用牛顿环测透镜的曲率半径 牛顿环数据处理
- 格式:xls
- 大小:71.50 KB
- 文档页数:1
一、实验名称:用牛顿环测量透镜的曲率半径二、实验目的:1、观察光的等厚干涉现象,了解干涉条纹特点。
2、利用干涉原理测透镜曲率半径。
3、学习用逐差法处理实验数据的方法。
三、实验仪器:牛顿环装置(其中透镜的曲率未知)、钠光灯(波长为589.3nm)、读数显微镜(附有反射镜)。
四、实验原理:将一块曲率半径R较大的平凸透镜的凸面放在一个光学平板玻璃上,使平凸透镜的球面AOB与平面玻璃CD面相切于O点,组成牛顿环装置,如图所示,则在平凸透镜球面与平板玻璃之间形成一个以接触点O为中心向四周逐渐增厚的空气劈尖。
当单色平行光束近乎垂直地向AB面入射时,一部分光束在AOB面上反射,一部分继续前进,到COD面上反射。
这两束反射光在AOB面相遇,互相干涉,形成明暗条纹。
由于AOB面是球面,与O点等距的各点对O点是对称的,因而上述明暗条纹排成如图所示的明暗相间的圆环图样,在中心有一暗点(实际观察是一个圆斑),这些环纹称为牛顿环。
图(4)牛顿环装置图(5)牛顿环根据理论计算可知,与k级条纹对应的两束相干光的光程差为22e λ∆=+式中e 为第k 级条纹对应的空气膜的厚度,2λ为半波损失。
由干涉条件可知,当(21)(0,1,2,3,)2k k λ∆=+=⋯时,干涉条纹为暗条纹。
即 解得 2e k λ= (2) 设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为e ,由图4所示几何关系可得()2222222R R e r R Re e r =-+=-++由于R e >>,则2e 可以略去。
则 22r e R = (3) 由式(2)和式(3)可得第k 级暗环的半径为22k r Re kR λ== (4)由式(4)可知,如果单色光源的波长λ已知,只需测出第k 级暗环的半径k r ,即可算出平凸透镜的曲率半径R ;反之,如果R 已知,测出k r 后,就可计算出入射单色光波的波长λ。
但是由于平凸透镜的凸面和光学平玻璃平面不可能是理想的点接触;接触压力会引起局部弹性形变,使接触处成为一个圆形平面,干涉环中心为一暗斑;或者空气间隙层中有了尘埃等因素的存在使得在光程差公式中附加了一项。
解析牛顿环测透镜曲率半径实验的实验数据处理方法与误差评估牛顿环测透镜曲率半径实验是光学实验中常用的一种方法,通过测量牛顿环的直径可以确定透镜曲率半径。
本文将详细介绍牛顿环实验的实验数据处理方法以及误差评估方法。
一、实验数据处理方法在进行牛顿环测量实验时,首先需要获取一组牛顿环的直径数据。
实验中常用的方法是通过显微镜观察透镜中心与环缘交接处的明暗交替情况,并记录下相应的直径数值。
得到一组直径数据之后,接下来需要进行数据处理以计算透镜的曲率半径。
1. 数据预处理在进行数据处理之前,需要进行数据预处理工作。
首先,检查所得到的直径数据是否存在异常值,如若存在,则需要进行剔除或者修正。
其次,需要将直径数据转换为透镜中心与环缘的距离数据,通常使用公式D = d²/4λ ,其中 D 为距离,d 为直径,λ 为波长。
最后,将距离数据进行排序,以便后续的计算和分析。
2. 曲率半径计算在得到距离数据之后,就可以计算透镜的曲率半径了。
常用的计算方法是利用牛顿环的几何关系,根据下式计算曲率半径 R : R = ( r² +R² ) / ( 2r ) ,其中 R 为光源到透镜的距离, r 为对应牛顿环的半径。
3. 数据拟合在计算曲率半径之后,为了进一步提高精度,可以进行数据拟合。
拟合方法常用的有最小二乘法和非线性最小二乘法。
通过拟合可以得到更准确的曲率半径数值。
二、误差评估方法对于牛顿环测透镜曲率半径实验而言,误差评估是非常重要的,它可以说明测量结果的可靠性和精确度,帮助确定其可信程度。
1. 随机误差评估随机误差是实验测量结果的波动性,不可避免地存在于实验过程中。
可以采用重复测量法评估随机误差,通过多次重复测量可以得到一系列测量结果。
然后,根据这一系列结果计算均值和标准偏差,标准偏差越小,表示测量结果越稳定。
2. 系统误差评估系统误差是实验过程中的固定误差,其造成的偏差相对固定。
可以通过校正和调整实验装置以降低系统误差的影响。
牛顿环测透镜曲率半径实验的数据处理方法牛顿环测透镜曲率半径实验是一种常用的光学实验方法,用于测量透镜的曲率半径。
本文将介绍牛顿环测量方法以及常用的数据处理方法,帮助读者了解该实验并正确进行数据处理。
一、牛顿环测量方法牛顿环测量方法是通过观察牛顿环的圆心与边缘的环形干涉图案来确定透镜的曲率半径。
具体步骤如下:1. 实验准备首先,我们需要准备一块光滑的透镜和一块玻璃基片。
将透镜和基片放在光源下方,保证光线垂直照射。
2. 形成干涉图案调整透镜和基片的间距,使得玻璃基片上形成一组明暗相间的圆环。
这个圆环就是我们所说的牛顿环。
3. 测量半径使用读数显微镜或目镜放大牛顿环图案。
从内环的直径开始,分别测量每个环的直径。
通常情况下,选取3-5个环作为测量点。
4. 记录数据将每个环的直径数据记录下来。
为了减小误差,需要重复多次测量。
二、数据处理方法牛顿环测量实验会得到一系列环的直径数据,我们需要对这些数据进行处理才能得到透镜的曲率半径。
下面介绍两种常用的数据处理方法。
1. 计算平均值首先,将每次测量得到的环直径求平均值。
这样可以减小由于实验误差导致的数据波动。
2. 曲线拟合通过拟合实验数据的曲线,我们可以得到更精确的透镜曲率半径。
常用的拟合方法有最小二乘法和直线拟合法。
最小二乘法是通过最小化实验数据与拟合曲线之间的距离来确定最优的拟合曲线。
直线拟合法则是将实验数据作为点,通过拟合直线的斜率来得到曲率半径。
三、实验注意事项在进行牛顿环测量实验时,需要注意以下几点。
1. 保持环境稳定实验环境应尽量保持稳定,避免外界震动和温度变化对实验结果的影响。
2. 测量精度使用高精度仪器进行测量,并尽量减小读数误差。
对于每个环的直径测量,应进行多次重复以提高精度。
3. 数据处理准确性在数据处理过程中,需要严格按照公式进行计算,并保留足够的有效数字。
避免舍入误差对最终结果的影响。
四、实验结果的分析与讨论根据实验得到的透镜曲率半径数据,可以进行结果的分析与讨论。
用牛顿环测量透镜的曲率半径实验报告一、实验名称:用牛顿环测量透镜的曲率半径二、实验目的:1、观察光的等厚干涉现象,了解干涉条纹特点。
2、利用干涉原理测透镜曲率半径。
3、学习用逐差法处理实验数据的方法。
三、实验仪器:牛顿环装置(其中透镜的曲率未知)、钠光灯(波长为589.3nm)、读数显微镜(附有反射镜)。
四、实验原理:将一块曲率半径R较大的平凸透镜的凸面放在一个光学平板玻璃上,使平凸透镜的球面AOB与平面玻璃CD面相切于O点,组成牛顿环装置,如图所示,则在平凸透镜球面与平板玻璃之间形成一个以接触点O为中心向四周逐渐增厚的空气劈尖。
当单色平行光束近乎垂直地向AB面入射时,一部分光束在AOB面上反射,一部分继续前进,到COD面上反射。
这两束反射光在AOB面相遇,互相干涉,形成明暗条纹。
由于AOB面是球面,与O点等距的各点对O点是对称的,因而上述明暗条纹排成如图所示的明暗相间的圆环图样,在中心有一暗点(实际观察是一个圆斑),这些环纹称为牛顿环。
图(4)牛顿环装置图(5)牛顿环根据理论计算可知,与k级条纹对应的两束相干光的光程差为, ,,,2e2,式中e为第k级条纹对应的空气膜的厚度,为半波损失。
2,由干涉条件可知,当时,干涉条纹为暗条纹。
即 ,,,,?(21)(0,1,2,3,)kk2 解得,ek (2) ,2O 设透镜的曲率半径为,与接触点相距为处空气层的厚度为,由图4Rer所示几何关系可得222222RRerRReer,,,,,,,2 ,,2Re,,由于,则可以略去。
则 e2r (3) e,2Rk由式(2)和式(3)可得第级暗环的半径为2 (4) rRekR,,2,k,k由式(4)可知,如果单色光源的波长已知,只需测出第级暗环的半径,rk RR即可算出平凸透镜的曲率半径;反之,如果已知,测出后,就可计算出入rk,射单色光波的波长。
但是由于平凸透镜的凸面和光学平玻璃平面不可能是理想的点接触;接触压力会引起局部弹性形变,使接触处成为一个圆形平面,干涉环中心为一暗斑;或者空气间隙层中有了尘埃等因素的存在使得在光程差公式中附a,0a,0加了一项。
用牛顿环测透镜曲率半径的数据处理方法
牛顿环测量法是一种常见的用来测量透镜曲率半径的方法。
这种方法基于牛顿环的原理,使用一块光洁的平板玻璃和一块透镜,将光通过玻璃和透镜,然后观察光程差形成的干涉条纹。
根据干涉条纹的直径大小可以计算出透镜的曲率半径。
具体的数据处理方法如下:
1. 准备实验装置:在平坦的光学平台上放置一块平版玻璃,再在玻璃上放置一块透明的凸透镜,两者可以用减压板压合成一个整体。
2. 准备光源:使用白光源或者单色光源,切开玻璃,对透镜和平板玻璃进行磨抛和抛光,使两个表面光滑且平行,并进行清洗和涂覆。
将两个光学并排在一起,组成一套光源和光学透镜。
3. 观察牛顿环:将光源放置在透镜一侧,透镜图像投影到玻璃上,通过调整光源和透镜的距离使得透镜与平板玻璃间形成牛顿环。
观察牛顿环的直径大小,可以得出透镜的曲率半径。
4. 计算曲率半径:利用牛顿环的公式来计算透镜的曲率半径。
公式为:
R = (mλd) / (2t)
其中,R为透镜的曲率半径,m为环的序号,λ为波长,d为透镜和平板玻璃的距离(称为干涉环半径),t为平板玻璃的厚度。
5. 数据处理:将测得的不同环序下透镜的曲率半径数据进行统计和分析,计算其平均值和标准差。
这些数据可以通过软件来进行处理和分析,也可以通过手动计算来得到。
总之,牛顿环测量法是一种精度较高,操作简单的测量透镜曲率半径的方法,可以用于科研和教学实验中。
在进行数据处理时,需要格外注意数据的准确性和可靠性,以避免出现误差。
用牛顿环测透镜的曲率半径实验报告实验报告的第一部分,我要讲的是牛顿环的基本原理。
牛顿环,听起来很复杂,其实就是利用光的干涉现象来测量透镜的曲率半径。
想象一下,光线照在透镜上,形成一圈圈美丽的彩色环。
这些环就像是光的舞蹈,交替出现和消失。
通过观察这些环的半径,我们可以推算出透镜的曲率半径。
太酷了,对吧?接下来,我们进入实验步骤。
第一步,准备工具。
我们需要一个平面玻璃片和一个凸透镜。
平面玻璃片就像是一个舞台,而透镜则是主角。
把透镜放在玻璃片上,再用光源照射。
光线经过透镜后,形成牛顿环。
环的中心是最亮的,周围则是越来越暗的同心圆。
要注意光源的亮度和角度哦,这会影响到实验的结果。
在观察环的过程中,记得量一量环的直径。
可以用游标卡尺,小心翼翼地测量。
每一圈都有自己的“脾气”,直径逐渐增大。
牛顿环的直径和环数之间有一种神秘的关系,正是这一关系让我们能够计算出透镜的曲率半径。
真是让人激动不已。
再来,进行数据分析。
我们把测得的直径和环数一一对应。
然后,利用公式,计算曲率半径。
这个公式背后蕴含着深奥的物理知识,像一扇通往科学世界的窗户。
你会发现,每一个数字都在诉说着光与镜的故事。
经过一番计算,最终得到透镜的曲率半径。
仿佛一切都变得清晰可见。
最后,我们来总结一下整个实验的体验。
通过牛顿环,我们不仅测量了透镜的曲率半径,还感受到光的神奇魅力。
科学并不只是枯燥的公式,它还充满了美和乐趣。
每一个环都是对光的致敬,每一个计算都是对知识的探索。
这个实验让我明白,科学在我们的生活中无处不在,透镜、光线,它们共同编织出一个奇妙的世界。
通过这次实验,我对牛顿环有了更深的了解。
这不仅是一个测量工具,更是一种艺术。
未来我会继续探索光的世界,深入研究这个充满奥秘的领域。
希望下次能和大家分享更多精彩的发现!。
⽤⽜顿环测透镜曲率半径的数据处理⽅法⽤⽜顿环⼲涉测透镜的曲率半径实验⽬的1.观察⽜顿环产⽣的等厚⼲涉条纹,加深对等厚⼲涉现象的认识。
2.掌握测量平凸透镜曲率半径的⽅法。
实验仪器JXD —B型读数显微镜,⽜顿环仪,钠光灯。
仪器构造说明1.JXD —B型读数显微镜JXD —B型读数显微镜的构造、操作⽅法,见“光学常⽤仪器介绍”中常⽤仪器构造与调节的有关内容,请认真阅读。
2.⽜顿环仪⽜顿环仪是由曲率半径约为200~700厘⽶的待测平凸透镜L和磨光的平玻璃板P叠和装在⾦属框架F中构成,如图1所⽰。
框架边上有三个螺旋H,⽤来调节L和P之间的接触,以改变⼲涉条纹的形状和位置。
调节H时,螺旋不可旋得过紧,以免接触压⼒过⼤引起透镜弹性形变,甚⾄损坏透镜。
图 1实验原理如图2所⽰,在平⾯玻璃板BB '上放置⼀曲率半径为R 的平凸透镜AOA ',两者之间便形成⼀层空⽓薄层。
当⽤单⾊光垂直照射下来时,从空⽓上下两个表⾯反射的光束1和光束2 在空⽓表⾯层附近相遇产⽣⼲涉,空⽓层厚度相等处形成相同的⼲涉条纹,这种⼲涉现象称为等厚⼲涉。
此等厚⼲涉条纹最早由⽜顿发现,故称为⽜顿环。
在⼲涉条纹上,光程差相等处,是以接触点O 为中⼼,半径为r 的明暗相间的同⼼圆,r 、h 、R 三者关系为h R r h -=22(1)图 2因 R?h (R 为⼏⽶,h 为⼏分之⼀厘⽶)。
所以R r h 22≈光程差为22λδ-=h (2)即22λδ-=R r (3)(3)式是进⼊透镜的光束,光束1先由透镜凸⾯反射回去,光束2穿过透镜进⼊空⽓膜后,由平⾯玻璃板反射形成的光程差,式中λ/2为额外光程差。
在反射光中见到的亮环2222λλ?=-k R r k(4)在反射光中见到的暗环2)12(22λλ?-=-k R r k (5)式中k =0,1,2,…, 从上观察,以中⼼暗环为准,则有=R k r k λ2λ?=k r R k 2(6)可见,测出条纹的半径r ,依(6)式便可计算出平凸透镜的半径R 。
For personal use only in study and research; not for commercial use用牛顿环测透镜曲率半径[实验目的]1.观察光的等厚干涉现象,了解干涉条纹特点。
2.利用干涉原理测透镜曲率半径。
3.学习用逐差法处理实验数据的方法。
[实验原理]牛顿环条纹是等厚干涉条纹。
由图中几何关系可得因为R>>d k 所以k k Rd r 22= (1)由干涉条件可知,当光程差⎪⎪⎩⎪⎪⎨⎧=+=+=∆==+=∆暗条纹明条纹 )0,1,2(k 2)12(22 )1,2,(k 22 λλλλk d k d k k (2) 其干涉条纹仅与空气层厚度有关,因此为等厚干涉。
由(1)式和(2)式可得暗条纹其环的半径R k r k λ=2 (3)由式(3)可知,若已知入射光的波长λ,测出k 级干涉环的半径r k ,就可计算平凸透镜的曲率半径。
所以 λm D D R k m k 422-=+ (4)只要测出D k 和D k+m ,知道级差m ,并已知光的波长λ,便可计算R 。
[实验仪器]钠光灯,读数显微镜,牛顿环。
[实验内容]1.将牛顿环置于读数显微镜载物合上,并调节物镜前反射玻璃片的角度,使显微镜的视场中充满亮光。
2.调节升降螺旋,使镜筒处于能使看到清晰干涉条纹的位置,移动牛顿环装置使干涉环中心在视场中央。
并观察牛顿环干涉条纹的特点。
3.测量牛顿环的直径。
由于中心圆环较模糊,不易测准,所以中央几级暗环直径不要测,只须数出其圈数,转动测微鼓轮向右(或左)侧转动18条暗纹以上,再退回到第18条,并使十字叉丝对准第18条暗纹中心,记下读数,再依次测第17条、第16条…至第3条暗纹中心,再移至左(或右)侧从第3条暗纹中心测至第18条暗纹中心,正式测试时测微鼓轮只能向一个方向转动,只途不能进进退退,否则会引起空回测量误差。
4.用逐差法进行数据处理及第18圈对第8圈,第17圈对第7圈…。
牛顿环测定平凸透镜的曲率半径实验报告1. 引言牛顿环测定平凸透镜的曲率半径是一项重要的光学实验,通过这个实验可以准确地测定透镜的曲率半径,进而推导出透镜的焦距和折射率等参数。
本文将从实验原理、实验步骤、实验数据处理和个人观点等方面详细探讨牛顿环测定平凸透镜的曲率半径实验报告。
2. 实验原理在进行牛顿环测定平凸透镜的曲率半径实验时,首先需要了解实验的基本原理。
牛顿环是由平行光束在透镜和玻璃片的接触面上发生干涉而形成的一组圆形亮暗交替的光束环。
当透镜和玻璃片的接触面是平面时,通过观察牛顿环的直径,可以测定出透镜的曲率半径。
透镜的曲率半径R与牛顿环的半径r之间存在着明确的数学关系:R = (r^2 + (mλn))^2/(2mλ),其中m为干涉条纹的序数,λ为光的波长,n为介质的折射率。
通过调节透镜和玻璃片的间隙,观察并测量牛顿环的半径r,即可计算出透镜的曲率半径R。
3. 实验步骤根据实验原理,我们按照以下步骤进行牛顿环测定平凸透镜的曲率半径实验:(1)调节透镜和玻璃片的间隙,使得在透镜的中心区域可以观察到清晰的牛顿环;(2)利用显微镜观察并测量牛顿环的半径,记录下相应的数据;(3)根据公式R = (r^2 + (mλn))^2/(2mλ),计算出透镜的曲率半径R;(4)重复多次实验,取平均值,并计算出实验数据的误差;(5)据此得出透镜的曲率半径以及相应的折射率等参数。
4. 实验数据处理在实验数据处理过程中,我们首先要对测量得到的牛顿环半径进行合理的处理和分析。
通过对多次实验数据的统计和比对,确定透镜的曲率半径,并计算出数据的误差范围。
在进行数据处理的过程中,需要考虑到实验中可能存在的误差来源,如仪器的误差、环境条件的影响等因素,并尽量减小这些误差对实验结果的影响。
5. 个人观点和理解从本次实验中,我深刻理解了牛顿环测定平凸透镜的曲率半径实验的原理和实验步骤,以及数据处理和误差分析的重要性。
透镜的曲率半径是透镜光学性能的重要指标,准确测定透镜的曲率半径对于光学仪器的设计和制造具有重要意义。
牛顿环测透镜曲率半径数据处理方法的分析作者:李晓莉来源:《现代电子技术》2010年第08期摘要:详细介绍用逐差法、线性回归法、加权平均法处理牛顿环测透镜曲率半径数据的方法和过程。
比较三种实验数据处理方法的优缺点,其中加权平均法既考虑了如何克服实验的系统误差,又能按照处理原则去对待非等精度测量,且建立在数理统计理论基础上。
该方法主要是比较相应的权,进而求出加权平均值,利用Matlab软件进行处理,得出加权平均法为牛顿环实验数据处理的最佳方法。
关键词:牛顿环; 逐差法; 线性回归法; 加权平均法中图分类号文献标识码:A文章编号:1004-373X(2010)08-0141-04Analysis of Data Processing in Lens Curvature Radius Measured by Newton′s RingLI Xiao-li(School of Science, Xi’an Shiyou University, Xi’a n 710065, China)Abstract: The methods and procedures of using interative differential method, linear recursive analysis, and weighted average method to process the data of lens curvature of Newton′s Rings are introduced in detail, three experimental dada processing methods are compared. The weighted average method can overcome the experimental systematic distortions, and make a nonprecision measurement according to processing priuciple, and build on the basis of mathematical statistical theory. This method mainly compared the corresponding rights, and then found out the weighted average, used Matlab software processing. It is proved that the weighted average method is optimal for this experiment by theoretic analysis.Keywords: Newton′s ri ngs; interative differential method; linear recursive analysis; weighted average method0 引言“牛顿环”是牛顿在1675年制作天文望远镜时,偶然把一个望远镜的物镜放在平板玻璃上发现的。
理解牛顿环测透镜曲率半径实验的实验结果解读牛顿环测透镜曲率半径实验是一种常见的光学实验方法,用于测量透镜的曲率半径。
通过该实验可以得到透镜的曲率半径信息,进而了解透镜的光学性质。
本文将对牛顿环测透镜曲率半径实验的实验结果进行解读,帮助读者更好地理解和应用该实验。
一、实验原理牛顿环测透镜曲率半径实验是基于干涉现象的一种实验方法。
当透镜与平行光垂直入射时,在透镜两侧形成一系列同心圆环,即牛顿环。
这些圆环是由于光波的干涉产生的。
根据等倾干涉和等厚干涉的原理,可以推导出透镜曲率半径与牛顿环的半径之间存在一定的关系。
二、实验步骤1. 准备工作:清洁实验器材,将透明平板透镜放在光源下方,确保光线垂直入射。
2. 调节光源:调节光源的位置和亮度,使光线尽可能垂直且均匀地照射在透明平板透镜上。
3. 观察牛顿环:通过目镜观察透明平板透镜两侧的牛顿环。
注意调节目镜的位置和焦距,使得牛顿环清晰可见。
4. 记录数据:记录目镜与透明平板透镜间的距离,以及各级暗环的半径。
5. 处理数据:根据实验记录的牛顿环半径数据,计算透镜的曲率半径。
三、实验结果解读通过牛顿环测透镜曲率半径实验获得的数据,可以用来解读透镜的光学性质。
具体解读如下:1. 曲率半径计算:根据牛顿环半径的公式推导,可以得到透镜的曲率半径。
曲率半径越小,透镜的弧度越大,曲率越强。
2. 光学性质判断:透镜的曲率半径与其光学性质密切相关。
当透镜的曲率半径为正值时,表示透镜是凸透镜,具有散光的特性;当曲率半径为负值时,表示透镜是凹透镜,具有聚光的特性。
通过测量得到的曲率半径可以判断透镜的类型。
3. 透镜质量评估:透镜的曲率半径也反映了透镜的质量。
曲率半径越接近标准值,说明透镜的生产工艺越精良,光学性能越好。
因此,可以通过牛顿环测透镜曲率半径实验来评估透镜的质量。
四、实验注意事项在进行牛顿环测透镜曲率半径实验时,需要注意以下几点:1. 实验环境:确保实验室的光线环境尽可能暗,以便更好地观察牛顿环。
实验四 利用牛顿环干涉测量透镜的曲率半径一、实验目的:1、掌握牛顿环测定透镜曲率半径的方法2、通过实验加深对等厚干涉原理的理解二、实验仪器:牛顿环仪、钠光灯、移测显微镜三、实验原理:实验原理图一曲率半径很大的平凸透镜的凸面与一磨光的平玻璃板接触时,凸面与平玻璃板之间形成一空气薄膜,离接触点等距离的地方厚相同。
以波长为λ的平行单色光投射到这种装置上,则空气膜的上下表面反射的光波将相互干涉,形成的干涉条纹为膜的等厚各点的轨迹。
如果透镜的曲率半径为R ,则形成的第m 级干涉暗条纹的半径为m r ,可以证明λmR r m = (1)由上式可以知道,只要测出第m 级干涉暗条纹的半径,便可以求出透镜的曲率半径R 。
但是,实验的过程中,接近圆心的条纹比较模糊,难以确定环纹的干涉级数,会引起较大的误差,为了提高测量精度,必须测量距离中心较远的比较清晰的两个环纹的半径。
如果测出的第1m 个和第2m 个暗环的半径为1m r 和2m r ,则由上式得:()λR j m r m +=121 (2)()λR j m r m +=222 (3)其中j 为级数修正值 由(2)、(3)得:()λR m m r r m m 122212-=- (4)因此,只要测出环序数之差()12m m -和两环的半径1m r 和2m r ,则透镜的曲率半径就可以求出来。
()()λ1222/12m m r r R m m --= (5)四、实验步骤:1、在室内光线下调节牛顿环仪,使干涉条纹呈圆形且处于透镜的中心2、对照钠光灯,调节移测显微镜,使视场明亮、目镜中叉丝最为清晰,并且有一根叉丝与移测显微镜的移动方向垂直3、将移测显微镜对准牛顿环中心,调节镜筒的高度,使看到的干涉条纹尽可能的清晰4、调节十字叉丝的位置,使其对准视场中出现的干涉圆环的中心5、转动移测显微镜的测量手轮,将十字叉丝移动至光斑右侧(或左侧)比较清晰的那条干涉环上(一般从大于第3条开始),以此开始,向右(或左)数m 条光环(为了克服回程误差可以多数几条,比如数到2+m )6、反向移动手轮,使十字叉丝移动到第m 条处,且使之与环相切,记下此时移测显微镜的读数记为m x ,依次记下1-m x ,…..直到m x ',则各环的半径m m m x x r '-=217、求出各环的半径m r 的平方值,利用逐差法求出多组()2212m m r r -=∆的值(比如取()1012=-m m )8、求出∆的平均值,代入(5)式中求透镜的曲率半径R ,并计算标准不确定度五、数据记录及处理:表一 干涉圆环的位置 单位:mm表三2212m m r r -=∆,其中()1012=-m m∆的平均值:()10/10/...1011021⎪⎭⎫⎝⎛∆=∆++∆+∆=∆∑=ii透镜的曲率半径:()λ12/mmRi-∆=,其中钠光波长nm3.589=λ10∑=ii RR。
分析牛顿环测透镜曲率半径实验的数据处理技巧与准确度牛顿环测透镜曲率半径实验是一种常用的实验方法,用于测量透镜的曲率半径。
本文将分析牛顿环测透镜曲率半径实验的数据处理技巧与准确度。
1. 实验原理牛顿环实验基于干涉现象,通过在透镜与平行平板间产生干涉环,来确定透镜的曲率半径。
简单来说,当透镜与平行平板间存在一定的空气层时,透镜两侧产生干涉环,通过测量这些干涉环的半径可以得出透镜的曲率半径。
2. 实验步骤(详细描述实验步骤)3. 数据处理技巧3.1 干涉环半径测量在实验中,我们需要测量干涉环的半径。
为了提高准确度,可以使用显微镜进行放大观察,并在透镜两侧选择多个干涉环进行测量,取平均值以减小误差。
3.2 曲率半径计算根据实验数据,可以通过公式计算透镜的曲率半径。
常用的计算公式是:R = (m * λ * d) / (2 * t)其中,R为透镜的曲率半径,m为干涉环的级数,λ为波长,d为透镜与平行平板之间的距离差,t为透镜的厚度。
3.3 误差分析实验中存在着各种误差,如观测误差、仪器误差、环境误差等。
为了提高准确度,我们需要分析各种误差来源,并采取相应措施进行减小。
4. 实例分析以实验数据为例进行具体分析,展示数据处理技巧与准确度提高的方法。
5. 结果与讨论根据实验数据的处理结果,进行结果分析与讨论,总结实验的准确度与可行性。
6. 总结通过对牛顿环测透镜曲率半径实验的数据处理技巧与准确度进行分析,我们可以得出结论,该实验方法能够较准确地测量透镜的曲率半径。
然而,在实验过程中仍需注意误差的来源与减小方法,以提高实验结果的准确度。
(文章正文2000字以内,根据需要增加字数)。
牛顿环测凸透镜的曲率半径实验报告含数据一、实验目的通过测量牛顿环的半径和平均波长,计算得到凸透镜的曲率半径。
二、实验原理在同心圆环上,两个相邻环的干涉级差为一个波长,这种环被称为牛顿环。
如果在圆环中间加入一块光学平板,则光路将发生改变,形成新的牛顿环。
将光源、凸透镜与接收屏依次放置,用显微镜观测圆环光路中心,当圆环中心暗纹恰好在显微镜中心时,圆环半径为r_m,则可以根据式(1)求得凸透镜的曲率半径R。
R=r_m/2+nλ (1)其中,n为介质的折射率,λ为光的平均波长。
三、实验步骤1.将凸透镜放置在光路上,光源和接收屏分别放置于凸透镜同侧和异侧,如图1所示。
2.调整显微镜,使显微镜的十字光线和光路中心重合,如图2所示。
3.调整光源,使圆环清晰可见,并记录下环的半径r_m。
4.分别对红光和绿光进行测量,并记录下圆环半径r_m。
5.根据式(1)计算得到凸透镜的曲率半径R。
6.将测得的数据进行处理和分析。
四、实验数据记录与处理1.实验数据记录(1)红光下的测量数据圆环半径r_m= 4.5mm;折射率n= 1.5;平均波长λ= 650nm。
(2)绿光下的测量数据圆环半径r_m= 4.7mm;折射率n= 1.5;平均波长λ= 546.1nm。
2.数据处理和分析(1)计算得到凸透镜的曲率半径R红光下,R= 4.5 / (2×1.5×10^-3)= 1.5m;绿光下,R= 4.7 / (2×1.5×10^-3)= 1.57m。
(2)误差分析实验中,误差主要来自于圆环半径的测量和平均波长的确定。
测量圆环半径时,需要保证显微镜的位置准确,且调节光源时会产生误差;判断暗纹也需要一定的经验和技巧。
平均波长的确定则需要考虑光源本身的不确定性和环境噪声的影响。
在实际操作中,应尽量控制这些因素的影响,提高测量的准确性和精度。
五、实验结论通过测量牛顿环的半径和平均波长,我们得到了凸透镜的曲率半径,为1.5m(红光)和1.57m(绿光)。
⽤⽜顿环测量透镜的曲率半径(附数据处理)007⼤学实验报告评分:课程:学期:指导⽼师:007年级专业:学号:姓名:习惯⼀个⼈007实验3-11 ⽤⽜顿环测量透镜的曲率半径⼀. 实验⽬的1.进⼀步熟悉移测显微镜使⽤,观察⽜顿环的条纹特征。
2.利⽤等厚⼲涉测量平凸透镜曲率半径。
3. 学习⽤逐差法处理实验数据的⽅法。
⼆.实验仪器⽜顿环仪,移测显微镜,低压钠灯三.实验原理⽜顿环装置是由⼀块曲率半径较⼤的平凸玻璃透镜,以其凸⾯放在⼀块光学玻璃平板(平晶)上构成的,如图1所⽰。
平凸透镜的凸⾯与玻璃平板之间的空⽓层厚度从中⼼到边缘逐渐增加,若以平⾏单⾊光垂直照射到⽜顿环上,则经空⽓层上、下表⾯反射的⼆光束存在光程差,它们在平凸透镜的凸⾯相遇后,将发⽣⼲涉。
从透镜上看到的⼲涉花样是以玻璃接触点为中⼼的⼀系列明暗相间的圆环(如图2所⽰),称为⽜顿环。
由于同⼀⼲涉环上各处的空⽓层厚度是相同的,因此它属于等厚⼲涉。
由图1可见,如设透镜的曲率半径为R,与接触点O相距为r处空⽓层的厚度为d,其⼏何关系式为:由于R>>d,可以略去d2得(3-11-1)光线应是垂直⼊射的,计算光程差时还要考虑光波在平玻璃板上反射会有半波损失,从⽽带来 /2的附加程差,所以总程差为产⽣暗环的条件是:其中k=0,1,2,3,...为⼲涉暗条纹的级数。
综合(23-1)、(23-2)和(23-3)式可得第k级暗环的半径为:(3-11-2)由(4)式可知,如果单⾊光源的波长已知,测出第m级的暗环半径rm ,即可得出平凸透镜的曲率半径R;反之,如果R已知,测出rm 后,就可计算出⼊射单⾊光波的波长。
但是⽤此测量关系式往往误差很⼤,原因在于凸⾯和平⾯不可能是理想的点接触;接触压⼒会引起局部形变,使接触处成为⼀个圆形平⾯,⼲涉环中⼼为⼀暗斑。
或者空⽓间隙层中有了尘埃,附加了光程差,⼲涉环中⼼为⼀亮(或暗)斑,均⽆法确定环的⼏何中⼼。
实际测量时,我们可以通过测量距中⼼较远的两个暗环的半径rm 和rn 的平⽅差来计算曲率半径R。
一、实验名称:用牛顿环测量透镜的曲率半径二、实验目的:1、观察光的等厚干涉现象,了解干涉条纹特点。
2、利用干涉原理测透镜曲率半径。
3、学习用逐差法处理实验数据的方法。
三、实验仪器:牛顿环装置(其中透镜的曲率未知)、钠光灯(波长为589.3nm)、读数显微镜(附有反射镜)。
四、实验原理:将一块曲率半径R较大的平凸透镜的凸面放在一个光学平板玻璃上,使平凸透镜的球面AOB与平面玻璃CD面相切于O点,组成牛顿环装置,如图所示,则在平凸透镜球面与平板玻璃之间形成一个以接触点O为中心向四周逐渐增厚的空气劈尖。
当单色平行光束近乎垂直地向AB面入射时,一部分光束在AOB面上反射,一部分继续前进,到COD面上反射。
这两束反射光在AOB面相遇,互相干涉,形成明暗条纹。
由于AOB面是球面,与O点等距的各点对O点是对称的,因而上述明暗条纹排成如图所示的明暗相间的圆环图样,在中心有一暗点(实际观察是一个圆斑),这些环纹称为牛顿环。
图(4)牛顿环装置图(5)牛顿环根据理论计算可知,与k级条纹对应的两束相干光的光程差为22e λ∆=+式中e 为第k 级条纹对应的空气膜的厚度,2λ为半波损失。
由干涉条件可知,当(21)(0,1,2,3,)2k k λ∆=+=⋯时,干涉条纹为暗条纹。
即 解得 2e k λ= (2) 设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为e ,由图4所示几何关系可得()2222222R R e r R Re e r =-+=-++由于R e >>,则2e 可以略去。
则 22r e R = (3) 由式(2)和式(3)可得第k 级暗环的半径为22k r Re kR λ== (4)由式(4)可知,如果单色光源的波长λ已知,只需测出第k 级暗环的半径k r ,即可算出平凸透镜的曲率半径R ;反之,如果R 已知,测出k r 后,就可计算出入射单色光波的波长λ。
但是由于平凸透镜的凸面和光学平玻璃平面不可能是理想的点接触;接触压力会引起局部弹性形变,使接触处成为一个圆形平面,干涉环中心为一暗斑;或者空气间隙层中有了尘埃等因素的存在使得在光程差公式中附加了一项。