(新课标)高中数学《1.2.1几个常用函数的导数》导学案 新人教a版选修2-2
- 格式:doc
- 大小:189.00 KB
- 文档页数:4
2021年高中数学1.2.1几个常用函数的导数教学案新人教A版选修2-2一.预习目标1.会由定义求导数的三个步骤推导四种常见函数、、、的导数公式;2.掌握并能运用这四个公式正确求函数的导数.二.预习内容1.用导数定义求函数在一点处的导数的一般步骤是:(1)(2)(3)2.利用上述步骤求函数当时的导数,并说明其几何意义。
.三.提出疑惑课内探究学案一.学习目标1.会应用由定义求导数的三个步骤推导四种常见函数、、、的导数公式;2.掌握并能运用这四个公式正确求函数的导数二.学习过程(一)。
复习回顾用导数定义求函数在一点处的导数的一般步骤是:(1)(2)(3)(二)。
提出问题,展示目标我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数,如何求它的导数呢?由导数定义本身,给出了求导数的最基本的方法,但由于导数是用极限来定义的,所以求导数总是归结到求极限这在运算上很麻烦,有时甚至很困难,为了能够较快地求出某些函数的导数,这一单元我们将研究比较简捷的求导数的方法,下面我们求几个常用的函数的导数.(三)、合作探究1.利用导数定义求函数的导数,并试从几何角度和物理角度解释导数的意义。
2.利用导数定义求函数的导数,并试从几何角度和物理角度解释导数的意义。
3.利用导数定义求函数的导数,并试从几何角度和物理角度解释导数的意义。
4.利用导数定义求函数的导数。
5.利用导数定义求函数的导数。
6.你能从一般角度推广函数的导数吗?(四)例题精析例题:在同一坐标系中画出函数的图像,并根据导数的定义,求出它们的导数。
(1)从图像上看,它们的导数分别是什么?(2)这三个函数中哪一个增加的最快?哪一个增加的最慢?(3)函数增(减)的快慢与什么有关?三.反思总结1.几个常用的函数的导数为:2.可以推广的一般结论为:四.当堂检测:画出函数的图像,根据图像描述它的变化情况,并求出曲线在点处的切线方程。
1.2.1 几种常见函数的导数
一、教学目标:熟记公式(C )¢=0 (C为常数),(x)¢=1,( x2 )¢=2x,
.
二、教学重点:牢固、准确地记住五种常见函数的导数,为求导数打下坚实的基础. 教学难点:灵活运用五种常见函数的导数.[来
三、教学过程:
(一)公式1:(C )¢=0 (C为常数).
证明:y=f(x)=C, Δy=f(x+Δx)-f(x)=C-C=0,
也就是说,常数函数的导数等于0.
公式2:函数的导数
证明:(略)
公式3:函数的导数
公式4:函数的导数
公式5:函数的导数
(二)举例分析
例1. 求下列函数的导数.
⑴⑵⑶
解:⑴
⑵
⑶
练习
求下列函数的导数:
⑴y=x5;⑵y=x6;(3)(4)(5)
例2.求曲线和在它们交点处的两条切线与x轴所围成的三角形的面积。
例3.已知曲线上有两点A(1,1),B(2,2)。
求:(1)割线AB的斜率;(2)在[1,1+△x]内的平均变化率;
(3)点A处的切线的斜率;(4)点A处的切线方程
例4.求抛物线y=x2上的点到直线x-y-2=0 的最短距离.
(三)课堂小结
几种常见函数的导数公式网]
(C )¢=0 (C为常数),(x)¢=1 ,( x 2 )¢=2x,.
(四)课后作业。
§1.2.1几个常用函数的导数教学目标:1.使学生应用由定义求导数的三个步骤推导四种常见函数y c =、y x =、2y x =、1y x=的导数公式;2.掌握并能运用这四个公式正确求函数的导数. 教学重点:四种常见函数y c =、y x =、2y x =、1y x=的导数公式及应用 教学难点: 四种常见函数y c =、y x =、2y x =、1y x =的导数公式 教学过程:一.创设情景我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数()y f x =,如何求它的导数呢?由导数定义本身,给出了求导数的最基本的方法,但由于导数是用极限来定义的,所以求导数总是归结到求极限这在运算上很麻烦,有时甚至很困难,为了能够较快地求出某些函数的导数,这一单元我们将研究比较简捷的求导数的方法,下面我们求几个常用的函数的导数.二.新课讲授1.函数()y f x c ==的导数根据导数定义,因为()()0y f x x f x c c x x x∆+∆--===∆∆∆ 所以00lim lim 00x x y y ∆→∆→∆'===0y '=表示函数y c =图像(图3.2-1)上每一点处的切线的斜率都为0.若y c =表示路程关于时间的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态.2.函数()y f x x ==的导数因为()()1y f x x f x x x x x x x∆+∆-+∆-===∆∆∆ 所以00lim lim11x x y y ∆→∆→∆'===1y '=表示函数y x =图像(图3.2-2)上每一点处的切线的斜率都为1.若y x =表示路程关于时间的函数,则1y '=可以解释为某物体做瞬时速度为1的匀速运动.3.函数2()y f x x ==的导数 因为22()()()y f x x f x x x x x x x∆+∆-+∆-==∆∆∆ 2222()2x x x x x x x x+∆+∆-==+∆∆ 所以00lim lim(2)2x x y y x x x x ∆→∆→∆'==+∆=∆2y x '=表示函数2y x =图像(图3.2-3)上点(,)x y 处的切线的斜率都为2x ,说明随着x 的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当0x <时,随着x 的增加,函数2y x =减少得越来越慢;当0x >时,随着x 的增加,函数2y x =增加得越来越快.若2y x =表示路程关于时间的函数,则2y x '=可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x .4.函数1()y f x x==的导数 因为11()()y f x x f x x x x x x x -∆+∆-+∆==∆∆∆ 2()1()x x x x x x x x x x-+∆==-+∆∆+⋅∆ 所以220011lim lim()x x y y x∆→∆→∆'==-=-∆(2)推广:若*()()n y f x x n Q ==∈,则1()n f x nx -'= 三.课堂练习1.课本P 13探究12.课本P 13探究24.求函数y =四.回顾总结五.布置作业。
§1.2.1《几个常用函数的导数》导学案班级__________ 姓名___________, 组号________【学习目标】能够用导数的定义求几个常用函数的导数;利用导数解决简单的问题。
【学习重点】推导几个常用函数的导数;利用导数解决简单的问题。
【学习难点】推导几个常用函数的导数.【知识链接】:1、函数在一点处导数的定义及导数的几何意义。
2、求函数在一点处的导数的步骤:【教学过程】:知识点一: 利用定义求常数的导数1、函数y=()f x c =的导数=∆y = = 。
=∆∆xy 'y =)('x f =xy x ∆∆→∆0lim = = 若c y =表示路程关于时间的函数,则'y =0可以解释 ,即一直处于 。
知识点二: 利用定义求函数)0(≠=k kx y 导数2、函数y=)(x f =x 的导数=∆y = ==∆∆xy'y =)('x f =xy x ∆∆→∆0lim = = '1y =表示函数y x =图象上每一点处的切线的斜率都为1;若x y = 表示路程关于时间的函数,则'1y = 可以解释为【探究1】 在同一坐标系中,画出函数2y x =,3,4y x y x ==的图象,并由导数的定义求它们的导数。
(1)从图象上看,它们的导数分别表示什么?(2)这三个函数中,哪一个增加最快?哪一个增加最慢?(3)函数y kx = (0k ≠)增(减)的快慢与什么有关?知识点三: 利用定义求常见幂函数的导数3、函数y=)(x f =2x 的导数 =∆y = ==∆∆x y = 'y =)('x f =xy x ∆∆→∆0lim = = '2y x =表示函数2y x =图象上每点(x,y )处的切线的斜率为2x ,说明随着x 的变化,切线的斜率也在变化:(1) 当x<0时,随着 x 的增加,2y x =减少得越来越慢;(2)当x>0时,随着 x 的增加,2y x =增加得越来越快。
§1.2.1几个常用函数导数学习目标1.掌握四个公式,理解公式的证明过程;2.学会利用公式,求一些函数的导数;3.理解变化率的概念,解决一些物理上的简单问题.复习1:导数的几何意义是:曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为复习2:求函数)(x f y =的导数的一般方法:(1)求函数的改变量y ∆=(2)求平均变化率y x∆=∆ (3)取极限,得导数/y =()f x '=xy x ∆∆→∆0lim =二、新课导学学习探究探究任务一:函数()y f x c ==的导数.问题:如何求函数()y f x c ==的导数新知:0y '=表示函数y c =图象上每一点处的切线斜率为 .若y c =表示路程关于时间的函数,则y '= ,可以解释为 即一直处于静止状态.试试: 求函数()y f x x ==的导数反思:1y '=表示函数y x =图象上每一点处的切线斜率为 .若y x =表示路程关于时间的函数,则y '= ,可以解释为 探究任务二:在同一平面直角坐标系中,画出函数2,3,4y x y x y x ===的图象,并根据导数定义,求它们的导数.(1)从图象上看,它们的导数分别表示什么?(2)这三个函数中,哪一个增加得最快?哪一个增加得最慢?(3)函数(0)y kx k =≠增(减)的快慢与什么有关?典型例题例1 求函数1()y f x x==的导数变式: 求函数2()y f x x ==的导数小结:利用定义求导法是最基本的方法,必须熟记求导的三个步骤:作差,求商,取极限.例2 画出函数1y x=的图象.根据图象,描述它的变化情况,并求出曲线在点(1,1)处的切线方程.变式1:求出曲线在点(1,2)处的切线方程.小结:利用导数求切线方程时,一定要判断所给点是否为切点,它们的求法是不同的.动手试试练1. 求曲线221y x =-的斜率等于4的切线方程.练2. 求函数()y f x ==三、总结提升学习小结1. 利用定义求导法是最基本的方法,必须熟记求导的三个步骤: , , .2. 利用导数求切线方程时,一定要判断所给点是否为切点,一定要记住它们的求法是不同的.知识拓展微积分的诞生具有划时代的意义,是数学史上的分水岭和转折点.关于微积分的地位,恩格斯是这样评价的:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发现那样被看作人类精神的纯粹的和惟一的功绩,那正是在这里.”学习评价当堂检测(时量:5分钟 满分:10分)计分:1.()0f x =的导数是( )A .0B .1C .不存在D .不确定2.已知2()f x x =,则(3)f '=( )A .0B .2xC .6D .93. 在曲线2y x =上的切线的倾斜角为4π的点为( ) A .(0,0) B .(2,4) C .11(,)416 D .11(,)244. 过曲线1y x=上点(1,1)且与过这点的切线平行的直线方程是 5. 物体的运动方程为3s t =,则物体在1t =时的速度为 ,在4t =时的速度为 .课后作业1. 已知圆面积2S r π=,根据导数定义求()S r '.。
1.2.1 几个常用函数的导数 1.2.2 基本初等函数的导数公式及导数的运算法则(一)A 级 基础巩固一、选择题 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( ) A .0B .1C .2D .3解析:因为(cos x )′=-sin x ,所以①错误.sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误.⎝ ⎛⎭⎪⎫1x 2′=(x -2)′=-2x -2-1=-2x -3=-2x 3,所以③错误.⎝ ⎛⎭⎪⎫-1x ′=(-x -12)′=12x -12-1=12x -32=12x x,所以④正确. 答案:B2.已知f (x )=x a,若f ′(-1)=-2,则a 的值等于( ) A .2B .-2C .3D .-3解析:若a =2,则f (x )=x 2,所以f ′(x )=2x , 所以f ′(-1)=2×(-1)=-2适合条件. 答案:A3.已知曲线y =x 3在点(2,8)处的切线方程为y =kx +b ,则k -b =( ) A .4B .-4C .28D .-28解析:因为y ′=3x 2,所以点(2,8)处的切线斜率k =f ′(2)=12. 所以切线方程为y -8=12(x -2),即y =12x -16, 所以k =12,b =-16,所以k -b =28. 答案:C4.已知f (x )=2x ,g (x )=ln x ,则方程f (x )+1=g ′(x )的解为( ) A .1B.12C .-1或12D .-1解析:由g (x )=ln x ,得x >0,且g ′(x )=1x.故2x +1=1x,即2x 2+x -1=0, 解得x =12或x =-1.又因x >0, 故x =12,选B.答案:B5.曲线y =sin x 在x =0处的切线的倾斜角是( ) A.π2B.π3C.π6D.π4解析:由题知,y ′=cos x ,所以y ′|x =0=cos 0=1.设此切线的倾斜角为α,则tan α=1,因为α∈[0,π),所以α=π4.答案:D 二、填空题6.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x <0,ln x ,0<x <1,若f ′(a )=12,则实数a 的值为________.解析:f ′(x )=⎩⎪⎨⎪⎧3x 2,x <0,1x ,0<x <1,若f ′(a )=12,则⎩⎪⎨⎪⎧0<a <1,1a =12或⎩⎪⎨⎪⎧a <0,3a 2=12,解得a =112或a =-2.答案:112或-27.曲线y =x 3+3x 在点(1,4)处的切线方程为____________.解析:对函数求导得到y ′=3x 2+3,当x =1时,y ′=6,又点(1,4)在切线上,所以切线方程为y -4=6(x -1),即6x -y -2=0.答案:6x -y -2=08.若曲线y =x 3的某一切线与直线y =12x +6平行,则切点坐标是________. 解析:设切点坐标为(x 0,x 30),因为y ′=3x 2,所以切线的斜率k =3x 20,又切线与直线y =12x +6平行,所以3x 20=12,解得x 0=±2,故切点为(2,8)或(-2,-8).答案:(2,8)或(-2,-8) 三、解答题9.求下列函数的导数:(1)y =5x 3; (2)y =1x4;(3)y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4;(4)y =log 2 x 2-log 2 x .解:(1)y ′=(5x 3)′=(x 35)′=35x 35-1=35x -25=355x2.(2)y ′=⎝ ⎛⎭⎪⎫1x4′=(x -4)′=-4x -4-1=-4x -5=-4x5.(3)因为y =-2sin x 2⎝⎛⎭⎪⎫1-2cos 2x 4=2sin x 2⎝⎛⎭⎪⎫2cos 2x4-1=2sin x2cos x2=sin x ,所以y ′=(sin x )′=cos x . (4)因为y =log 2x 2-log 2x =log 2x , 所以y ′=(log 2x )′=1x ln 2. 10.求曲线y =1x和y =x 2在它们交点处的两条切线与x 轴所围成的三角形的面积.解:由⎩⎪⎨⎪⎧y =1x ,y =x 2得交点A 的坐标为(1,1).由y =x 2得y ′=2x ,所以y =x 2在点A (1,1)处的切线方程为y -1=2(x -1), 即y =2x -1.由y =1x ,得y ′=-1x2,所以y =1x在点A (1,1)处的切线方程为y -1=-(x -1),即y =-x +2.又直线y =2x -1与x 轴交点为B ⎝ ⎛⎭⎪⎫12,0, 直线y =-x +2与x 轴交点为C (2,0),所以所求面积S =12×⎝ ⎛⎭⎪⎫2-12×1=34.B 级 能力提升1.某质点的运动方程为s =1t4(其中s 的单位为m ,t 的单位为s),则质点在t =3 s 时的速度为( )A .-4×3-4m/s B .-3×3-4m/s C .-5×3-5 m/sD .-4×3-5m/s解析:由s =1t4得s ′=⎝ ⎛⎭⎪⎫1t 4′=(t -4)′=-4t -5.所以s ′|t =3=-4×3-5,故选D. 答案:D2.已知f (x )=cos x (x ∈[0,2π]),g (x )=x ,解不等式f ′(x )+g ′(x )≤0的解集为________.解析:f ′(x )=-sin x ,g ′(x )=1,所以不等式f ′(x )+g ′(x )≤0,变为-sin x +1≤0.即sin x ≥1,又sin x ≤1,所以sin x =1, 又x ∈[0,2π],所以x =π2.答案:⎩⎨⎧⎭⎬⎫π23.已知曲线y =x ,求:(1)与直线y =2x -4平行的曲线的切线方程; (2)求过点P (0,1)且与曲线相切的切线方程. 解:(1)设切点坐标为(x 0,y 0), 由y =x ,得y ′|x =x 0=12x 0.因为切线与y =2x -4平行,所以12x 0=2,所以x 0=116,所以y 0=14.则所求切线方程为y -14=2⎝ ⎛⎭⎪⎫x -116,即16x -8y +1=0.(2)设切点P 1(x 1,x 1),则切线斜率为y ′|x =x 1=12x 1,所以切线方程为y -x 1=12x 1(x -x 1).又切线过点P (0,1),所以1-x 1=12x 1(-x 1), 即x 1=2,x 1=4.所以切线方程为y -2=14(x -4),即x -4y +4=0.。
第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
选修2-2 1.2 第1课时 几个常用的函数的导数一、选择题1.下列结论不正确的是( ) A .若y =0,则y ′=0 B .若y =5x ,则y ′=5 C .若y =x -1,则y ′=-x -2[答案] D2.若函数f (x )=x ,则f ′(1)等于( ) A .0 B .-12C .2D.12[答案] D[解析] f ′(x )=(x )′=12x ,所以f ′(1)=12×1=12,故应选D.3.抛物线y =14x 2在点(2,1)处的切线方程是( )A .x -y -1=0B .x +y -3=0C .x -y +1=0D .x +y -1=0[答案] A[解析] ∵f (x )=14x 2,∴f ′(2)=li m Δx →0f (2+Δx )-f (2)Δx=li m Δx →0 ⎝ ⎛⎭⎪⎫1+14Δx =1.∴切线方程为y -1=x -2.即x -y -1=0. 4.已知f (x )=x 3,则f ′(2)=( ) A .0 B .3x 2C .8D .12[答案] D[解析] f ′(2)=lim Δx →0 (2+Δx )3-23Δx=lim Δx →0 6Δx 2+12Δx Δx =lim Δx →0 (6Δx +12)=12,故选D. 5.已知f (x )=x α,若f ′(-1)=-2,则α的值等于( ) A .2 B .-2 C .3D .-3[答案] A[解析] 若α=2,则f (x )=x 2,∴f ′(x )=2x ,∴f ′(-1)=2×(-1)=-2适合条件.故应选A. 6.函数y =(x +1)2(x -1)在x =1处的导数等于( ) A .1 B .2 C .3D .4[答案] D[解析] ∵y =x 3+x 2-x -1∴Δy Δx =(1+Δx )3+(1+Δx )2-(1+Δx )-1Δx =4+4Δx +(Δx )2,∴y ′|x =1=li m Δx →0 Δy Δx =li m Δx →0[4+4·Δx +(Δx )2]=4. 故应选D.7.曲线y =x 2在点P 处切线斜率为k ,当k =2时的P 点坐标为( ) A .(-2,-8) B .(-1,-1) C .(1,1)D.⎝ ⎛⎭⎪⎫-12,-18[答案] C[解析] 设点P 的坐标为(x 0,y 0), ∵y =x 2,∴y ′=2x .∴k ==2x 0=2,∴x 0=1,∴y 0=x 20=1,即P (1,1),故应选C. 8.已知f (x )=f ′(1)x 2,则f ′(0)等于( ) A .0 B .1 C .2D .3[答案] A[解析] ∵f (x )=f ′(1)x 2,∴f ′(x )=2f ′(1)x ,∴f ′(0)=2f ′(1)×0=0.故应选A.9.曲线y=3x上的点P(0,0)的切线方程为( )A.y=-x B.x=0 C.y=0 D.不存在[答案] B[解析] ∵y=3 x∴Δy=3x+Δx-3x=x+Δx-x(3x+Δx)2+3x(x+Δx)+(3x)2=Δx(3x+Δx)2+3x(x+Δx)+(3x)2∴ΔyΔx=1(3x+Δx)2+3x(x+Δx)+(3x)2∴曲线在P(0,0)处切线的斜率不存在,∴切线方程为x=0.10.质点作直线运动的方程是s=4t,则质点在t=3时的速度是( )A.14433B.14334C.12334D.13443[答案] A[解析] Δs=4t+Δt-4t=t+Δt-t4t+Δt+4t=t+Δt-t(4t+Δt+4t)(t+Δt+t)=Δt(4t+Δt+4t)(t+Δt+t)∴li m Δt →0 Δs Δt=124t ·2t =144t 3, ∴s ′(3)=14433 .故应选A.二、填空题11.若y =x 表示路程关于时间的函数,则y ′=1可以解释为________. [答案] 某物体做瞬时速度为1的匀速运动[解析] 由导数的物理意义可知:y ′=1可以表示某物体做瞬时速度为1的匀速运动. 12.若曲线y =x 2的某一切线与直线y =4x +6平行,则切点坐标是________. [答案] (2,4)[解析] 设切点坐标为(x 0,x 20),因为y ′=2x ,所以切线的斜率k =2x 0,又切线与y =4x +6平行,所以2x 0=4,解得x 0=2,故切点为(2,4).13.过抛物线y =15x 2上点A ⎝ ⎛⎭⎪⎫2,45的切线的斜率为______________. [答案] 45[解析] ∵y =15x 2,∴y ′=25x∴k =25×2=45.14.(2010·江苏,8)函数y =x 2(x >0)的图像在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *,若a 1=16,则a 1+a 3+a 5的值是________.[答案] 21[解析] ∵y ′=2x ,∴过点(a k ,a 2k )的切线方程为y -a 2k =2a k (x -a k ),又该切线与x 轴的交点为(a k +1,0),所以a k +1=12a k ,即数列{a k }是等比数列,首项a 1=16,其公比q =12,∴a 3=4,a 5=1,∴a 1+a 3+a 5=21.三、解答题15.过点P (-2,0)作曲线y =x 的切线,求切线方程. [解析] 因为点P 不在曲线y =x 上, 故设切点为Q (x 0,x 0),∵y ′=12x ,∴过点Q 的切线斜率为:12x 0=x 0x 0+2,∴x 0=2,∴切线方程为:y -2=122(x -2),即:x -22y +2=0.16.质点的运动方程为s =1t 2,求质点在第几秒的速度为-264.[解析] ∵s =1t2,∴Δs =1(t +Δt )2-1t2=t 2-(t +Δt )2t (t +Δt )=-2t Δt -(Δt )2t (t +Δt )∴li m Δt →0 Δs Δt =-2t t 2·t 2=-2t 3.∴-2t 3=-264,∴t =4. 即质点在第4秒的速度为-264.17.已知曲线y =1x.(1)求曲线在点P (1,1)处的切线方程; (2)求曲线过点Q (1,0)处的切线方程; (3)求满足斜率为-13的曲线的切线方程.[解析] ∵y =1x ,∴y ′=-1x2.(1)显然P (1,1)是曲线上的点.所以P 为切点,所求切线斜率为函数y =1x在P (1,1)点导数.即k =f ′(1)=-1.所以曲线在P (1,1)处的切线方程为y -1=-(x -1),即为y =-x +2.(2)显然Q (1,0)不在曲线y =1x上.则可设过该点的切线的切点为A ⎝⎛⎭⎪⎫a ,1a ,那么该切线斜率为k =f ′(a )=-1a2.则切线方程为y -1a =-1a2(x -a ).①将Q (1,0)坐标代入方程:0-1a =-1a2(1-a ).解得a =12,代回方程①整理可得:切线方程为y =-4x +4.(3)设切点坐标为A ⎝ ⎛⎭⎪⎫a ,1a ,则切线斜率为k =-1a 2=-13,解得a =±3,那么A ⎝⎛⎭⎪⎫3,33,A ′⎝ ⎛⎭⎪⎫-3,3-3.代入点斜式方程得y -33=-13(x -3)或y +33=-13(x +3).整理得切线方程为y =-13x +233或y =-13x -233.18.求曲线y =1x与y =x 2在它们交点处的两条切线与x 轴所围成的三角形的面积.[解析] 两曲线方程联立得⎩⎪⎨⎪⎧y =1x,y =x 2,解得⎩⎪⎨⎪⎧x =1y =1.∴y ′=-1x2,∴k 1=-1,k 2=2x |x =1=2,∴两切线方程为x +y -2=0,2x -y -1=0,所围成的图形如上图所示. ∴S =12×1×⎝ ⎛⎭⎪⎫2-12=34.。
§1.2.1几个常用函数导数
学习目标
1.掌握四个公式,理解公式的证明过程;
2.学会利用公式,求一些函数的导数;
3.理解变化率的概念,解决一些物理上的简单问题.
复习1:导数的几何意义是:曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为
复习2:求函数)(x f y =的导数的一般方法:
(1)求函数的改变量y ∆=
(2)求平均变化率y x ∆=∆ (3)取极限,得导数/y =()f x '=x
y x ∆∆→∆0lim =
二、新课导学
学习探究
探究任务一:函数()y f x c ==的导数.
问题:如何求函数()y f x c ==的导数
新知:0y '=表示函数y c =图象上每一点处的切线斜率为 .
若y c =表示路程关于时间的函数,则y '= ,可以解释为 即一直处于静止状态.
试试: 求函数()y f x x ==的导数
反思:1y '=表示函数y x =图象上每一点处的切线斜率为 .
若y x =表示路程关于时间的函数,则y '= ,可以解释为 探究任务二:在同一平面直角坐标系中,画出函数2,3,4y x y x y x ===的图象,并根据导数定义,求它们的导数.
(1)从图象上看,它们的导数分别表示什么?
(2)这三个函数中,哪一个增加得最快?哪一个增加得最慢?
(3)函数(0)y kx k =≠增(减)的快慢与什么有关?
典型例题
例1 求函数
1
()
y f x
x
==的导数
变式:求函数2
()
y f x x
==的导数
小结:利用定义求导法是最基本的方法,必须熟记求导的三个步骤:作差,求商,取极限.
例2 画出函数
1
y
x
=的图象.根据图象,描述它的变化情况,并求出曲线在点(1,1)处的切
线方程.
变式1:求出曲线在点(1,2)处的切线方程.
小结:利用导数求切线方程时,一定要判断所给点是否为切点,它们的求法是不同的.
动手试试
练1. 求曲线2
=-的斜率等于4的切线方程.
21
y x
练2. 求函数()
==
y f x
三、总结提升
学习小结
1. 利用定义求导法是最基本的方法,必须熟记求导的三个步骤: , , .
2. 利用导数求切线方程时,一定要判断所给点是否为切点,一定要记住它们的求法是不同的.
知识拓展
微积分的诞生具有划时代的意义,是数学史上的分水岭和转折点.关于微积分的地位,恩格斯是这样评价的:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发现那样被看作人类精神的纯粹的和惟一的功绩,那正是在这里.”
学习评价
当堂检测(时量:5分钟 满分:10分)计分:
1.()0f x =的导数是( )
A .0
B .1
C .不存在
D .不确定
2.已知2()f x x =,则(3)f '=( )
A .0
B .2x
C .6
D .9
3. 在曲线2y x =上的切线的倾斜角为4
π的点为( ) A .(0,0) B .(2,4) C .11(,)416 D .11(,)24
4. 过曲线1y x
=上点(1,1)且与过这点的切线平行的直线方程是 5. 物体的运动方程为3s t =,则物体在1t =时的速度为 ,在4t =时的速度为 .
课后作业
1. 已知圆面积2S r π=,根据导数定义求()S r '.。