低温低浊对水质净化过程的影响
- 格式:doc
- 大小:21.00 KB
- 文档页数:1
2020.03科学技术创新与其最佳使用场所势在必行。
现如今的光催化材料主要有以下两点限制其发展和推广应用:(1)光催化剂的光转化效率较低,并且不能在理想的时间内保持稳定性;(2)光催化材料的成本一直较高,阻碍了其大规模的推广应用;(3)光催化材料在应用时,受外界动态光照环境、应用场所不稳定等多方面影响,从而导致其性能、在应用场所上的贴附度等发生变化,例如,选取适用在玻璃幕墙上的最佳光催化材料,现如今随着时代的不断发展,越来越多的高楼大厦采用玻璃作为幕墙,将建筑美学等因素有机地统一起来,建筑物随阳光、月色、灯光的变化给人以动态的美。
但玻璃幕墙相对其他基材更显脏污,传统水清洗已无法满足其需要。
因此可以将光催化技术应用在玻璃幕墙治理上面,可以为玻璃幕墙污染治理做出贡献。
另外还可以选取适用在公路两侧隔离板上的最佳光催化材料进行研究等。
基于此,作者认为,在光催化技术被广泛应用之前,以下问题需要解决:降低光催化材料的生产成本;提高光催化剂的光转化效率以及稳定性;光催化材料与应用场所的最佳耦合关系的选取。
在此综述中,本人认为将此作为主攻方向,通过相关系统的研究,可以为中国气候条件下控制及回收温室气体,提供坚实的理论支撑体系。
参考文献[1]杨礼荣.我国典型行业非二氧化碳类温室气体减排技术及对策[M].北京:中国环境出版社,2014.[2]王芳.仿生多孔二氧化钛合成及其光催化还原二氧化碳性能研究[D].南京:南京大学,2015.[3]卫静.TiO 2基纳米材料光催化还原CO 2研究[D].天津:天津大学,2011.[4]De Richter R,Ming T,Davies P,et al.Removal of non-CO 2,greenhouse gases by large -scale atmospheric solar photocatalysis [J].Progress in Energy &Combustion Science,2017,60:68-96.[5]Richter A,Burrows J P,N 俟ss H,et al.Increase in tropospheric nitrogen dioxide over China observed from space.[J].Nature,2005,437(7055):129-132.[6]W Schiel,J.Schlaich,et al.The solar chimney:electricity from the sun[J].Edition Axel Menges,1995.[7]佚名.光催化空气净化技术[J].中国建材,2004(9):86.[8]贺晓宇.光催化水泥基复合材料研究进展[J].科技与创新,2017(15):134-136.[9]王欣欣,亓学奎,杨华,等.光催化涂层净化气态有机物能力评价系统[J].表面技术,2017,46(4):58-63.[10]姚仲鹏.空气净化原理、设计与应用[M].北京:中国科学技术出版社,2014.作者简介:黄晨茜(1992-),女,汉,河南省宁陵县,硕士,建筑节能技术。
浅谈低温低浊厚色度给水处理工艺发表时间:2018-01-15T12:22:46.120Z 来源:《知识-力量》2017年10月上作者:李新苗[导读] 给水水源水质在这段内时间为低温低浊状态。
近年来工业的发展,工业废水大量排放到地表水中。
同时北方冬季河流补充水较少,导致原水色度增加,从而形成了北方地区特有的低温低浊厚色度原水。
李新苗(西安市自来水有限公司,西安,710082)摘要:我们东北和西北等大部分高寒地区有5个月的冰封期。
给水水源水质在这段内时间为低温低浊状态。
近年来工业的发展,工业废水大量排放到地表水中。
同时北方冬季河流补充水较少,导致原水色度增加,从而形成了北方地区特有的低温低浊厚色度原水。
关键词:絮凝;低浊;低温;厚色度。
1、引言我们北方大部分地区冰封期达4~6 个月, 水质长以低温低浊为常态。
江水水温在0~2℃,水库底层水温1~4℃; 江河水浊度为4~30 NTU , 水库水浊度为4~10NTU。
低温低浊厚色度给水处理工艺为:原水→混合池→上下翻滚式隔板→反应池斜板沉淀池→出水。
该工艺在水温高于5℃,浊度相对较高的情况下运行效果较好,但是在冬季,出水不能达到浊度小于5NTU,色度小于60 度设计要求。
给水处理工程中低温低浊水处理工程一直是一个难以处理难点。
2、低温低浊厚色度水处理工艺的现状在给水处理工程中低温低浊水处理工程中一直是一个难以处理难点。
我们西北与东北大部分高寒地区的水厂通常碰到低温低浊水处理的难题,虽然进行了部分针对性措施,但是地区不同,水源水质差别较大,对给水处理工艺的要求各有不同,这些差异徒增了低温低浊水处理难度。
水源受到污染后,大大地增加低温低浊水的处理难度。
我们的水源以地表水为主。
由于我们国家经济的快速发展,使得地表水的污染日益严重。
从河流流域工业废水的来源看,污染物以造纸、化学肥料、制糖、煤炭化工等工业企业为主,其中以造纸行业对水体的污染尤为突出。
造纸废水色度厚,又含有较多木质素,北方冬季河流正处于枯水期,造纸行业大量排放污水,导致原水色度迅速增加,原水变为低温低浊厚色度原水,加大了给水处理难度。
低温低浊水处理低温低浊水处理工艺研究1难以净化的原因低温低浊水中的杂质,主要是以细的胶体分散体系溶于水中,而且胶体颗粒比较均匀,胶体颗粒具有很强的动力稳定性}t凝聚稳定性,并且带负电的胶体微粒数量很小。
所以,为达到电中和所需的混凝剂也少,因此形成的絮凝体细、少、轻、难于沉淀,易于穿透滤层。
由于浊度较低,胶体颗粒数目较少,颗粒相互碰撞而聚集的机会减少。
水温低,胶体颗粒的Zeta 电位较高[‘」,胶体颗粒间的排斥势能较大,而且此时颗粒布朗运动动能减小,粘滞系数增大,更不利于颗粒碰撞,而使胶体颗粒脱稳困难。
水温低,胶体的溶剂化作用增强,颗粒周围水化作用突出,妨碍其絮凝。
水温低,水的粘度变大而使沉速减小,加之低温时气体的溶解度大,使形成的絮凝体密度降低,溶解气体大量吸附在絮凝体周围,也不利于其沉淀。
2国内外研究现状2。
1生物法清华大学的胡江泳,王占生[[z]针对低温低浊污染水源,采用生物预处理的手段进行现场试验研究,结果发现以陶粒为载体的生物预处理工艺,常温能去除水中有机物COD 26.2 % , SS 60%一70 %,氨氮80%a温度小于3℃时,COI〕去除率20%,SS去掉40 %,氨氮减少50 %。
2.2气浮技术气浮工艺净化水质的原理是利用压力溶气水骤然减压释放大量的微细气泡与原水加药混凝产生的絮体粘附在一起,使其整体密度小于水的密度,使带气絮体浮至水面,形成浮渣,从而实现悬浮胶体杂质的去除及水质的净化。
王毅力等[[3]采用絮凝一溶气气浮(DAF)工艺处理密云水库低温、低浊水的中试结果表明,碱化度B值越高的PAC,其电中和能力越强,而且在相同的除浊效果下絮凝剂投量也越少。
该工艺对于不同浊度的原水可达到70 % -J 85%的除浊率,且原水浊度越高,除浊率也越高。
但该工艺最大的弊端是需要增加溶气设备。
上海市政工程设计院的熊长学〔4〕将北方某水厂处理工艺进行改造,将浮沉池改为斜管沉淀池,而普通快滤池增加气浮系统,研究表明出厂水浊度可以降到0。
低温低浊水处理技术摘要:低温低浊水处理是净水技术的一个难点,从水温、水中微粒浓度及有机污染物三个方面分析了这种水质难于处理的原因。
基于众多水处理工作者的试验研究与实践,对多种低温低浊水处理技术、药剂优选技术、泥渣回流技术、微絮凝技术、气浮技术与强化混凝技术进行了综述。
关键词:低温低浊水;处理;混凝;浊度1 导论低温低浊水的处理是给水处理工程中的难题之一,一直困扰着给水界。
给水处理领域中对低温低浊水尚没有确切的定义,我国北方气候寒冷,冬春季节水温可降至0~2℃,浊度降到10~30NTU(有时10NTU以下);我国南方地区以长江水系为代表每年随着冬季的到来,水温和浊度逐渐下降,水温一般在3~7℃,浊度一般在20~50NTU之间变化,把每年11月至次年3月温度低于10℃或浊度低于30NTU的地表水称为低温低浊度水[1]。
这种低温低浊水很难处理,即使增大混凝剂投加量,净化后的水质仍很难达到国家饮用水的标准。
为此,我国通过20多年的科学试验和生产实践,基本攻克这一技术难关,获得了显著的成果。
2 低温低浊水难以净化的原因低温低浊水的水质特点是,水的粘度大,水中微粒尺寸小且粒径分布均匀,絮凝反应慢,生成的絮凝体小而不易沉降,因此,常规的混凝技术难以处理出合格的出水。
影响低温低浊水混凝效果的主要因素有以下三个方面。
2.1 水温的影响(1)水温对混凝剂的水解反应有明显的影响,低水温使水解反应速度减缓,在常见的混凝剂中,铝盐较铁盐受水温影响大;(2)低温时水的粘度大,增大了水流的剪切力,不利于水中微小颗粒碰撞、凝聚和絮凝体的成长,絮凝速率和颗粒沉降速度也减小,使絮凝体含水率上升,絮凝体变得疏松,密度下降,絮凝体沉降性能变差;(3)微粒的布朗运动是水中胶体微粒的稳定因素,但也是微粒的不稳定因素,微粒的布朗运动可促使微粒间相互接触碰撞,从而使彼此吸附凝聚,而低水温减弱微粒的布朗运动,不利于微粒间碰撞凝聚。
2.2 水中微粒浓度的影响良好的混凝处理效果是基于混凝过程中微粒具有较多的碰撞机会,提高了碰撞几率,也就提高了微粒间的凝聚机会,促进微粒的凝聚成长,如果水中微粒浓度太低,势必影响混凝处理过程的正常进行。
气温下降造成污水处理出问题怎么办作为污水处理行业来说,通常生化段是一个污水系统的核心,而生化段的核心为活性污泥,活性污泥中的微生物的活性决定了污水系统运行水平。
温度对于污水系统的运行影响是巨大的。
而在我国北方,冬季较为寒冷,很多地区最低气温可达-15℃以下,水温降低或过低会使得污水处理过程出现一系列困难或问题,包括物理与生物吸附能力下降,生物活性降低,沉淀不易,污泥膨胀等,导致污水处理量与出水水质很难保证与达标。
低温对于微生物活性的影响更为直接。
所以对于冬季污水处理系统运行,我们最关心的还是咱们生化系统里的微生物够不够“暖和”。
毕竟微生物是污水处理生化段的核心,它们的“冷暖”直接关系到生化系统的处理效果。
那么冬季污水厂究竟可能遇见哪些问题呢?首先来聊一聊最“娇气”的硝化细菌。
说它们娇气那可一点都不冤枉,因为它们在意的东西可太多了:说是好氧菌吧,在好氧池里谁都能跟它们抢溶解氧,必须要控制BOD 让异养菌没营养了才能好好繁殖;说是把氨氮当成能量来源吧,浓度太高了也受不了,毕竟当系统氨氮浓度高于80mg/L就能对硝化细菌的生长产生抑制作用;更何况他们世代周期那么长,如果污泥龄短一点,落脚没稳,搞不好就随着剩余污泥一点一点排出去了。
娇气且脆弱的它们,在低温冲击的情况下,最先出问题那也是挺正常的,毕竟它们最喜欢的温度还是25~35℃,温度在10℃以下它们就只有原来的一半活跃了,温度低到5℃以下的时候更严重了,它们就直接罢工不干了。
硝化反应基本停止,进水的氨氮就相当于在系统里逛了一圈,啥事没干就出去了。
那这系统出水的氨氮和总氮可不就得超标了嘛。
那这要怎么办呢?别急,微生物处理水这块咱毕竟还是专业的。
遇到冬季低温引起的硝化速率降低、出水氨氮超标的问题,想要解决无非就是让硝化菌像原来一样活跃起来。
这种情况可以从两方面入手,一方面是投加我司的倍活低温硝化菌种,这些菌种经过精挑细选,在低温情况下也能表现出良好的活力;另一方面可以用我司的生物菌酶系列产品,这些产品是我司生物增效技术应用的代表产品,它们可以在全面增加营养物质、屏蔽有毒物质等多个方面优化微生物的生存环境,给土著微生物重新注入活力。
低温低浊度水处理方法
低温低浊度水处理方法主要是应用于寒冷地区或特殊环境下的水源处理。
该方法通过选择合适的处理工艺和设备,可有效去除水中的悬浮颗粒、有机物、微生物等污染物,提高水的水质。
常用的低温低浊度水处理工艺包括混凝-沉淀法、植物池法、生物滤池法、反渗透法等。
其中,植物池法和生物滤池法是利用天然植物和微生物对水质进行自然净化的方法,具有节能、环保等优点,适用于处理小流量、多种污染物的水源。
而反渗透法则广泛应用于工业和市政用水领域,可去除水中的离子、微生物等有害物质,净化水质。
总之,低温低浊度水处理方法是为了满足在特殊环境下的水源净化需求而研究开发的一种水处理技术,具有重要的应用价值。
- 1 -。
低温低浊水处理的研究现状摘要:低温低浊水主要的定义为水温在0~4℃、浊度低于30 NTU的冬季水库水、江河水。
我国北部地区水在冰冻期时以及部分南部地区水在最寒冷时期,浊度和温度均属于低温低浊水的属性。
由于具有黏度大、温度低、碱度低等特点,低温低浊水的处理仍然是一个水处理界的难题,传统的处理方式得不到理想的结果。
饮用水安全始终是人们关注的重点问题,近年来许多专家学者对于低温低浊水水质处理方式的研究取得了不错的进展。
关键词:低温低浊;水处理1 低温低浊产生的影响1.1 低温对水处理的影响低温条件会降低水体的p H值,影响絮凝剂的最佳使用范围,同时无机盐混凝剂在水解时吸热,低温条件下混凝剂难以水解,水解速度的下降不利于无机混凝剂发挥作用。
水体胶体微粒在黏度大的低温水体中运动速率小,布朗运动的减缓导致微粒间的碰撞次数减少,不利于脱稳沉降。
低温水体黏度增大,增大的水流剪力阻碍絮体间的聚集和成长,絮体在下降过程中极易被破坏。
低温也会使颗粒间的水化作用变强,内部水化膜的黏度和重度增加,黏附强度受到影响,絮凝效果降低。
低温造成的颗粒所带电位的提高,也会降低颗粒间的吸附力,种种因素对絮凝效果造成影响。
1.2 低浊对水处理的影响低浊水中的颗粒物在水体中分散均匀且较为细小,动力学稳定性和聚集稳定性非常强,絮体形成后体积较小不易于絮体的积聚后发生沉淀。
且由于低浊水中的悬浮物浓度较低,颗粒运动速度小,颗粒碰撞几率小,不利于絮体的形成,形成絮体也容易被混凝搅拌所破坏。
2 低温低浊水处理技术2.1 混凝剂、助凝剂的遴选在水处理过程中,使用絮体大、沉降效果好、投加量低并且适应性强的絮凝剂更有利于对原水进行后续处理。
部分水厂在处理低温低浊水时,选择增加混凝剂的投放量和增强搅拌强度的方式,提高成本的情况下还会带来用水安全问题,且可能达不到预期的目标。
因此,选择合理的混凝剂和助凝剂,能有效提高出水水质。
合适的选择有利于增强颗粒间的碰撞,充分发挥混凝剂吸附架桥、中和电性、网捕或卷扫作用。
试析低温低浊水处理工艺的改进与设计摘要:在进行水处理时所利用低温低浊处理工艺一直是研究的重点。
水处理中对水温、浊度的要求很低,应针对有机物的含量增加或减少混凝剂与分子助凝剂,以此来改善混凝效果。
但是利用低温低浊方法净化水质,出水水质无法达到国家引用水标准,应对其进行改进与设计,提升出水水质。
关键词:低温低浊;水处理工艺;改进;设计1低温低浊水处理技术1.1合理选择混凝剂和助凝剂低温低浊水体颗粒相对细小,可以均匀的分散在水中,使水分子的粘度增加布朗运动减弱,颗粒间不容易出现碰撞情况且可以形成较大的絮体,无法脱稳。
因此,应选择有效的、合适的混凝剂与助凝剂,强化颗粒胶体间的碰撞使其脱稳。
混凝剂可以在电性中和的作用下形成吸附架桥,网铺卷扫可以使胶体脱稳聚合。
如果只投入单一药剂,则无法达到较好的混凝效果,在此时可以重复添加混凝剂,使颗粒聚集脱稳。
以某水库为例,向水体中加入三氯化铁与聚合氧化铝,通过试验可以发现当Al/Fe摩尔配比为5/1时,聚合氯化铝的投入浓度为0.006mmol/L时出水浊度可以降到0.4NTU,当多种混凝剂复配使用时可以降低投药量来节约成本。
助凝剂为辅助药剂与混凝剂系统作用下提升混凝效果,可以使杂质絮体更加密实与粗大。
通过试验可知,向浊度为2至4NTU的原水中投入氯化铁混凝剂,当浓度为3.6mg/L时,最小浊度可以降低为0.73NTU,去浊率可以达到75.8%,当投入浓度为0.2mg/L的聚丙烯酰胺助凝剂时,浊度可以降至0.35NTU,去浊度可以达到87.1%。
1.2泥渣回流经过冲洗后的沉淀池泥渣具有吸附能力,可以有效的吸附原水中的杂质颗粒,并产生较大的絮凝体,得到较好的净水效果。
如果选用聚合氯化铝作为混凝剂,活化硅酸可以作为助凝剂与回流渣混合后投入到原水中,可以提升去浊效果,降低原水中细微颗粒的含量。
通过试验可知,在投入相同计量药剂的情况下利用泥渣回流法可以降低出水时的浊度与色度。
利用回用沉淀池排泥水来提升原水中的浊度与混凝效果,去浊度可以达到91%,与常规工艺相比,去浊效果更好。
论机械加速澄清池各时季出水水质差主因及解决措施摘要本文介绍了伊拉克Wassit一期4×330MW电站机械加速搅拌澄清池调试运行中不同时季影响出水水质出现的问题及对应处理方法,经过长期的观察,深入分析了不同时期影响澄清池出水的原因,提出了具体的解决方案,解决了机械加速澄清池出水水质不合格的问题。
关键词机械;出水水质;解决措施ZhangqiangChina Energy Engineering Group North China Electric Power Test and Research Institute Co.,Ltd. Tianjin 300162Abstract This paper introduces the problems of influencing the effluent qualityand the corresponding treatment methods in the commissioning operation of the mechanical accelerator in the Wassit Phase I of Iraqi Wassit Phase I,and analyzesthe causes of the effluent from the clarification pool in different periods afterlong - term observation. Proposed a specific solution to solve the problem of mechanically accelerated clarification tank effluent quality failure.Keywords:mechanical;water quality;treatment measures .机械加速搅拌澄清池是利用机械的搅拌提升作用使活性泥在澄清池内循环与原水混合,是集絮凝和混凝与水分离综合为一体的构筑物。
1低温低浊对水质净化过程的影响
1.1低温对水质净化过程的影响低温对水质净化过程的影响在于水温低时,通常絮凝体形成缓慢,絮凝体颗粒细小、松散。
其原因有:①低温水的牯度大,使水中杂质颗粒布朗运动减弱,碰撞机会减少,不利于胶粒脱稳凝聚。
当水温低于10℃时,由于颗粒碰撞机会少且水的剪切力增大,也使生成的矾花易于破碎,又因水的粘度增大使矾花的沉降速度减慢,颗粒絮凝速度大大降低,减慢、不易沉淀,故混凝效果差。
②无机盐混凝剂水解是吸热反应,低温水絮凝剂水解速度降低,水解产物的形态不佳。
随着水温每降低10℃,水解速度常数减小2-4倍,导致反应速度减慢,OH浓度低,水离子体积小,以致水解进行不完全,药剂利用不充分。
同时,水温低时,聚合反应速度降低,混凝剂的水解产物主要是高电荷、低聚合度的聚合物,不利于在胶体颗粒间进行吸附架桥,从而降低絮凝效果。
③低温时,胶体颗粒水化作用增强.颗粒周围水化作用突出,絮状物粘附力和强度降低,妨碍胶体凝聚,而且水化膜内的水由于粘度增大,影响了颗粒问的结合强度,使絮体松散易破碎,密度小,颗粒强度低。
④水温与pH值有关。
水温低时,水的pH值提高,相应地混凝最佳pH值也随之提高。
1.2低浊对水质净化过程的影响低浊对水质净化过程的影响表现在:①水的浊度低时。
水中杂质主要是以细的胶体分散体系溶于水中,而且胶体颗粒较为均匀,具有很强的动力稳定性和凝聚稳定性,且带负电的胶体颗粒数量少,达到电中和所需的混凝剂也少,形成的絮体细、小、轻,难以沉淀,易穿透滤层。
②由于浊度低,胶体颗粒数目较少,颗粒间相互碰撞而聚集的机会减少,絮凝体难以形成,而要通过增大搅拌强度以提高颗粒碰撞的几率,同时又会产生很高的水流剪切强度,使原先形成的低强度的絮凝体被剪碎。
③低浊度水由于固相浓度很小,分散相的浓度面积较小,易形成易溶解的产物,由于缺乏大量高聚物形成的有效空间网格交联的键.很容易被破坏。