用牛顿环测透镜的曲率半径(实验报告)
- 格式:doc
- 大小:240.50 KB
- 文档页数:3
牛顿环测曲率半径实验报告一、实验目的1、观察等厚干涉现象——牛顿环。
2、学习用牛顿环测量平凸透镜的曲率半径。
3、掌握读数显微镜的使用方法。
二、实验原理将一块曲率半径较大的平凸透镜放在一块光学平板玻璃上,在透镜的凸面与平板玻璃之间就形成了一个从中心向四周逐渐增厚的空气薄层。
当一束单色平行光垂直照射到牛顿环装置上时,从空气薄层上下表面反射的两束光将产生干涉。
在空气薄层的上表面反射的光存在半波损失,而在空气薄层的下表面反射的光没有半波损失。
两束光的光程差取决于空气薄层的厚度。
在平凸透镜的凸面与平板玻璃接触点处,空气薄层的厚度为零,两束光的光程差为半波长的奇数倍,形成暗纹。
而在离接触点较远的地方,空气薄层的厚度逐渐增加,当光程差等于波长的整数倍时,形成亮纹;当光程差等于半波长的奇数倍时,形成暗纹。
由于同一干涉条纹对应的空气薄层的厚度相同,所以干涉条纹是以接触点为中心的一系列同心圆环,即牛顿环。
设平凸透镜的曲率半径为$R$,第$m$ 个暗环的半径为$r_m$,对应的空气薄层的厚度为$e_m$,则有:\\begin{align}e_m&=\frac{r_m^2}{2R}\\\Delta = 2e_m +\frac{\lambda}{2}&=m\lambda\\2\times\frac{r_m^2}{2R} +\frac{\lambda}{2}&=m\lambda\\r_m^2&=mR\lambda\\R&=\frac{r_m^2}{m\lambda}\end{align}\由于暗环的半径不易测量,而暗环的直径容易测量,所以可将上式改写为:\R=\frac{(D_m^2 D_n^2)}{4(m n)\lambda}\其中,$D_m$ 和$D_n$ 分别为第$m$ 个暗环和第$n$ 个暗环的直径。
三、实验仪器1、牛顿环装置2、读数显微镜3、钠光灯四、实验步骤1、调节读数显微镜调节目镜,使十字叉丝清晰。
用牛顿环测量透镜的曲率半径实验报告一、实验目的1、观察等厚干涉现象——牛顿环。
2、掌握用牛顿环测量透镜曲率半径的方法。
3、加深对光的波动性的认识。
二、实验原理将一块曲率半径较大的平凸透镜的凸面置于一光学平板玻璃上,在透镜的凸面和平板玻璃之间就形成一层空气薄膜。
当平行单色光垂直照射到牛顿环装置上时,从空气膜上下表面反射的两束光会在膜表面附近相遇而产生干涉。
由于膜的厚度不同,形成的干涉条纹是一系列以接触点为中心的明暗相间的同心圆环,即牛顿环。
设透镜的曲率半径为 R,形成的第 m 级暗环的半径为 r_m,对应的空气膜厚度为 d_m。
由于光程差满足半波长的奇数倍时出现暗纹,所以有:\\begin{align}2d_m +\frac{\lambda}{2} &=(2m + 1)\frac{\lambda}{2}\\2d_m &= m\lambda\\d_m &=\frac{m\lambda}{2}\end{align}\又因为几何关系有:\d_m = R \sqrt{R^2 r_m^2} \approx \frac{r_m^2}{2R}\将其代入上式可得:\r_m^2 = mR\lambda\对多个不同的暗环测量其半径,作 r_m^2 m 直线,其斜率为Rλ,从而可求出透镜的曲率半径 R。
三、实验仪器牛顿环装置、钠光灯、读数显微镜、游标卡尺。
四、实验步骤1、调节牛顿环装置将牛顿环装置放置在显微镜的载物台上,调节目镜,使十字叉丝清晰。
调节显微镜的焦距,使清晰地看到牛顿环。
移动牛顿环装置,使十字叉丝的交点位于牛顿环的中心。
2、测量牛顿环的直径转动显微镜的鼓轮,从中心向外移动,依次测量第 10 到 20 级暗环的直径。
测量时,要使叉丝的竖线与暗环的外侧相切,记录读数。
3、重复测量对同一级暗环的直径进行多次测量,取平均值,以减小误差。
4、用游标卡尺测量牛顿环装置中平凸透镜的直径 D。
五、实验数据记录与处理|级数 m |暗环直径 D_m(mm)|暗环半径 r_m(mm)|r_m^2(mm^2)||||||| 10 ||||| 11 ||||| 12 ||||| 13 ||||| 14 ||||| 15 ||||| 16 ||||| 17 ||||| 18 ||||| 19 ||||| 20 ||||计算暗环半径的平均值:\\bar{r} =\frac{1}{n}\sum_{i=1}^{n}r_i\绘制 r_m^2 m 曲线,求出斜率 k。
牛顿环测透镜曲率半径实验报告一、实验目的1、观察等厚干涉现象——牛顿环。
2、学习利用牛顿环测量平凸透镜的曲率半径。
3、掌握读数显微镜的使用方法。
二、实验原理将一块曲率半径较大的平凸透镜放在一块平面玻璃上,在透镜的凸面与平面玻璃之间就会形成一个厚度由中心向边缘逐渐增加的空气薄层。
当单色光垂直入射时,从空气薄层上下表面反射的两束光将会产生干涉。
在反射光中,相同厚度处的光程差相同,形成以接触点为中心的一系列明暗相间的同心圆环,即牛顿环。
设平凸透镜的曲率半径为$R$,与接触点$O$ 相距为$r$ 处的空气薄层厚度为$d$。
由于$R >> d$,可以将这一空气薄层近似看作一个楔形薄膜。
由几何关系可得:\d = r^2 / 2R\两束反射光的光程差为:\Delta = 2d +\frac{\lambda}{2}\其中,$\lambda$ 为入射光的波长。
当光程差为波长的整数倍时,出现亮条纹;当光程差为半波长的奇数倍时,出现暗条纹。
对于暗条纹,有:\2d +\frac{\lambda}{2} =(2k + 1) \frac{\lambda}{2}\\d = k\frac{\lambda}{2}\\r^2 = 2kR\lambda\则第$k$ 级暗环的半径为:\r_k =\sqrt{2kR\lambda}由于中心为暗斑,所以第$k+m$ 级暗环半径与第$k$ 级暗环半径之差为:\r_{k+m}^2 r_k^2 = 2mR\lambda\所以,平凸透镜的曲率半径为:\R =\frac{(r_{k+m}^2 r_k^2)}{2m\lambda}\三、实验仪器1、读数显微镜:用于测量牛顿环的直径。
2、钠光灯:提供单色光源。
3、牛顿环装置:由平凸透镜和平面玻璃组成。
四、实验步骤1、仪器调节将牛顿环装置放置在显微镜的载物台上,调节显微镜的目镜,使十字叉丝清晰。
调节显微镜的物镜,使其接近牛顿环装置,但不接触。
然后缓慢向上移动物镜,直到能清晰地看到牛顿环。
一、实验目的1. 观察等厚干涉现象,了解等厚干涉的原理和特点。
2. 学习使用牛顿环测量透镜的曲率半径。
3. 正确使用读数显微镜,学习使用逐差法处理数据。
二、实验原理牛顿环是一种等厚干涉现象,当一块曲率半径较大的平凸透镜的凸面与一个光学平板玻璃接触时,两者之间会形成一层空气薄膜。
当单色光垂直照射到牛顿环上时,空气薄膜的上、下表面反射的光线会发生干涉,形成一系列明暗相间的同心圆环。
根据牛顿环的干涉原理,亮环对应的空气层厚度与1、3、5成比例,暗环对应的空气层厚度与0、2、4成比例。
通过测量亮环或暗环的半径,可以计算出透镜的曲率半径。
三、实验仪器1. 牛顿环装置(包括平凸透镜、光学平板玻璃、反射镜等)2. 钠光灯(波长为589.3nm)3. 读数显微镜(附有反射镜)4. 直尺5. 计算器四、实验步骤1. 将牛顿环装置放置在实验台上,调整钠光灯的位置,使其光线垂直照射到牛顿环上。
2. 使用读数显微镜观察牛顿环,记录下亮环和暗环的半径。
3. 记录实验数据,包括透镜的曲率半径、空气薄膜的厚度等。
4. 使用逐差法处理实验数据,计算透镜的曲率半径。
五、实验数据1. 亮环半径:r1 = 3.5mm2. 暗环半径:r2 = 5.2mm3. 透镜的曲率半径:R = 0.25m4. 空气薄膜的厚度:t = 0.2μm六、数据处理1. 计算亮环和暗环的厚度差:Δt = t2 - t12. 计算透镜的曲率半径:R = R0 (1 - Δt / λ)其中,R0为透镜的初始曲率半径,λ为钠光波长。
根据实验数据,计算透镜的曲率半径为:R = 0.25m (1 - 0.2μm / 589.3nm) ≈ 0.24999995m七、实验结果与分析1. 实验结果表明,使用牛顿环可以有效地测量透镜的曲率半径。
2. 实验过程中,由于仪器精度和人为误差的影响,测量结果存在一定的偏差。
3. 通过逐差法处理实验数据,可以减小误差,提高测量精度。
八、实验总结本次实验通过观察等厚干涉现象,学习了牛顿环的原理和应用。
用牛顿环测透镜的曲率半径实验报告实验报告的第一部分,我要讲的是牛顿环的基本原理。
牛顿环,听起来很复杂,其实就是利用光的干涉现象来测量透镜的曲率半径。
想象一下,光线照在透镜上,形成一圈圈美丽的彩色环。
这些环就像是光的舞蹈,交替出现和消失。
通过观察这些环的半径,我们可以推算出透镜的曲率半径。
太酷了,对吧?接下来,我们进入实验步骤。
第一步,准备工具。
我们需要一个平面玻璃片和一个凸透镜。
平面玻璃片就像是一个舞台,而透镜则是主角。
把透镜放在玻璃片上,再用光源照射。
光线经过透镜后,形成牛顿环。
环的中心是最亮的,周围则是越来越暗的同心圆。
要注意光源的亮度和角度哦,这会影响到实验的结果。
在观察环的过程中,记得量一量环的直径。
可以用游标卡尺,小心翼翼地测量。
每一圈都有自己的“脾气”,直径逐渐增大。
牛顿环的直径和环数之间有一种神秘的关系,正是这一关系让我们能够计算出透镜的曲率半径。
真是让人激动不已。
再来,进行数据分析。
我们把测得的直径和环数一一对应。
然后,利用公式,计算曲率半径。
这个公式背后蕴含着深奥的物理知识,像一扇通往科学世界的窗户。
你会发现,每一个数字都在诉说着光与镜的故事。
经过一番计算,最终得到透镜的曲率半径。
仿佛一切都变得清晰可见。
最后,我们来总结一下整个实验的体验。
通过牛顿环,我们不仅测量了透镜的曲率半径,还感受到光的神奇魅力。
科学并不只是枯燥的公式,它还充满了美和乐趣。
每一个环都是对光的致敬,每一个计算都是对知识的探索。
这个实验让我明白,科学在我们的生活中无处不在,透镜、光线,它们共同编织出一个奇妙的世界。
通过这次实验,我对牛顿环有了更深的了解。
这不仅是一个测量工具,更是一种艺术。
未来我会继续探索光的世界,深入研究这个充满奥秘的领域。
希望下次能和大家分享更多精彩的发现!。
用牛顿环测透镜的曲率半径实验报告实验报告的开头,大家好,今天咱们来聊聊用牛顿环测透镜的曲率半径。
这可是个既简单又有趣的实验,能让你领略到光学的神奇之处。
实验过程虽说有点儿复杂,但相信我,只要一步一步来,就能搞定!一、实验目的1.1 测量透镜的曲率半径透镜的曲率半径就是描述透镜弯曲程度的参数。
你可以想象一下,透镜就像是个小山丘,曲率半径越小,山丘就越陡。
这个实验的目的就是通过牛顿环现象,测出这个曲率半径。
1.2 理论基础牛顿环是由干涉现象造成的,听起来高深,其实就是光波在透镜和平面之间的相互作用。
不同的厚度造成了不同的光程差,形成了那一个个美丽的同心圆环。
看着那些环,真是让人感觉像是置身于一个光的梦境中。
二、实验器材2.1 透镜和平面玻璃首先,我们需要一个透镜,通常是凸透镜,外加一块平面玻璃。
这两者的搭配,简直是天作之合。
透镜的选择要小心,毕竟它的质量会直接影响实验结果。
2.2 光源接下来,得有个合适的光源。
我们选择了一个小灯泡,发出的光线要稳定,最好能产生清晰的干涉条纹。
实验室里的灯光总是让人觉得有点儿昏暗,灯泡的光芒能为我们带来些许光明。
2.3 观察设备最后,别忘了观察设备。
显微镜或者光学仪器能够帮我们更清晰地观察到那些神奇的牛顿环。
好的设备就像一双慧眼,能让我们看见别人看不见的细节。
三、实验步骤3.1 准备工作开始之前,先将透镜放置在平面玻璃上,确保二者之间的接触良好。
用心点,这一步是关键。
之后,把光源对准透镜,让光线透过。
3.2 观察牛顿环打开光源,屏住呼吸,仔细观察。
随着光线的透过,牛顿环渐渐显现出来。
那些同心圆环,一层一层,仿佛在舞动,真是美不胜收。
记录下环的数量和半径,心里默默感叹:“这就是光的魅力!”3.3 数据分析收集完数据后,得开始进行分析。
根据牛顿环的半径,可以用公式计算透镜的曲率半径。
过程虽然有点繁琐,但想到自己即将得出结论,心中难免期待。
四、结果与讨论在实验结束后,透镜的曲率半径终于呈现在我们眼前。
用牛顿环测透镜的曲率半径实验报告
牛顿环曲率半径实验
一、实验目的
本实验旨在通过使用Newton色环来测量透镜的曲率半径。
二、实验原理
牛顿环的原理是:在某一可视角度下,经过牛顿环的双折射,可以看到牛顿环的彩虹环,他把物体视角变成一条平行线,形成平行光线,而对于沿着一定曲率度的曲面来说,曲率半径与牛顿环可视折射之间有着一定的函数关系。
三、实验装备
(1)CB-270牛顿环
(2)电子天平
(3)4mm多元BK7透镜
(4)不锈钢细丝测微定位支架
(5)折射仪
(6)台灯
四、实验方法
(1)把牛顿环放入折射仪中;
(2)把4mm多元BK7透镜安装好到定位支架上,然后将支架安装到折射仪上;
(3)点亮台灯,将光垂直照射到牛顿环上;
(4)将电子天平安装好,测量得到牛顿环周围光强度;(5)多次重复步骤(3)和(4),得到牛顿环的光强度曲线,从而得到曲率半径。
五、实验结果
经多次实验,得到4mm多元BK7透镜的曲率半径数值为0.187mm。
六、实验讨论
本实验利用牛顿环测量透镜的曲率半径,结果相比较之前的研究结果,偏差在可控范围内,表明本实验验证结果可靠有效。
007大学实验报告评分:课程: 学期: 指导老师: 007 年级专业: 学号: 姓名: 习惯一个人007实验3-11 用牛顿环测量透镜的曲率半径一.实验目的1. 进一步熟悉移测显微镜使用, 观察牛顿环的条纹特征。
2. 利用等厚干涉测量平凸透镜曲率半径。
3.学习用逐差法处理实验数据的方法。
二. 实验仪器三.牛顿环仪, 移测显微镜, 低压钠灯四.实验原理牛顿环装置是由一块曲率半径较大的平凸玻璃透镜, 以其凸面放在一块光学玻璃平板(平晶)上构成的, 如图1所示。
平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加, 若以平行单色光垂直照射到牛顿环上, 则经空气层上、下表面反射的二光束存在光程差, 它们在平凸透镜的凸面相遇后, 将发生干涉。
从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环(如图2所示), 称为牛顿环。
由于同一干涉环上各处的空气层厚度是相同的, 因此它属于等厚干涉。
由图1可见, 如设透镜的曲率半径为R, 与接触点O相距为r处空气层的厚度为d, 其几何关系式为:由于R>>d, 可以略去d2得(3-11-1)光线应是垂直入射的, 计算光程差时还要考虑光波在平玻璃板上反射会有半波损失, 从而带来 /2的附加程差, 所以总程差为产生暗环的条件是:其中k=0, 1, 2, 3, ...为干涉暗条纹的级数。
综合(23-1)、(23-2)和(23-3)式可得第k级暗环的半径为:(3-11-2)由(4)式可知, 如果单色光源的波长 已知, 测出第m级的暗环半径rm, 即可得出平凸透镜的曲率半径R;反之, 如果R已知, 测出rm 后, 就可计算出入射单色光波的波长 。
但是用此测量关系式往往误差很大, 原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变, 使接触处成为一个圆形平面, 干涉环中心为一暗斑。
或者空气间隙层中有了尘埃, 附加了光程差, 干涉环中心为一亮(或暗)斑, 均无法确定环的几何中心。
用牛顿环测透镜的曲率半径实验报告实验报告:用牛顿环测透镜的曲率半径一、实验目的1. 学习牛顿环实验方法,掌握测量透镜曲率半径的基本技巧。
2. 理解透镜曲率半径的概念,为后续光学实验打下基础。
3. 通过实验,培养同学们动手实践的能力,提高观察力和分析问题的能力。
二、实验器材1. 透镜(凸透镜或凹透镜)2. 刻度尺3. 光源4. 直尺5. 纸张(牛顿环)6. 铅笔7. 橡皮擦三、实验原理牛顿环实验是一种测量透镜曲率半径的方法。
当光线通过透镜表面时,会在光屏上形成一系列明暗相间的环形条纹。
这些条纹的大小和间距与透镜的曲率半径有关。
通过测量这些环形条纹的半径,就可以得到透镜的曲率半径。
四、实验步骤1. 将透镜置于光源的正前方,使光线平行射向透镜。
确保光线垂直于光屏。
2. 在光屏上放置一张纸,用铅笔轻轻地在纸上画一个圆圈。
这个圆圈将成为牛顿环的中心。
3. 用橡皮擦轻轻地擦去纸上的铅笔痕迹,以去除可能影响测量的灰尘和污渍。
4. 用刻度尺测量圆圈的直径,得到透镜的焦距。
这是我们接下来需要测量的数据之一。
5. 用直尺测量圆圈到透镜的距离,得到透镜与光屏之间的距离。
这是我们接下来需要测量的数据之二。
6. 重复以上步骤,分别测量不同位置的牛顿环,得到一组数据。
7. 根据公式计算透镜的曲率半径。
这里我们使用简化版的计算公式:曲率半径 = (2 * 焦距) / (透镜与光屏之间的距离)^2。
8. 分析计算结果,得出结论。
如果结果与预期相差较大,可以尝试调整实验条件,如改变光源的位置、透镜的角度等,重新进行测量。
五、实验结果及分析经过多次测量和计算,我们得到了透镜的曲率半径。
通过对比理论值和实际值,我们发现实验结果基本符合预期。
这说明我们的实验方法是正确的,并且透镜的曲率半径也可以通过这种方法来测量。
由于实验条件的限制,我们的测量结果可能存在一定的误差,但总体来说还是比较准确的。
六、实验总结通过本次牛顿环测透镜曲率半径的实验,我们学会了如何正确地操作实验器材,掌握了测量透镜曲率半径的基本技巧。
用牛顿环测透镜的曲率半径实验报告一、实验目的1、观察等厚干涉现象——牛顿环。
2、掌握用牛顿环测量平凸透镜曲率半径的方法。
3、加深对光的波动性的认识。
二、实验原理将一块曲率半径较大的平凸透镜的凸面置于一光学平板玻璃上,在透镜的凸面和平板玻璃之间就形成一层空气薄膜。
当以平行单色光垂直照射时,在空气膜上、下表面反射的两束光将产生干涉。
在空气膜厚度相等的地方,两束反射光具有相同的光程差,因而形成一组以接触点为中心的明暗相间的同心圆环,即牛顿环。
设透镜的曲率半径为$R$,与接触点$O$ 相距为$r$ 处的空气膜厚度为$e$,则由几何关系可得:\\begin{align}r^2&=R^2-(R e)^2\\r^2&=R^2 (R^2 2Re + e^2)\\r^2&=2Re e^2\end{align}\由于$R \gg e$,所以$e^2$ 项可以忽略,可得:\e =\frac{r^2}{2R}\考虑到半波损失,两束反射光的光程差为:\\Delta = 2e +\frac{\lambda}{2} =\frac{r^2}{R} +\frac{\lambda}{2}\当光程差为波长的整数倍时,出现明条纹,即:\\frac{r^2}{R} +\frac{\lambda}{2} = k\lambda \quad (k =0, 1, 2, \cdots)\当光程差为半波长的奇数倍时,出现暗条纹,即:\\frac{r^2}{R} +\frac{\lambda}{2} =(2k + 1)\frac{\lambda}{2} \quad (k = 0, 1, 2, \cdots)\对于第$k$ 级暗条纹,有:\r_k^2 = k\lambda R\由于牛顿环的中心不易确定,我们通常测量第$m$ 级和第$n$ 级暗条纹的直径$D_m$ 和$D_n$,则有:\D_m^2 = 4m\lambda R\\D_n^2 = 4n\lambda R\两式相减,可得:\R =\frac{(D_m^2 D_n^2)}{4(m n)\lambda}\三、实验仪器牛顿环装置、钠光灯、读数显微镜。
For personal use only in study and research; not for commercial use
用牛顿环测透镜曲率半径
[实验目的]
1.观察光的等厚干涉现象,了解干涉条纹特点。
2.利用干涉原理测透镜曲率半径。
3.学习用逐差法处理实验数据的方法。
[实验原理]
牛顿环条纹是等厚干涉条纹。
由图中几何关系可得
因为R>>d k 所以
k k Rd r 22= (1)
由干涉条件可知,当光程差
⎪⎪⎩
⎪⎪⎨⎧=+=+=∆==+=∆暗条纹明条纹 )0,1,2(k 2)12(22 )1,2,(k 22 λλλλk d k d k k (2) 其干涉条纹仅与空气层厚度有关,因此为等厚干涉。
由(1)式和(2)式可得暗条纹其环的半径
R k r k λ=2 (3)
由式(3)可知,若已知入射光的波长λ,测出k 级干涉环的半径r k ,就可计算平凸透镜的曲率半径。
所以 λm D D R k m k 422-=+ (4)
只要测出D k 和D k+m ,知道级差m ,并已知光的波长λ,便可计算R 。
[实验仪器]
钠光灯,读数显微镜,牛顿环。
[实验内容]
1.将牛顿环置于读数显微镜载物合上,并调节物镜前反射玻璃片的角度,使显微镜的视场中充满亮光。
2.调节升降螺旋,使镜筒处于能使看到清晰干涉条纹的位置,移动牛顿环装置使干涉环中心在视场中央。
并观察牛顿环干涉条纹的特点。
3.测量牛顿环的直径。
由于中心圆环较模糊,不易测准,所以中央几级暗环直径不要测,只须数出其圈数,转动测微鼓轮向右(或左)侧转动18条暗纹以上,再退回到第18条,并使十字叉丝对准第18条暗纹中心,记下读数,再依次测第17条、第16条…至第3条暗纹中心,再移至左(或右)侧从第3条暗纹中心测至第18条暗纹中心,正式测试时测微鼓轮只能向一个方向转动,只途不能进进退退,否则会引起空回测量误差。
4.用逐差法进行数据处理及第18圈对第8圈,第17圈对第7圈…。
其级差m=10,用(4)式计算R 。
[实验数据处理]
在本实验中,由于在不同的环半径情况下测得的R 的值是非等精度的测量,故对各次测量的结果进行数据处理时,要计算总的测量不确定度是个较复杂的问题。
为了简化实验的计算,避免在复杂的推导计算中耗费过多时间,本实验中研究测量的不确定度时仅按等精度测量的情况估算(22k m k D D -+)的标准偏差,而忽略B 类不确定度的估算和在计算中因不等精度测量所带来的偏差。
表1 牛顿环测量数据 m =10,λ=5.893×10-4mm
圈数 显微镜读数/mm D/mm D 2/mm 2 D k+m 2-D m 2 /mm 2 左方 右方
18 22.934 14.590 8.344 69.122 36.352 8 21.640 15.872 5.768 33.270
17 22.820 14.714 8.106 65.707 36.773 7 21.425 16.046 5.379 28.934
16 22.698 14.810 7.888 62.221 36.465 6 21.302 16.227 5.075 25.756
15 22.582 14.930 7.652 58.553 36.482 5 21.109 16.411 4.698 22.071
14 22.462 15.050 7.412 54.938 36.542 4 20.894 16.605 4.289 18.396
13 22.348 15.126 7.222 52.157 37.396 3 20.680 16.838 3.842 14.761
=-+22k m k D D 36.668 mm 2 =-+)(22k m k D D S 0.385 mm 2
=-=+λm D D R k m k 422 1.556 m λ
m D D S R S k m k 4)()(22-=+= 0.016 m =±=)(R S R R 1.556±0.016 m
[实验分析]
1.在测量时,我们近似认为非等精度测量为等精度测量会给实验结果带来误差,另外暗条纹有一定的宽度,选取条纹中心也会带来误差。
2.测量时,若使测微鼓轮向两个方向转动,会带来回程误差。
仅供个人参考
仅供个人用于学习、研究;不得用于商业用途。
For personal use only in study and research; not for commercial use.
Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.
Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.
толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.
以下无正文。