母函数与指数型母函数
- 格式:ppt
- 大小:1.02 MB
- 文档页数:58
母函数(⽣成函数)介绍母函数是组合数学中相当重要的⼀个知识点,可以⽤来解决⼀些排列组合问题,还有所有的常系数线性齐次递推问题。
如果系数不是常数,需要根据具体情况进⾏处理。
具体的内容可以看组合数学相关书籍或者,由于⼤佬总是想当然地把别⼈当成⼤佬,⼀些内容对(像我这种)蒟蒻来说不是很友好,在这⾥讲⼀下母函数的基础。
(研究母函数时,钦定|x|<1),这样,由等⽐数列求和公式有:11−x=∑∞i=0x i=1+x+ (x)11−kx=∑∞i=0k i x i=1+kx+...+k∞x∞1.普通型母函数。
假设有⼀个数列a,那么它的母函数其实就是⼀个关于x的多项式,x n的系数为a n,对于已知通项的数列,其母函数可以直接写出来。
⽽对于未知的数列,主要分为两类:递推型和组合型。
递推型就是利⽤错位相消,举个栗⼦:a n=3a n−1+10a n−2,a0=1,a1=2移项,得a n−3a n−1−10a n−2=0,设a n的母函数为G(x)G(x)=a0+a1x+a2x2+a3x3...−3xG(x)=−3a0x+(−3)a1x2+(−3)a2x3...−10x2G(x)=−10a0x2+(−10)a1x3三⾏相加,可以发现等式右侧除了第⼀⾏的第1,2项和第⼆⾏的第1项外全消掉了。
所以我们可以得到(1−3x−10x2)G(x)=a0+a1x−3a0x=1−x,即G(x)=1−x1−3x−10x2,⽣成函数就求出来了,那如果我们还要求an的通项呢?对于这种东西,我们可以把他化成k1x−A+k2x−B这种形式,其中A和B由分母的因式分解唯⼀确定,然后k1,k2可由待定系数法解得。
然后对于kx−A,总可以化成k′∗11−Nx,就是k′∑∞i=0N i x i,找出x k的系数就是a n,如果母函数拆开成多个该类分式的话各部分相加就好。
具体计算就不算了。
PS:⼀部分⾮齐次线性递推其实也可以这样解,⽐如a n−3a n−1−10a n−2=f(n),按照上述⽅法错项后会剩下⼀个等⽐数列和前⼏项余项。
高考数学冲刺复习母函数考点速查高考对于每一位学子来说都是人生中的一次重要挑战,而数学作为其中的关键学科,更是备受关注。
在高考数学的众多考点中,母函数是一个较为复杂但又十分重要的知识点。
在冲刺复习阶段,对母函数考点进行速查和强化,能够帮助我们在考试中更加从容应对。
一、什么是母函数母函数,简单来说,就是一种将数列与多项式联系起来的工具。
通过母函数,我们可以将一个数列的各项用一个多项式的系数来表示。
例如,对于数列 1,2,3,4,5,其对应的母函数可以表示为 G(x) = 1 + 2x + 3x^2 + 4x^3 + 5x^4 。
母函数的作用在于它能够将一些离散的数量关系转化为连续的函数形式,从而便于我们进行分析和计算。
二、常见的母函数类型1、普通型母函数普通型母函数主要用于解决组合计数问题。
比如,从 n 个不同元素中选取 r 个元素的组合数,可以通过普通型母函数来表示和计算。
2、指数型母函数指数型母函数通常用于解决排列计数问题。
在涉及到具有重复元素的排列时,指数型母函数能够发挥重要作用。
三、母函数的基本运算1、加法运算两个母函数相加,就是将它们对应的多项式的系数相加。
例如,G1(x) = 1 + 2x + 3x^2 ,G2(x) = 2 + 3x + 4x^2 ,则 G1(x) + G2(x) = 3 + 5x + 7x^2 。
2、乘法运算母函数的乘法运算对应着组合问题中的分步计数原理。
例如,G1(x) = 1 + 2x ,G2(x) = 1 + 3x ,则 G1(x)×G2(x) = 1 + 5x + 6x^2 。
四、母函数在解题中的应用1、求解组合数通过构造合适的母函数,可以方便地求出特定条件下的组合数。
例如,求从 5 个不同的球中选取 2 个球的组合数。
我们可以设母函数 G(x) =(1 + x)^5 ,展开后 x^2 的系数即为所求组合数。
2、解决分配问题在将一定数量的物品分配到不同的容器或分组的问题中,母函数能够清晰地展现各种可能的分配情况。
母函数
定义对给定序列构造一个函数,称为序列的母函数。
其中,序列只作为标志用,称为标志函数。
派生1:普通型母函数
当标志函数为时,即母函数为,称这类母函数为普通型母函数,可记作。
定理1:
设从元集合中取个元素组合,若限定元素出现次数的集合为,则该组合数序列的母函数为:
常用到的普通型母函数有:
例题:求位十进制正数中出现偶数个的数的个数
设表示位十进制正数中出现偶数个的数的个数,表示位十进制正数中出现奇数个的数的个数,不难得出:设序列,的母函数分别为:
由得:
再由得:
由、可得:
更进一步的,
即:
派生2:指数型母函数
当标志函数为时,即母函数为,称此类母函数为指数型母函数,可记作。
定理2:
从多重集中选区个元素排列,若元素出现的次数集合为,则该排列数序列的母函数为:
所谓多重集(multiset)之于集合(set),英文写出来差不多就懂了。
函数中,除以是因为排列中这个相同元素的先后是不考虑的。
常见的指数型母函数(的Tylor展开式):
例题:求由这个数字组成的位数字的个数(每个数字出现次数可以为,且出现的次数为偶数)。
设满足条件的位数字的数目为(特别地,规定),则序列的母函数为:
故。
附录:
推荐的文档组合数学--母函数与递推朱全民。
母函数种类表在数学中,某个序列 的母函数(又称生成函数)是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息。
使用母函数解决问题的方法称为母函数方法。
母函数可分为很多种,包括普通母函数、指数母函数、L 级数、贝尔级数和狄利克雷级数。
对每个序列都可以写出以上每个类型一个母函数。
构造母函数的目的一般是为了解决某个特定问题,因此选用何种母函数视乎序列本身的特性和问题类型。
母函数表示一般使用解析形式,即写成关于某个形式变量x 的形式幂级数。
对幂级数的收敛半径中的某一点,可以求母函数在这一点的级数和。
但无论如何,由于母函数是形式幂级数的一种,其级数和不一定对每个x 的值都存在。
母函数方法不仅在概率论的计算中有重要地位,而且已成为组合数学中一种重要方法。
此外,母函数在有限差分计算、特殊函数论等数学领域中都有着广泛的应用。
注意母函数本身并不是一个从某个定义域射到某个值域的函数,名字中的“函数”只是出于历史原因而保留。
母函数就是一列用来展示一串数字的挂衣架。
生成函数即母函数,是组合数学中尤其是计数方面的一个重要理论和工具。
生成函数有普通型生成函数和指数型生成函数两种,其中普通型用的比较多。
形式上说,普通型生成函数用于解决多重集的组合问题,而指数型母函数用于解决多重集的排列问题。
“投掷n 粒骰子时,加起来点数总和等于m 可能方式数目可能是展开式中项系数。
1. 普通数母普通母函数就是最常见母函数。
一般来说,序列的母函数是:如果 是某个离散随机变量的概率质量函数,那么它的母函数被称为一个概率母函数。
多重下标的序列也可以有母函数。
例如,序列母函数是。
2. 矩量母函数(母函数)令X 为具有概率密度函数f(x)随机变量,如果X 函数exp (tX )的期望值存在(-h^2<t<h^2),则称exp(tX)的期望值为X 的矩母函数,记作MX(t)用于描述随机变量的分布状况,其K 次求导,得M(0)的k 次方,也即Y 的K 次方的分布状况,概率理论和统计学上,在其期望值存在时,随机变量X 的矩量母函数为松数母序列的泊松母函数是:4. 数母数(母函数)序列的指数母函数是:尔(卡母函数)关于算术函数 :和 的贝尔级数是:6.级数 (母函数)序列的L 级数是:注意这里的下标 n 从1 而不是0 开始。
六大母函数
数学中母函数是一种非常重要的概念,它可以帮助我们更好地理解和探索数学现象。
本文将介绍数学中的六大母函数,以便我们能够更好地理解数学的精髓。
首先,要了解数学中的母函数,就必须先理解什么是函数。
函数就是一种特殊的关系,它可以将指定的输入与某种特定的输出相关联。
而母函数则是将所有可能的输入与某种特定的输出相关联的函数,它们可以将所有可能的情况表示出来,因此被称为母函数。
总体而言,数学中的六大母函数分别是指数函数、对数函数、幂函数、三角函数、双曲函数和正弦函数。
首先,数学中的指数函数是指一种以指数形式表示的函数。
它的函数表达式为y=ax,其中a是一个常数,x表示一个可变量。
比如,当a=2,x=3时,指数函数的输出值为2的3次方,即2的3次方
=2*2*2=8。
其次,数学中的对数函数是指一种以对数形式表示的函数。
它的函数表达式为y=logax,其中a是一个常数,x表示一个可变量。
比如,当a=10,x=100时,对数函数的输出值为2,即log10(100)=2。
紧接着,数学中的幂函数是指一种以幂形式表示的函数。
它的函数表达式为y=ax,其中a是一个常数,x表示一个可变量。
比如,当a=2,x=3时,幂函数的输出值为2的3次方,即2的3次方=2*2*2=8。
此外,数学中的三角函数是指一种以三角形的角度表示的函数。
三角函数主要有正弦函数、余弦函数和正切函数,它们的函数表达式
分别为y=sin x、y=cos x和y=tan x,其中x表示一个可变量。
第二章 母函数及其应用问题:对于不尽相异元素的部分排列和组合,用第一章的方法是比较麻烦的(参见表2.0.1)。
新方法:母函数方法,问题将显得容易多了。
其次,在求解递推关系的解、整数分拆以及证明组合恒等式时,母函数方法是一种非常重要的手段。
表2.0.1 条件组合方案数排列方案数对应的集合相异元素,不重复()!!!r n r n C rn -⋅=()!!r n n P rn -={}n e e e S ,,, 21=相异元素,可重复rr n C 1-+rnS ={,,21e e ⋅∞⋅∞ne ⋅∞, }不尽相异元素(有限重复)特例r =n1 !!!!m n n n n 21S ={11e n ⋅,22e n ⋅,…,m m e n ⋅}, n 1+n 2+…+n m =nn k ≣1, (k =1,2,…, m )r =1mm所有n k ≣r rr m C 1-+rm至少有一个n k 满足1≢n k < r母函数方法的基本思想是把离散的数列同多项式或幂级数一一对应起来,从而把离散数列间的结合关系转化为多项式或幂级数之间的运算。
2.1 母 函 数(一)母函数(1)定义定义2.1.1 对于数列{}n a ,称无穷级数()∑∞=≡0n nnxax G 为该数列的(普通型)母函数,简称普母函数或母函数。
(2)例例2.1.1 有限数列C (n ,r ),r =0,1,2, …,n 的普母函数是()nx +1。
例2.1.2 无限数列{1,1,…,1,…}的普母函数是+++++=-nxx x x2111(3)说明● n a 可以为有限个或无限个; ● 数列{}n a 与母函数一一对应,即给定数列便得知它的母函数;反之,求得母函数则数列也随之而定;例如,无限数列{0,1,1,…,1,…}的普母函数是 +++++n x x x 20=xx-1● 这里将母函数只看作一个形式函数,目的是利用其有关运算性质完成计数问题,故不考虑“收敛问题”,而且始终认为它是可“逐项微分”和“逐项积分”的。
六大母函数母函数是数学中一个常见的概念,其定义是指,给定一类函数,任一个函数都可以表示成由母函数和一个或多个参数组成的函数。
母函数实际上是一类函数的共性,它们把不同的函数分类了起来,也就是说,母函数可以把不同的函数映射到一个共同的函数。
其中,六大母函数是比较常用的数学函数,它们分别是指数函数、对数函数、幂函数、正弦函数、余弦函数和正切函数。
下面我们就分别来讨论它们的特征和用途。
首先,指数函数,它的公式为y = a^x,其中a是一个大于零的常数,x表示指数函数的指数项;指数函数的图像是一条以原点为拐点的曲线,它的导数为y = a^x *ln(a),指数函数主要用于求解定积分和求解某些不定积分。
其次,对数函数,它的公式为y = ln(x),其中x表示底数,表示元函数的自变量;对数函数的图像是一条折线,折线上的点根据自变量变化而变化;对数函数的导数为y = 1/x,对数函数主要用于求解对数函数的积分、求解某些不定积分,还可以用于求解重极值点、及求解极限。
第三,幂函数,它的公式为y = c^x,其中c是任意的实数,x 表示幂函数的指数;幂函数的图像也是一条以原点为拐点的曲线,它的导数为y = c^x * ln(c),幂函数主要用于求解定积分和求解某些不定积分。
接下来,正弦函数,它的公式为y = sin(x),其中x表示正弦函数的自变量;正弦函数的图像是一条周期性的曲线,它的导数为y = cos(x),正弦函数主要用于求解定积分和求解某些不定积分。
再次,余弦函数,它的公式为y =cos(x),其中x表示余弦函数的自变量;余弦函数的图像也是一条周期性的曲线,它的导数为y = -sin(x),余弦函数主要用于求解定积分和求解某些不定积分。
最后,正切函数,它的公式为y = tanx,其中x表示正切函数的自变量;正切函数的图像是一条周期性的折线,它的导数为y = sec2x,正切函数主要用于求解定积分和求解某些不定积分。
母函数母函数思想的起源可以追溯到18世纪Jacob B的《猜度术》一书。
这本书是在作者去世8年后的1713年出版的,它是早期概率论中最重要的著作。
《猜度术》一书共分四个部分,其中在第二部分中,作者讨论了组合论问题。
主要是运用伯努利数通过完全归纳法证明了n 为正整数时的二项式定理。
在第三部分中,作者把排列和组合的理论运用到概率论中,给出了24种有关在各种赌博情形中利益预测的例子。
在第四部分中作者给出了著名的伯努利大数定律:若P是事件发生一次的概率,q是该事件不发生的概率,则在n次实验中该事件至少出现m次的概率等于的展开式中从项到包括为止的各项之和。
母函数是组合数学的一个重要理论。
Jacob B考虑掷n粒骰子时所得点数总和等于m,这种场合的数目等于的展开式中这一项的系数,开了母函数研究的先河。
在18世纪,Euler L对组合方法的发展做出了重大贡献。
他关于自然数的分解与合成的研究为母函数方法奠定了基础。
1812年,法国数学家Laplace P.S. 出版了《概率的分析理论》一书。
这本书第一部分的小标题为“母函数的计算”,这一部分致力于母函数计算的数学方法及其一般数学理论,这是对Euler L所提出的母函数理论的发展。
所以现代学术界认为母函数方法是由Euler L和Laplace P.S. 共同发现的。
由此,组合数学中的母函数理论基本建立起来了。
在当代组合学理论中,母函数是解决计数问题的重要方法。
一方面,母函数可以看成是代数对象,其形式上的处理使得人们可以通过代数手段计算一个问题的可能性的数目;另一个方面,母函数是无限可微分函数的Taylor级数。
如果能够找到函数和它的Talor级数,那么Taylor级数的系数则给出了问题的解。
本章主要介绍母函数的两种形式:普通型母函数和指数型母函数。
然后通过一些典型问题的分析,帮助读者加深对这一方法的理解。
并且在分析中,有的问题采用多种方法求解。
通过对比,读者可以明显地看到用母函数的方法解决问题具有较高的效率,并且程序具有非常规范的形式,易于实现。
六大母函数函数是数学中重要的概念,它可以将一个输入变量映射到另一个输出变量,通常我们把输入变量称作自变量,把输出变量称作因变量。
有时候,函数可以用曲线或公式来表示,所以它也被称为曲线函数或公式函数。
六大母函数是指六种常见的曲线函数,分别是线性函数、幂函数、指数函数、对数函数、三角函数和反三角函数。
线性函数是最简单的函数,形式为y=ax+b。
它属于一元一次函数,只有一个自变量,因变量的值和自变量的值之间的关系是线性的。
在一元一次函数中,a叫做斜率,b叫做y轴截距,两者有各自的性质和特点。
幂函数是一类二元函数,它们以幂函数的形式来表现,通常可以写成y=axn,其中a和n都是常数,n是幂函数的指数,它们决定了函数的形状。
当n>1时,函数图象是一条开口向上的抛物线;当n<0时,函数图象是一条开口向下的抛物线;当n=1时,函数图象是一条直线;当n=0时,函数图象是一条水平的直线。
此外,幂函数的斜率与指数n的正负值有关,当n>1时,斜率增加;当n<1时,斜率减小;当n=1时,斜率为常数。
指数函数是一类二元函数,可以写成y=aem,其中a和m都是常数,m是指数函数的指数,它决定了函数的形状及斜率。
指数函数的图像是一条开口向上的曲线,其斜率不断增加,m的正负值不影响指数函数的图像形状,但影响函数的上下移动及其斜率的大小。
对数函数也是一类二元函数,可以写成y=alnx,其中a和m都是常数,m是对数函数的底数,它决定了函数的形状及斜率。
对数函数的图像是一条开口向上的曲线,其斜率不断增加,底数m的正负值不影响该函数的图像形状,但影响函数的上下移动及其斜率的大小。
三角函数是一种函数,它以三角函数的形式来表现,用符号表示可以为y=sinθ、y=cosθ、y=tanθ、y=cotθ。
在三角函数的图像中,x表示角度,而y表示每一个角度对应的三角函数值。
反三角函数也是一种函数,用符号表示可以为y=sin-1θ、y=cos-1θ、y=tan-1θ、y=cot-1θ。