据不等式的性质可得a 2>b 2,反之也成立,故p 是q 的充要条件;C 中,因为a 2+b 2≥2ab ,由x >a 2+b 2,得x >2ab ,反之不成立,故p 是q 的充分不必要条件;D 中,取a =-1,b =1,c =0,d =-3,满足a +c >b +d ,但是a <b ,c >d ,反之,由同向不等式可加性得a >b ,c >d ⇒a +c >b +d ,故p 是q 的必要不充分条件.综上所述,故选D.答案 D16.设n ∈N *,一元二次方程x 2-4x +n =0有整数根的充要条件是n =________. 解析 已知方程有根,由判别式Δ=16-4n ≥0,解得n ≤4,又n ∈N *,逐个分析,当n =1,2时,方程没有整数根;而当n =3时,方程有整数根1,3;当n =4时,方程有整数根2.答案 3或417.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________. 解析 A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12<2x <8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m >2.答案 (2,+∞)。
第1讲集合及其运算基础巩固题组(建议用时:30分钟)一、选择题1.(2014·湖北卷)已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=() A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}解析∁U A={x|x∈U且x∉A}={2,4,7}.答案 C2.(2014·广州综合测试)已知集合A={0,1,2,3},B={x|x2-x=0},则集合A∩B的子集个数为() A.2 B.4C.6 D.8解析∵B={x|x2-x=0}={0,1},∴A∩B={0,1},∴A∩B的子集个数为4.答案 B3.(2015·贵阳监测)若集合A={x|x2=1},B={x|x2-3x+2=0},则集合A∪B=() A.{1} B.{1,2}C.{-1,1,2} D.{-1,1,-2}解析∵A={-1,1},B={1,2},∴A∪B={-1,1,2}.答案 C4.(2014·山东卷)设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2] B.(1,2)C.[1,2) D.(1,4)解析∵A={x|x2-2x<0}={x|0<x<2},B={x|1≤x≤4},∴A∩B={x|0<x <2}∩{x|1≤x≤4}={x|1≤x<2}.答案 C5.(2014·武汉检测)设集合P={x|x>1},Q={x|x2-x>0},则下列结论正确的是()A.P⊆Q B.Q⊆PC.P=Q D.P∪Q=R解析由集合Q={x|x2-x>0},知Q={x|x<0或x>1},所以P⊆Q,故选A.答案 A6.设集合A={x|0<x≤3},B={x|x<-1或x>2},则A∩B=() A.(2,3] B.(-∞,-1)∪(0,+∞)C.(-1,3] D.(-∞,0)∪(2,+∞)解析借助数轴得:∴A∩B=(2,3].答案 A7.已知集合A={x|x2=1},B={x|ax=1},若B⊆A,则实数a的取值集合为() A.{-1,0,1} B.{-1,1}C.{-1,0} D.{0,1}解析因为A={1,-1},当a=0时,B=∅,适合题意;当a≠0时,B={1 a}⊆A,则1a=1或-1,解得a=1或-1,所以实数a的取值集合为{-1,0,1}.答案 A8.(2015·长沙模拟)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1 B.2C.3 D.4解析A={1,2},B={1,2,3,4},A⊆C⊆B,则集合C可以为:{1,2},{1,2,3},{1,2,4},{1,2,3,4}.故选D.答案 D二、填空题9.设全集U=R,集合A={x|x>0},B={x|x>1},则集合(∁U B)∩A=__________.解析∵∁U B={x|x≤1},∴(∁U B)∩A={x|0<x≤1}.答案{x|0<x≤1}10.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a的值为__________.解析由题意得a+2=3,则a=1.此时A={-1,1,3},B={3,5},A∩B={3},满足题意.答案 111.(2013·山东卷改编)已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩(∁U B)=__________.解析由题意知A∪B={1,2,3},又B={1,2},∴∁U B={3,4},∴A∩(∁U B)={3}.答案{3}12.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为__________.解析根据并集的概念,可知{a,a2}={4,16},故只能是a=4.答案 4能力提升题组(建议用时:15分钟)13.(2015·皖南八校联考)设集合M={(x,y)|y=lg x},N={x|y=lg x},则下列结论中正确的是()A.M∩N≠∅B.M∩N=∅C.M∪N=N D.M∪N=M解析因为M为点集,N为数集,所以M∩N=∅.答案 B14.已知集合A={(x,y)|y=log2x},B={(x,y)|y=x2-2x},则A∩B的元素有()A.1个B.2个C.3个D.4个解析在同一直角坐标系下画出函数y=log2x与y=x2-2x的图象,如图所示:由图可知y=log2x与y=x2-2x图象有两个交点,则A∩B的元素有2个.答案 B15.已知集合A={x|y=lg(x-x2)},B={x|x2-cx<0,c>0},若A⊆B,则实数c 的取值范围是()A.(0,1] B.[1,+∞)C.(0,1) D.(1,+∞)解析A={x|y=lg(x-x2)}={x|x-x2>0}=(0,1),B={x|x2-cx<0,c>0}=(0,c),因为A⊆B,画出数轴,如图所示,得c≥1.应选B.答案 B16.已知U={y|y=log2x,x>1},P={y|y=1x,x>2},则∁U P=__________.解析∵U={y|y=log2x,x>1}={y|y>0},P={y|y=1x,x>2}={y|0<y<12},∴∁U P={y|y≥1 2}.答案{y|y≥1 2}17.已知集合A={x|1≤x<5},C={x|-a<x≤a+3},若C∩A=C,则a的取值范围是__________.解析因为C∩A=C,所以C⊆A.①当C=∅时,满足C⊆A,此时-a≥a+3,得a≤-3 2;②当C ≠∅时,要使C ⊆A ,则⎩⎨⎧-a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1. 答案 (-∞,-1]。
阶段回扣练2 函数概念与基本初等函数Ⅰ(建议用时:90分钟)一、选择题1.(2014·山西四校联考)函数y =1x +x +4的定义域为 ( )A .[-4,+∞)B .(-4,0)∪(0,+∞)C .(-4,+∞)D .[-4,0)∪(0,+∞)解析 由题意知⎩⎨⎧x ≠0,x +4≥0,得x ≥-4且x ≠0.答案 D2.(2014·湖南卷)下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )A .f (x )=1x 2B .f (x )=x 2+1C .f (x )=x 3D .f (x )=2-x解析 A 中f (x )=1x 2是偶函数,且在(-∞,0)上是增函数,故A 满足题意.B 中f (x )=x 2+1是偶函数,但在(-∞,0)上是减函数.C 中f (x )=x 3是奇函数.D 中f (x )=2-x 是非奇非偶函数.故B ,C ,D 都不满足题意. 答案 A3.已知幂函数f (x )的图象经过(9,3),则f (2)-f (1)= ( )A .3B .1- 2 C.2-1D .1解析 设幂函数为f (x )=x α,则f (9)=9α=3,即32α=3,所以2α=1,α=12,即f (x )=x 12=x ,所以f (2)-f (1)=2-1,选C. 答案 C4.(2014·唐山统一考试)f (x )是R 上的奇函数,当x ≥0时,f (x )=x 3+ln(1+x ),则当x <0时,f (x )=( )A .-x 3-ln(1-x )B .x 3+ln(1-x )C .x 3-ln(1-x )D .-x 3+ln(1-x )解析 当x <0时,则-x >0,∴f (-x )=(-x )3+ln(1-x )=-x 3+ln(1-x ). 又f (-x )=-f (x ),∴f (x )=x 3-ln(1-x ). 答案 C5.(2014·西安检测)已知a =log 23.6,b =log 43.2,c =log 43.6,则 ( )A .a >b >cB .a >c >bC .b >a >cD .c >a >b解析 依题意得,a =log 43.62>log 43.6=c >log 43.2=b . 答案 B6.(2015·辽宁五校协作体联考)设函数f (x )=log a |x |在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系是( )A .f (a +1)>f (2)B .f (a +1)<f (2)C .f (a +1)=f (2)D .不能确定解析 由已知得0<a <1,所以1<a +1<2,又易知函数f (x )为偶函数,故可以判断f (x )在(0,+∞)上单调递减,所以f (a +1)>f (2). 答案 A7.(2014·烟台模拟)如图是函数f (x )=x 2+ax +b 的图象,则函数g (x )=ln x +f ′(x )的零点所在区间是( )A.⎝ ⎛⎭⎪⎫14,12 B .(1,2) C.⎝ ⎛⎭⎪⎫12,1 D .(2,3)解析 由f (x )的图象知0<b <1,f (1)=0,从而-2<a <-1,g (x )=ln x +2x +a ,g (x )在定义域内单调递增,g ⎝ ⎛⎭⎪⎫12=ln 12+1+a <0,g (1)=2+a >0,g ⎝ ⎛⎭⎪⎫12·g (1)<0,故选C.答案 C8.某公司租地建仓库,已知仓库每月占用费y 1与仓库到车站的距离成反比,而每月车载货物的运费y 2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处建仓库,这两项费用y 1,y 2分别是2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站 ( ) A .5千米处 B .4千米处 C .3千米处D .2千米处解析 由题意得,y 1=k 1x ,y 2=k 2x ,其中x >0,当x =10时,代入两项费用y 1,y 2分别是2万元和8万元,可得k 1=20,k 2=45,y 1+y 2=20x +45x ≥2 20x ·45x =8,当且仅当20x =45x ,即x =5时取等号,故选A. 答案 A9.(2014·济南四校联考)已知函数f (x )=x 2+cos xx 2,则y =f (x )的图象大致为( )解析 首先确定函数f (x )的定义域为(-∞,0)∪(0,+∞),由f (-x )=(-x )2+cos (-x )(-x )2=f (x )可知f (x )=x 2+cos x x 2为偶函数,故其图象关于y 轴对称,可以排除A ,然后结合x →+∞时,f (x )→+∞可以排除C ,D. 答案 B10.对任意实数a ,b 定义运算“⊗”:a ⊗b =⎩⎨⎧b ,a -b ≥1,a ,a -b <1.设f (x )=(x 2-1)⊗(4+x ),若函数y =f (x )+k 的图象与x 轴恰有三个不同交点,则k 的取值范围是( ) A .(-2,1) B .[0,1] C .[-2,0)D .[-2,1)解析 当x 2-1≥4+x +1,即x ≤-2或x ≥3时,f (x )=4+x ,当x 2-1<4+x +1,即-2<x <3时,f (x )=x 2-1,如图所示,作出f (x )的图象,由图象可知,要使-k =f (x )有三个根,需满足-1<-k ≤2,即-2≤k <1.答案 D 二、填空题11.(2015·潍坊模拟)函数f (x )=2a x +1-3(a >0且a ≠1)的图象经过的定点坐标是________.解析 令x +1=0,得x =-1,f (-1)=2-3=-1. 答案 (-1,-1)12.(2014·贵阳监测)若函数f (x )=x 2-2kx +1在[1,+∞)上是增函数,则实数k 的取值范围是________.解析 依题意,函数f (x )=(x -k )2+1-k 2在[1,+∞)上是单调递增函数,于是有k ≤1,即实数k 的取值范围是(-∞,1]. 答案 (-∞,1]13.(2014·日照模拟)已知f (x )=⎩⎨⎧3e x -1,x <3,log 3(x 2-6),x ≥3,则f (f (3))的值为________.解析 因为f (3)=log 3(32-6)=log 33=1, 所以f (f (3))=f (1)=3e 0=3,故填3. 答案 314.(2014·南通模拟)已知函数f (x )=⎩⎨⎧x 2+ax +1,x ≥1,ax 2+x +1,x <1在R 上是单调增函数,则实数a 的取值范围________.解析 f (x )在R 上是单调增函数,需满足a =0或⎩⎪⎨⎪⎧-a 2≤1.a <0,-12a ≥1,解得-12≤a ≤0. 答案 [-12,0]15.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎨⎧ax +1,-1≤x <0,bx +2x +1, 0≤x ≤1,其中a ,b ∈R .若f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32,则a +3b 的值为________.解析 因为f (x )的周期为2, 所以f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫32-2=f ⎝ ⎛⎭⎪⎫-12,即f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫-12.又因为f ⎝ ⎛⎭⎪⎫-12=-12a +1,f ⎝ ⎛⎭⎪⎫12=b 2+212+1=b +43, 所以-12a +1=b +43.整理,得a =-23(b +1). ①又因为f (-1)=f (1),所以-a +1=b +22,即b =-2a . ②将②代入①,得a =2,b =-4. 所以a +3b =2+3×(-4)=-10. 答案 -10 三、解答题16.函数f (x )=m +log a x (a >0且a ≠1)的图象过点(8,2)和(1,-1). (1)求函数f (x )的解析式;(2)令g (x )=2f (x )-f (x -1),求g (x )的最小值及取得最小值时x 的值. 解 (1)由⎩⎨⎧ f (8)=2,f (1)=-1,得⎩⎨⎧m +log a 8=2,m +log a 1=-1, 解得m =-1,a =2,故函数解析式为f (x )=-1+log 2x . (2)g (x )=2f (x )-f (x -1)=2(-1+log 2x )-[-1+log 2(x -1)] =log 2x 2x -1-1(x >1).∵x 2x -1=(x -1)2+2(x -1)+1x -1=(x -1)+1x -1+2≥ 2(x -1)·1x -1+2=4.当且仅当x -1=1x -1,即x =2时,等号成立.而函数y =log 2x 在(0,+∞)上单调递增,则log 2 x 2x -1-1≥log 24-1=1,故当x =2时,函数g (x )取得最小值1.17.对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0成立,则称x 0为f (x )的不动点,已知函数f (x )=ax 2+(b +1)x +b -1(a ≠0). (1)当a =1,b =-2时,求f (x )的不动点;(2)若对任意实数b ,函数f (x )恒有两个相异的不动点,求a 的取值范围. 解 (1)当a =1,b =-2时,f (x )=x 2-x -3,由题意可知x =x 2-x -3,得x 1=-1,x 2=3.故当a =1,b =-2时,f (x )的不动点是-1,3.(2)∵f (x )=ax 2+(b +1)x +b -1(a ≠0)恒有两个相异的不动点,∴x =ax 2+(b +1)x +b -1,即ax 2+bx +b -1=0恒有两相异实根, ∴Δ=b 2-4ab +4a >0(b ∈R )恒成立. 于是Δ′=(4a )2-16a <0解得0<a <1,故当b ∈R ,f (x )恒有两个相异的不动点时的a 的范围是(0,1).18.已知函数f (x )=ax 2+(b -8)x -a -ab (a ≠0),当x ∈(-3,2)时,f (x )>0;当x ∈(-∞,-3)∪(2,+∞)时,f (x )<0. (1)求f (x )在[0,1]内的值域;(2)c 为何值时,不等式ax 2+bx +c ≤0在[1,4]上恒成立?解 由题意得x =-3和x =2是函数f (x )的零点且a ≠0,则⎩⎨⎧0=a ·(-3)2+(b -8)·(-3)-a -ab ,0=a ·22+(b -8)·2-a -ab ,解得⎩⎨⎧a =-3,b =5,∴f (x )=-3x 2-3x +18.(1)由图象知,函数在[0,1]内单调递减, ∴当x =0时,f (x )=18;当x =1时,f (x )=12, ∴f (x )在[0,1]内的值域为[12,18]. (2)法一 令g (x )=-3x 2+5x +c . ∵g (x )在⎣⎢⎡⎭⎪⎫56,+∞上单调递减,要使g (x )≤0在[1,4]上恒成立, 则需要g (x )max =g (1)≤0, 即-3+5+c ≤0,解得c ≤-2.∴当c ≤-2时,不等式ax 2+bx +c ≤0在[1,4]上恒成立.法二 不等式-3x 2+5x +c ≤0在[1,4]上恒成立, 即c ≤3x 2-5x 在[1,4]上恒成立. 令g (x )=3x 2-5x ,∵x ∈[1,4],且g (x )在[1,4]上单调递增, ∴g (x )min =g (1)=3×12-5×1=-2,∴c ≤-2. 即c ≤-2时,不等式ax 2+bx +c ≤0在[1,4]上恒成立.19.小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流动成本为W (x )万元.在年产量不足8万件时,W (x )=13x 2+x (万元);在年产量不小于8万件时,W (x )=6x +100x -38(万元).每件产品售价为5元.通过市场分析,小王生产的商品能当年全部售完.(1)写出年利润L (x )(万元)关于年产量x (万件)的函数解析式(注:年利润=年销售收入-固定成本-流动成本);(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?解 (1)因为每件商品售价为5元,则x 万件商品销售收入为5x 万元.依题意得,当0<x <8时,L (x )=5x -⎝ ⎛⎭⎪⎫13x 2+x -3=-13x 2+4x -3;当x ≥8时,L (x )=5x -⎝ ⎛⎭⎪⎫6x +100x -38-3=35-⎝ ⎛⎭⎪⎫x +100x .所以L (x )=⎩⎪⎨⎪⎧-13x 2+4x -3,0<x <8,35-⎝ ⎛⎭⎪⎫x +100x ,x ≥8.(2)当0<x <8时, L (x )=-13(x -6)2+9,此时,当x =6时,L (x )取得最大值L (6)=9(万元).当x ≥8时;L (x )=35-⎝ ⎛⎭⎪⎫x +100x ≤35-2x ·100x =35-20=15(万元).此时,当且仅当x =100x ,即x =10时,L (x )取得最大值15万元.∵9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元.。