低温低浊水.ppt
- 格式:ppt
- 大小:1.67 MB
- 文档页数:35
2020.03科学技术创新与其最佳使用场所势在必行。
现如今的光催化材料主要有以下两点限制其发展和推广应用:(1)光催化剂的光转化效率较低,并且不能在理想的时间内保持稳定性;(2)光催化材料的成本一直较高,阻碍了其大规模的推广应用;(3)光催化材料在应用时,受外界动态光照环境、应用场所不稳定等多方面影响,从而导致其性能、在应用场所上的贴附度等发生变化,例如,选取适用在玻璃幕墙上的最佳光催化材料,现如今随着时代的不断发展,越来越多的高楼大厦采用玻璃作为幕墙,将建筑美学等因素有机地统一起来,建筑物随阳光、月色、灯光的变化给人以动态的美。
但玻璃幕墙相对其他基材更显脏污,传统水清洗已无法满足其需要。
因此可以将光催化技术应用在玻璃幕墙治理上面,可以为玻璃幕墙污染治理做出贡献。
另外还可以选取适用在公路两侧隔离板上的最佳光催化材料进行研究等。
基于此,作者认为,在光催化技术被广泛应用之前,以下问题需要解决:降低光催化材料的生产成本;提高光催化剂的光转化效率以及稳定性;光催化材料与应用场所的最佳耦合关系的选取。
在此综述中,本人认为将此作为主攻方向,通过相关系统的研究,可以为中国气候条件下控制及回收温室气体,提供坚实的理论支撑体系。
参考文献[1]杨礼荣.我国典型行业非二氧化碳类温室气体减排技术及对策[M].北京:中国环境出版社,2014.[2]王芳.仿生多孔二氧化钛合成及其光催化还原二氧化碳性能研究[D].南京:南京大学,2015.[3]卫静.TiO 2基纳米材料光催化还原CO 2研究[D].天津:天津大学,2011.[4]De Richter R,Ming T,Davies P,et al.Removal of non-CO 2,greenhouse gases by large -scale atmospheric solar photocatalysis [J].Progress in Energy &Combustion Science,2017,60:68-96.[5]Richter A,Burrows J P,N 俟ss H,et al.Increase in tropospheric nitrogen dioxide over China observed from space.[J].Nature,2005,437(7055):129-132.[6]W Schiel,J.Schlaich,et al.The solar chimney:electricity from the sun[J].Edition Axel Menges,1995.[7]佚名.光催化空气净化技术[J].中国建材,2004(9):86.[8]贺晓宇.光催化水泥基复合材料研究进展[J].科技与创新,2017(15):134-136.[9]王欣欣,亓学奎,杨华,等.光催化涂层净化气态有机物能力评价系统[J].表面技术,2017,46(4):58-63.[10]姚仲鹏.空气净化原理、设计与应用[M].北京:中国科学技术出版社,2014.作者简介:黄晨茜(1992-),女,汉,河南省宁陵县,硕士,建筑节能技术。
低温低浊水混凝实验研究_聚合氯化铝论文导读::低温低浊水的处理问题一直是给水行业中备受关注的难题之一。
混凝实验。
混凝剂采用河南巩义某净水材料有限公司的聚合氯化铝(PAC)。
论文关键词:低温低浊水,混凝,聚合氯化铝前言我国新疆地区全年有4、5个月的时间处于寒冷季节,水体被冰层覆盖,水库水下层水温1~4℃。
这个时期原水浊度也很低,水库水也只有5~10NTU。
低温低浊水的处理问题一直是给水行业中备受关注的难题之一,而且至今也没有一个完善的理论能对其进行透彻分析和系统研究,没能找到其特定的规律和成熟的处理方法。
低温低浊水难处理的原因是杂质颗粒主要以微小的胶体分散体系存在于水中,而且胶体颗粒比较均匀,具有很强的动力和凝聚稳定性,并且带负电的交替微粒数量很小。
另外,絮凝剂在低温下水解产物的形态不佳,聚合反应速度降低,水解产物的主要形态偏重于高电荷低聚合度,因此不利于在胶体颗粒间进行吸附架桥作用,这是低温低浊水难以处理的重要原因[1]。
1.水厂概况乌鲁木齐市石墩子山水厂(东区)设计规模为20万m3/d,其处理工艺流程如图1所示。
水厂水源为乌拉泊水库,其水源主要是来源于冰雪融化水聚合氯化铝,其典型的特点是低温低浊,尤其是每年的11月份至第二年的4月份之间,低温(1~4℃)低浊(5~10NTU)的特点更加明显。
图1 石墩子山水厂工艺流程 Fig.1 Flowchart of water treatment process 2.混凝实验 2.1 水源与水质实验用水分为两部分:一部分为乌拉泊水库原水(简称原水);另一部分为乌拉泊水库原水与滤池反冲洗排水在预沉池内的混合水(简称混合水)。
其主要水质指标(2009年平均值)如表1所示。
表1 原水及混合水水质Tab.1 Quality ofraw water and mixed water指标NH3-N(mg/L)PH硬度(mg/L)浊度(NTU)COD(mg/L)温度℃原水0.308.35187.83.9~5.13.64~14混合水0.298.26188.96.2~138.24~14注:硬度以CaCO3 计。
微涡旋混凝低脉动沉淀技术处理低温低浊水我国北方地区全年有3〜5个月的冰冻期,作为主要饮用水水源的地表水在这一时期呈现低温低浊特性:水温0〜5C ;浊度一般10〜30NTU (有时降至10NTU以下);水中胶体颗粒电位升高(约为常温时的2倍),胶体间静电斥力增大,稳定性增强;水的粘滞性增加,颗粒运动的阻力变大,碰撞困难;颗粒的布朗运动减弱,微粒惰性增强,水中胶体颗粒的粒径分布趋于均匀且小于常温时的粒径,造成直接过滤的效果差;水体中无机胶体颗粒含量减少,有机胶体颗粒含量增加,矶花絮体中有机成分较多,密度较平常期小;动力粘滞系数变大,颗粒的极限沉降速度变小,因而浊度去除率降低。
1机理研究混合和初始絮凝是给水处理的重要环节。
混合的本质是混凝剂的水解产物向水体中的扩散过程。
扩散分为宏观扩散和亚微观扩散,从而导致微观微粒的碰撞反应。
宏观扩散取决于浓度梯度和水体湍动强度,一般的混合设备均能完成宏观扩散。
微观微粒的碰撞反应取决于热力学条件和微粒的物理化学特性。
亚微观扩散是扩散阻力最大的一环,它决定了混合的效果。
对扩散系数可描述如下:K=a(£ 0 入)1/3 ?入(入>入0)(1)K=B (入?£ 0/ U)1/2 (2)式中入涡旋尺度入涡旋特征尺度£ 能耗项U 运动粘滞系数a、B 与流态和热力学性质有关的系数由于入W入时的K值比入>入时的K值小几个数量级,因此它的扩散阻力最大。
在实际工程中,通过造成高比例高强度的微涡旋,利用微涡旋的离心惯性效应来实现多相物系中的颗粒迁移,克服亚微观传质阻力,增加亚微观传质速率,促进亚微观传质。
在试验中,利用管式微涡混合器和串联圆管混合器来实现混合工艺•这两种混合器通过控制水流的速度和水流空间的尺度以及速度零区的范围来造成高比例高强度的微涡旋,从而充分利用微小涡旋的离心惯性效应使混凝剂的水解产物瞬间进入水体细部,使胶体颗粒脱稳,避免了局部药剂浪费或局部药剂不足的现象发生。
应用科授采用涡漩混凝低脉动沉淀处理低温低浊水金寿峰-赵金花程自强2(1吉林燃料乙醇有限公司,吉林吉林132000;2冻北炼化吉林设计院,吉林吉林132101)1水质情况水源取至吉林地区松花江水,但受季节的变化,水的流量也经常有变化。
百年一遇的洪峰日寸最高水位标高为184.55m,在枯水期最低水位标高为176,3m,并且水质变化幅度也很大,特别在冬季,水温降到O一3℃,浊度降到10—20N TU。
这种低温低浊水处理很难达到出水水质标准。
因为水温低,凝聚与絮凝非常缓慢,形成的絮凝体体积小、轻松、不易下沉使沉淀效果很差,过滤后出水很难达到要求。
但采用涡漩混别氏J}永动沉淀方法处理后出水水质很好。
2原水水质表序号一项目。
}澍示,序导-项目一指标一1,。
PH值,643r7。
,总碱度,q4.5m g/b2p色度i2,48厦,8。
=总硬度i46.5m g/L,。
3一油庋一39.13N TU。
9一撵发酚,,<O.002m g/L.”4,S g,。
25ra g腿,,l a’水温.-0—22℃。
,弘总铁。
,0.72m gt L.-王1。
-胶傣硅一6.25m g/L、6J耗氧量。
-6。
87m gl L。
13出水水质经涡漩混矧氐脐勘沉淀方法处理后出水主要指标为下表l序号,项目一}嚣标一序导r项目一指标.k PFt值.-65_8。
、5i永温。
,l一22℃。
v2;。
色度一<15度.,&,胶体硅一1.Om g/L“卜漕度,<l N T U,7,耗氧量r4O m g/L,如总铁.:03m g t L+,4净水场工艺流程叩K江水一摩头一职水泵房一输水管线一管道混台器一絮凝池一沉淀池一过滤一清水池一送水泵房一用户.-混合:采用撞击流微涡管式混合器。
反应:采用翼片格板反应器。
沉淀:采用小间距斜板沉淀池。
过滤:采用均质石英砂滤料的V型滤池。
在运行中反应池里形成的矾花颗粒大、数量多,并沉后水浊度达0.8N TU,这于采用先进而相互配套的设备是分不开的。
微涡旋混凝低脉动沉淀技术处理低温低浊水我国北方地区全年有3~5个月的冰冻期,作为主要饮用水水源的地表水在这一时期呈现低温低浊特性:水温0~5℃;浊度一般10~30NTU (有时降至10NTU以下);水中胶体颗粒电位升高(约为常温时的2倍),胶体间静电斥力增大,稳定性增强;水的粘滞性增加,颗粒运动的阻力变大,碰撞困难;颗粒的布朗运动减弱,微粒惰性增强,水中胶体颗粒的粒径分布趋于均匀且小于常温时的粒径,造成直接过滤的效果差;水体中无机胶体颗粒含量减少,有机胶体颗粒含量增加,矾花絮体中有机成分较多,密度较平常期小;动力粘滞系数变大,颗粒的极限沉降速度变小,因而浊度去除率降低。
1 机理研究混合和初始絮凝是给水处理的重要环节。
混合的本质是混凝剂的水解产物向水体中的扩散过程。
扩散分为宏观扩散和亚微观扩散,从而导致微观微粒的碰撞反应。
宏观扩散取决于浓度梯度和水体湍动强度,一般的混合设备均能完成宏观扩散。
微观微粒的碰撞反应取决于热力学条件和微粒的物理化学特性。
亚微观扩散是扩散阻力最大的一环,它决定了混合的效果。
对扩散系数可描述如下:K=α(ε0λ)1/3 •λ(λ>λ0)(1)K=β(λ•ε0/υ)1/2(2)式中λ——涡旋尺度λ——涡旋特征尺度ε——能耗项υ——运动粘滞系数α、β——与流态和热力学性质有关的系数由于λ≤λ时的K值比λ>λ时的K值小几个数量级,因此它的扩散阻力最大。
在实际工程中,通过造成高比例高强度的微涡旋,利用微涡旋的离心惯性效应来实现多相物系中的颗粒迁移,克服亚微观传质阻力,增加亚微观传质速率,促进亚微观传质。
在试验中,利用管式微涡混合器和串联圆管混合器来实现混合工艺.这两种混合器通过控制水流的速度和水流空间的尺度以及速度零区的范围来造成高比例高强度的微涡旋,从而充分利用微小涡旋的离心惯性效应使混凝剂的水解产物瞬间进入水体细部,使胶体颗粒脱稳,避免了局部药剂浪费或局部药剂不足的现象发生。