组合数学(西安电子科技大学(第二版))第二章母函数_版24样版演示课件.ppt
- 格式:ppt
- 大小:1.13 MB
- 文档页数:59
第二章 母函数及其应用问题:对于不尽相异元素的部分排列和组合,用第一章的方2.0.1)。
新方法:母函数方法。
基本思想:把离散的数列同多项式或幂级数一一对应起来,算。
2.1 母 函 数(一) 母函数 (1)定义【定义2.1.1】 对于数列{}n a ,称无穷级数()∑∞=≡0n n n x a x G 为该数列的(普通型)母函数,简称普母函数或母函数。
(2)例【例2.1.1】 有限数列rn C (r =0,1,2, …,n )的普母函数是。
()x G =nn n n n nx C x C x C C ++++ 2210=()nx +1【例2.1.2】 无限数列{1,1,…,1,…}的普母函数是()x G = +++++n x x x 21=x-11(3)说明● n a 可以为有限个或无限个;● 数列{}n a 与母函数一一对应,即给定数列便得知它的母函数;反之,求得母函数则数列也随之而定;例如,无限数列{0,1,1,…,1,…}的普母函数是+++++nx x x 20=xx-1● 这里将母函数只看作一个形式函数,目的是利用其有关运算性质完成计数问题,故不考虑“收敛问题”,而且始终认为它是可“逐项微分”和“逐项积分”的。
(4)常用母函数(二) 组合问题 (1)组合的母函数定理2.1.1 组合的母函数:设{}m m e n e n e n S ⋅⋅⋅=,,,2211 ,且n 1+n 2+…+n m =n ,则S 的r 可重组合的母函数为()x G =∏∑==⎪⎪⎭⎫ ⎝⎛mi n j j i x 10=∑=n r rr x a 0(2.1.1) 其中,r 可重组合数为rx 之系数r a ,r =0,1,2, …,n .理论依据:多项式的任何一项与组合结果一一对应(见例2.1.3)定理2.1.1的优点:● 将无重组合与重复组合统一起来处理; ● 使处理可重组合的枚举问题变得非常简单。
(2)特例推论1 {}n e e e S ,,,21 =,则r 无重组合的母函数为G (x )= (1+x )n (2.1.2)组合数为r x 之系数r n C 。
习题三(递推关系)1.解下列递推关系:(1)120171000,1n n n a a a a a ---+=⎧⎨==⎩ (2)12016900,1n n n a a a a a --++=⎧⎨==⎩ (3)20100,2n n a a a a -+=⎧⎨==⎩ (4)120121n n n a a a a a --=-⎧⎨==⎩ (5)123012990,1,2n n n n a a a a a a a ---=+-⎧⎨===⎩ 解:(1)对应的特征方程为:27100x x -+=,解得122,5x x ==。
所以齐次递推方程的通解为:25n n n a A B =+,代入初始条件,得:00a A B =+=,1251a A B =+=,解得:11,33A B =-=, 故 112533n n n a =-+。
(2)对应的特征方程为:2690x x ++=,解得:123x x ==-,所以,齐次递推方程的通解为:()(3)n n a A Bn =+-,代入初始条件,00a A ==,1()(3)1a A B =+-=,解得:10,3A B ==-,故1(3)3n n a n =--。
(3)对应的特征方程为:210x +=,解得:12,x i x i ==-,所以,齐次递推方程的通解为:()()n n n a A i B i =+-,代入初始条件,00a A B =+=,12a A i B i =-=,解得:,A i B i =-=,故 11()()n n n a i i --=+-。
(4)对应的特征方程为:2210x x -+=,解得:121x x ==,所以,齐次递推方程的通解为:n a A Bn =+,代入初始条件,01a A ==,11a A B =+=,解得:1,0A B ==,故 1n a =。
(5)对应的特征方程为:32990x x x --+=,解得:1231,3,3x x x ===-,所以,齐次递推方程的通解为:3(3)n n n a A B C =++-,代入初始条件,00a A B C =++=,1331a A B C =+-=,2992a A B C =++=, 解得,111,,4312A B C =-==-,故 1113(3)412n n n a -=-+--2.求由A ,B ,C ,D 组成的允许重复的排列中AB 至少出现一次的排列数。