桥梁壅水分析计算
- 格式:doc
- 大小:31.00 KB
- 文档页数:2
公式(1):能量型公式⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∆+-⎪⎪⎭⎫ ⎝⎛=∆∑2222Z h h b B g V Z ξα 式中:α——动能校正系数,一般取α=1.1;ξ——过水面积收缩系数,取ξ=0.85-0.95,本次取0.85;B ——无桥墩时水面宽;V ——建桥前断面平均流速;h ——建桥前断面平均水深;△Z ——最大壅水高度;∑b ——建桥后过水断面总宽(河宽减去桥墩总宽)。
该公式主要考虑了建桥前后过水断面宽度变化,而未考虑建桥后对天然河道过水断面减小的影响。
公式中水位壅高值采用迭代法计算。
公式(2):铁路工程水文勘测设计规范公式)(202V V Z M -=∆η 式中:Z ∆——桥前最大壅水高度(m );η——阻水系数;M V ——桥下平均流速(m/s ); 0V ——断面平均流速(m/s )。
公式(3):铁科院曹瑞章公式⎪⎭⎫ ⎝⎛-=∆2022.m V m V g K Z 式中:V m ——桥下平均流速,V m =K p Q p /A j ;Q p ——设计流量;A j ——桥下净过水面积;K p ——考虑冲刷引起的流速折减系数;K p =1/[1+A(p-1)]P ——冲刷系数,取P=1.0;A ——河床粒径系数,A=0.5×d 50-0.25;d 50——桥下河床中值粒径,mm ;V 0m ——天然状态下平均流速,V 0m =Q 0m /A 0m ;Q 0m ——天然状态下通过的设计流量;A 0m ——桥下过水面积;K ——壅水系数,K=2/(V m /V 0m -1)0.5;g ——重力加速度。
其它符号同公式(1),该公式考虑建桥后河道过水面积影响,并考虑了建桥后流速增加对河床冲刷的影响。
公式(4):铁科院李付军公式()g V KV R Z OM M 21182.122--=∆式中:V m ——桥下平均流速,V m =Q/A J ;Q ——计算流量;A J ——扣除桥墩和桥台阻水面积后的桥下净过水面积;V 0m ——计算流量时建桥前桥孔部分天然状态下平均流速,V 0m =Q 0m /A 0m ; Q 0m ——计算流量时建桥前从桥孔部分通过的流量;A 0m ——计算流量时建桥前桥孔部分天然过水面积;R ——考虑桥墩和桥台影响的反映桥孔压缩程度的系数,R= V m / V 0m ; K ——考虑冲刷影响的流速(动能)折减系数,取K=0.9。
《河南水利与南水北调》2023年第7期防汛抗旱某高速公路桥梁跨河道壅水及行洪能力计算赵从容(驻马店市河道管理局,河南驻马店463000)摘要:桥梁桥墩位于河槽内,作为阻水建筑物,必然缩小桥位断面处同水位下过水断面面积,在桥址上游形成壅水区。
壅水高度不仅决定桥梁高度,而且可能涉及两岸工程的高度和安全。
因此,需进行建桥后的壅水高度的分析计算。
关键词:桥梁;行洪能力;壅水;分析中图分类号:U442;TV882.3文献标识码:B文章编号:1673-8853(2023)07-0025-02Calculation of Backwater and Flood Discharge Capacity of a Highway Bridge Crossing aRiver ChanelZHAO Congrong(Zhumadian River Administration Bureau,Zhumadian 463000,China )Abstract:The bridge pier is located in the river trough.As a water blocking building,it is necessary to reduce the area of the water section under the bridge section and the water level ,and form a backwater area in the upstream of the bridge site.The height of the backwater not only determines the height of the bridge,but also may involve the height and safety of the cross-strait project.Therefore,it is necessary to conduct an analysis and calculation of the waterlogging height after the bridge construction.Key words:bridge;flood discharge capacity;backwater;analysis作者简介:赵从容(1972—),女,正高级工程师,主要从事水利水电工程管理工作。
桥涵水文分析与计算一、概述桥涵水文分析与计算,包括河流水文资料的调查搜集整理与计算,推求出我们桥涵所需要的设计水位和流量,拟定出桥长孔径、桥高和基础埋设深度。
由于桥位所处的地理位置不同以及其它复杂因素,包括天然的和人为因素如潮汐、泥石流、修水库、开挖渠道等。
我们调查搜集洪水流量的计算方法各有不同。
水文计算从大的方面来分:有水文(雨量)观测资料和无水文观测资料的水文计算。
从各河段特殊情况的不同又可分为,有水库的水文计算,倒灌河流的水文计算,平原或者山丘区的水文计算,还有潮汐河段、岩溶河段、泥石流河段等。
不同情况的河流我们要有针对性的调查,搜集有关资料调查搜集资料很辛苦,跑路多收效有时还很小,但工作必需要做,要有耐心。
需要调查搜集的资料综合起来有:水系图,县志和水利志、地形图、形态断面、水文站(气象站)资料水库资料,倒灌资料、河道演度、河床淤积、雨力资料、洪水调查及比降的测量,原有桥涵的调查等,通过调查为下步洪水设计流量提供有关参数。
另外还要进行地质地貌调查,有些设计流量的计算参数也和土的颗粒组成、土壤的分类、密实度吸水率熔洞泥石流等有关,有的与设计流量无关,但与桥的安全性有关如土体稳定性、山体滑坡、湿陷性黄土软土地基等,一般野外采用看挖钻的方法,下面介绍一下土壤分类的一般常识,分为三类:1.粘性土:塑性指数p I >1 亚砂土或轻亚粘土1<p I ≤7; 亚粘土 7<I ≤17; 粘土 p I ≥17;塑性指数p I =l W (液限)-p W (塑限);而粘性土壤的状态用液性指数(即稠度系数)l I 分为四级,l I =pl p o w w w w --;o W —天然含水量;l I <0为坚硬半坚硬 标贯>3.5; 0≤l I <0.5为硬塑 标贯>-3.5; 0.5≤l I <1为软塑 标贯<-7;l I ≥1 为极软 标贯<2;淤泥是极软状态的粘性土,其含水量接近或大于液限,对于孔隙比大于1的轻亚粘土或亚粘土和孔隙比大于1.5的粘土均称淤泥。
壅水范围计算
好的,我猜你想了解的是桥梁壅水范围计算,下面为你介绍相关计算公式:
- 桥前壅水计算公式为:△ZM=η·(V1-V2),其中,△ZM为桥前最大壅水高度,η为系数,V1为断面平均流速,V2为桥下平均流速。
- 桥下壅水计算公式为:△ZM=0.5·△ZM,其中,△ZM为桥前最大壅水高度。
- 壅水曲线全长计算公式为:L=△ZM·S,其中,L为壅水曲线全长,△ZM为桥前最大壅水高度,S为桥址河段天然水面坡度。
上述公式可用于桥梁壅水范围的计算,但具体计算过程可能较为复杂,建议你参考专业书籍或咨询相关专业人士以获取更准确的结果。
桥梁行洪论证的计算与注意要点摘要:近年来,随着社会经济建设加快发展,涉河工程越来越多,如修建河堤,临河建筑物等,此类项目的行洪论证,只需要分析项目是否满足防洪标准及对上下游的行洪影响,而跨河桥梁的行洪考虑的因素较多,不仅分析项目建成后的行洪影响还要分析桥梁建成后自身是否安全。
本文重点分析桥梁建成后产生的壅水、桥梁冲刷深度、桥面中心最低高程等特性,并分析桥梁行洪论证过程中需要注意的要点。
关键词:桥梁行洪;壅水高度引言桥梁构筑物目前是人类克服自然水体阻隔、扩大人类活动范围的最经济、最有效的方法。
建桥后,桥孔对水流压缩,从桥位上游相当远处水面就开始壅高,在桥前某一断面达到最大壅水高度,壅水河段水位升高,流速降低,河床发生淤积;接近桥孔时,水流急剧收缩而呈“漏斗”状,形成收缩段,收缩段的水流流速变大,对河床产生严重的冲刷;由于水流的分离现象,在桥位上下游两侧又形成回水区,所以建桥后使得桥位河段的水沙运动及河床演变变得非常复杂。
为了建桥后不对两岸河堤、农田、村镇造成威胁,建设大、中型桥梁时,有必要进行拟建对桥梁行洪论证进行分析,以便水利部门采取有效措施对河道堤防保护和管理。
1.壅水计算1.1壅水计算方法涉河桥梁修建后,断面形状、糙率系数及河道底坡沿程都有变化,其水力因素十分复杂。
壅水计算思路为先通过水文分析计算出桥梁下游控制断面的各频率设计洪水位,再以该断面为起算位置,分别推算项目建设前后评价河段各断面的水面线,从而求得该工程建设后对各断面行洪影响的壅水高度。
水面线计算采用天然河道水位沿程变化的伯努利能量方程式:式中:等式左边两项为上断面的势能和动能;z1、z2分别代表下、上断面水位;a为流速分布系数;g 为重力加速度;hf沿程水头损失;hj局部水头损失;v断面平均流速;对于沿程损失项,目前一般采用下述公式求解:式中: R上上断面水力半径,R下下断面水力半径,A上上断面面积,A下下断面面积,Q河道流量,L上下断面间距,n上下断面间河道平均糙率,为局部水头损失系数。
壅水高度计算范文一、基本原理:1.质量守恒定律:在壅水过程中,水库的总入流量等于总出流量,即:壅水前水库体积+入流量=壅水后水库体积+出流量2.能量守恒定律:在壅水过程中,水库的总入流水能等于总出流水能加水库蓄能,即:壅水前总入流水能=壅水后总出流水能+壅水蓄能结合质量守恒定律和能量守恒定律,可以推导出壅水高度计算的基本公式。
二、计算公式和方法:根据基本原理,可以推导出不同水库形状和土石坝类型的壅水高度计算公式。
下面以常见的矩形水库和土石坝为例进行说明。
1.矩形水库:矩形水库是指底部平面为矩形形状的水库。
假设水库的宽度为W,长度为L,壅水前的水位为H1,壅水后的水位为H2,已知L、W、H1、H2和入流量Q,可以计算出水库的壅水高度DH和壅水前后的水库体积变化。
矩形水库的壅水高度计算公式为:DH=H2-H1矩形水库的壅水过程中的水库体积变化计算公式为:壅水体积ΔV=(L-DH)*(W-DH)*DH2.土石坝:土石坝是指由土石材料构筑而成的坝体。
假设土石坝的高度为Hd,壅水前的水位为H1,壅水后的水位为H2,已知Hd、H1、H2和入流量Q,可以计算出土石坝的壅水高度DH和壅水前后的水库体积变化。
土石坝的壅水高度计算公式为:DH=H2-H1土石坝的壅水过程中的水库体积变化计算公式为:壅水体积ΔV=(2*Hd+DH)*(Hd+DH)*DH根据以上公式,可以通过输入已知参数,使用计算软件或编写计算程序进行壅水高度的计算。
三、实际应用:在实际应用中,需要准确测量水库的形状和壅水前后的水位,并合理选择计算公式和方法。
同时,还需要考虑水库的渗漏损失和淤积情况等因素,以提高壅水高度计算的准确性和可靠性。
总之,壅水高度计算是水库工程设计和管理中的重要问题,它通过使用质量守恒定律和能量守恒定律,结合水库的形状和水位变化等参数,计算出水库的壅水高度和水淹高度。
这对于保障水库安全运行和防洪工作具有重要的意义。
桥梁壅水计算我多次参加桥梁防洪评价评审工作,对桥梁壅水计算使用的经验公式多种多样,究竟哪个合适,评审无所是从。
水利部发布的《洪水影响评价报告编制导则》LS520-2014附录A给出了答案,A.2.2.3 “桥梁等阻水建筑物壅水高度及壅水曲线长度的计算,应参照TB10017和JTG C30进行。
”其中TB10017即《铁路工程水文勘测设计规范》TB10017-99,现将规范的计算公式介绍如下:3.5.1桥前壅水可按下式计算:△ZM =η(22vv M )(3.5.1)式中:△ZM—桥前最大壅水高度(m);η—系数,应按表3.5.1的规定取值;v—断面平均流速,为设计流量被全河过水断面(包括边滩和河滩)除得之商(m/s);Mv—桥下平均流速,应按表3.5.1-2规定计算求得(m/s)。
3.5.2桥下壅水高度可采用桥前最大壅水高度的一半。
对于山区和山前河流,洪水涨落急骤,历时短促,且河床质坚实不易冲刷时,桥下壅水高度可采用桥前最大壅水值。
对于平原洪水涨落很缓慢的河流,且河床质松软,易于造成冲刷时,桥下壅水可不计。
(见下页)表3.5.1-2 桥下平均流速表3.5.1-2中: P —冲刷系数; gxP ωω=g ω—桥下供给过水断面积(m 2),当桥址上、下游有阻水山包或其他挡水建筑物时,桥下供给过水断面积应扣除其影响部分;x ω—桥下需要过水断面积(m 2); x ω=αcos p Pv Qp v —设计流速(m/s ),对河滩较小、压缩不多的河段,可采用通过设计流量时河槽(包括边滩)的天然平均流速;当河滩很大时,可按经验确定;渠道或运河上的桥,可采用设计渠道或运河的设计流速;p Q —设计流量(m 3/s );α—水流方向与桥梁轴线之法线间的夹角(º)。
3.5.3 壅水曲线全长可按下列公式估算: 02I Z L My ∆= 式中: y L —壅水曲线全长(m );I—桥址河段天然水面坡度。
桥梁壅水的数值算法探讨【摘要】:主要论述了跨河桥梁压缩后对壅水的数值计算方法,通过实际例子分析了数值计算方法的精度,认为数值计算在解决工程水力学问题中具有很大的发展潜力。
【关键词】:壅水河道压缩数值计算一、桥梁壅水研究的背景桥梁压缩河道后,桥址上游水流变缓,水流动能转换为势能,客观表现为水流的壅高,河道压缩前后同一位置水位差称为这一位置的壅水高度。
影响桥梁壅水的因素有很多,如河道压缩程度,河床底坡,桥址断面形状等等。
在平原宽浅河流上建桥,从水流通过能力和工程造价两方面考虑,一般不可能在全部泛滥宽度(包括不经常浸水的河滩)都布设桥孔,穿过河滩的路堤往往压缩较多的汛期过流断面,致使大桥上游产生壅水。
从18世纪后期就开始有学者从事壅水研究工作[1]。
二、研究方法(一)对三维N-S方程中的水力要素沿水深平均,各水力要素应用雷诺假设,即各水力要素可以表示为时均值和脉动值两部分,且各水力要素用上述表示后依然适用原方程,并假定沿水深方向的动水压强分布符合静水压强分布,使模型简化为平面二维水流数学模型,模型按定床模型计算;(二)模型在简化过程中,雷诺应力的化简采用布辛涅斯克的假设;(三)控制方程的离散用有限体积法;(四)进行网格划分,处理边界条件;(五)用FLUENT软件对平面二维水流模型进行求解;(六)通过实验数据,对模型及程序进行验证。
三、FLUENT计算模型验证(一)实桥模型概述验证资料取自文献[2],实际桥址横断面如图1所示,桥梁从59.7m处开始,到913m处结束,全长853.3m。
(二)实桥模型简化由于河滩部分的流速较小,对于壅水的贡献较小,所以只考虑河槽部分断面,河滩部分流量作为压缩流量简化[3]。
由于河滩路堤阻挡的流量为河流断面总流量51.6%,且桥梁长度为853.3m,所以简化为平面二维模型后,河宽为1763m,河流上游平均流速为1.34m/s。
由于流量Q=21300m3/s,可以计算出河流平均水深为8.98m。
公式(1):能量型公式
⎥⎥⎦⎤
⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∆+-⎪⎪⎭⎫ ⎝⎛=∆∑222
2Z h h b B g V Z ξα 式中:
α——动能校正系数,一般取α=1.1;
ξ——过水面积收缩系数,取ξ=0.85-0.95,本次取0.85;
B——无桥墩时水面宽;
V ——建桥前断面平均流速;
h ——建桥前断面平均水深;
△Z ——最大壅水高度;
∑b ——建桥后过水断面总宽(河宽减去桥墩总宽)。
该公式主要考虑了建桥前后过水断面宽度变化,而未考虑建桥后对天然河道过水断面减小的影响。
公式中水位壅高值采用迭代法计算。
公式(2):铁路工程水文勘测设计规范公式
)(2
02V V Z M -=∆η
式中: Z ∆——桥前最大壅水高度(m);
η——阻水系数;
M V ——桥下平均流速(m /s );
0V ——断面平均流速(m/s )。
公式(3):铁科院曹瑞章公式
⎪⎭⎫ ⎝
⎛-=∆2022.m V m V g K Z 式中:
V m ——桥下平均流速,Vm =K p Q p /A j ;
Q p——设计流量;
Aj ——桥下净过水面积;
K p ——考虑冲刷引起的流速折减系数;
K p =1/[1+A(p-1)]
P ——冲刷系数,取P=1.0;
A ——河床粒径系数,A=0.5×d 50-0.25;
d50——桥下河床中值粒径,mm ;
V 0m ——天然状态下平均流速,V 0m =Q0m /A 0m ;
Q 0m ——天然状态下通过的设计流量;
A 0m——桥下过水面积;
K ——壅水系数,K =2/(Vm /V 0m -1)0.5;
g ——重力加速度。
其它符号同公式(1),该公式考虑建桥后河道过水面积影响,并考虑了建桥后流速增加对河床冲刷的影响。
公式(4):铁科院李付军公式
()g V KV R Z OM M 21182
.122
--=∆
式中:
V m——桥下平均流速,V m =Q/A J ;
Q ——计算流量;
A J ——扣除桥墩和桥台阻水面积后的桥下净过水面积;
V0m——计算流量时建桥前桥孔部分天然状态下平均流速,V 0m =Q 0m/A 0m; Q 0m ——计算流量时建桥前从桥孔部分通过的流量;
A 0m ——计算流量时建桥前桥孔部分天然过水面积;
R ——考虑桥墩和桥台影响的反映桥孔压缩程度的系数,R= Vm / V 0m; K ——考虑冲刷影响的流速(动能)折减系数,取K=0.9。