当前位置:文档之家› 功率集成电路技术进展总结

功率集成电路技术进展总结

功率集成电路技术进展总结
功率集成电路技术进展总结

功率集成电路技术进展

摘要:本文介绍了功率集成电路的发展历程、研究现状和未来发展趋势。

关键字:功率集成、智能功率集成电路、高压功率集成电路、智能功率模块、集成功率技术、集成功

率应用

1 引言

功率电子系统通常包含三个组成部分:第一部分是信号的采集、输入与放大电路;第二

部分是信号处理电路,用来产生功率开关电路的控制信号;第三部分是功率开关电路,用

来控制负载工作。将一个完整功率电子系统电路的一部分制造在一个半导体芯片上就形成

了功率集成电路(Power IC, PIC)[1]。

PIC是电力电子器件技术与微电子技术相结合的产物,是机电一体化的关键接口元件,也是SoC的核心技术之一。功率集成电路是指将高压功率器件及其驱动电路、保护电路、

接口电路等外围电路集成在同一个芯片上的集成电路,是系统信号处理部分和执行部分的

桥梁。具体来说就是,采用一定的工艺,把一个功率电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然

后封装在一个管壳内,成为具有所需电路功能的微型结构。广义而言,PIC是控制电路与

功率负载之间的接口电路,其最简单的电路包括电平转移和驱动电路,它的作用是将微处

理器输出的逻辑信号电平转换成足以驱动负载的驱动信号电平。由于PIC与分立器件构成

的功率电路相比具有成本低、可靠性高、体积小、低电磁干扰等一系列优越性,近些年来

获得了突飞猛进的发展。

2 功率集成电路发展历程

电力电子技术包括功率半导体器件与IC技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。由于

普通晶闸管不能自关断,属于半控型器件,因而被称作第一代电力电子器件。在实际需要

的推动下,随着理论研究和工艺水平的不断提高,电力电子器件在容量和类型等方面得到

了很大发展,先后出现了GTR,GTO、功率MOSFET等自关断、全控型器件,被称为第二

代电力电子器件。近年来,随着社会的不断发展,人们的需要不断上升,电力电子器件的

复合化、模块化及功率集成成为一种需要。

上世纪七十年代功率集成电路出现[2],单芯片集成的PIC减少了系统的元件数、互连

数和焊点数,不仅提高了系统的可靠性、稳定性,而且减小了系统的功耗、体积、重量和

成本,这使得PIC马上受到大家广泛关注,随后的几十年中都一直是功率电子学界的研究

热点。但由于当时的功率器件主要为双极型晶体管、GTO等,功率器件所需的驱动电流大,

驱动和保护电路复杂,在七十年代PIC的研究并未取得实质性进展。上世纪八十年代,功

率MOSFET, IGBT等具有MOS栅控制、高输入阻抗、低驱动功耗、容易保护等特点的新

型MOS类功率器件出现,这使得驱动电路大为简化,迅速带动了PIC的发展,但复杂的

系统设计和昂贵的工艺成本仍旧限制了PIC的应用。进入九十年代后,PIC的设计与工艺

水平不断提高,性能价格比也随之上升,PIC逐步进入了实用阶段[3]。我国是全球最大的消费类电子商品市场和生产基地,随着功率集成电路的发展,功率集成电路已被广泛应用于

开关电源、电机驱动、工业控制、汽车电子、日常照明和家用电器等方面。自1981年美国试制出第一个PIC以来,PIC技术获得了快速发展。今后,PIC必将朝着高压化、智能化的方向更快发展并进入普遍实用阶段。

3 功率集成电路分类

习惯上将功率集成电路分为高压功率集成电路(HVIC),智能功率集成电路(SPIC)和智能

功率模块(IPM)。HVIC是多个高压器件与低压模拟器件或逻辑电路在单片上的集成,由于

它的功率器件是横向的、电流容量较小,而控制电路的电流密度较大,故常用于小型电机

驱动、平板显示驱动及长途电话通信电路等高电压、小电流场合。SPIC是由一个或几个纵

型结构的功率器件与控制和保护电路集成而成,电流容量大而耐压能力差,适合作为电机

驱动、汽车功率开关及调压器等。近年来随着PIC的不断发展,智能功率集成电路(SPIC)和高压集成电路(HVIC)在工作电压和器件结构上(纵向或横向)都很难区分,因此习惯于把它们统称为功率集成电路。IPM除了集成功率器件和驱动电路以外,还集成了过压、过流、过热等故障监测电路,并可将监测信号传送至CPU,以保证IPM自身在任何情况下不受损坏。当前,IPM中的功率器件一般由IGBT充电。由于IPM体积小、可靠性高、使用方便,故深受用户喜爱。IPM主要用于交流电机控制、家用电器等。[4]

功率集成电路从工艺结构上来分,可以分为半导体单片集成和混合集成两大类。单片

半导体集成电路是把所有的元器件都制作在同一块半导体芯片上。混合集成电路则是厚膜、薄膜和半导体集成工艺的联合制品。早期由于混合集成的灵活性较大,因而混合功率集成

电路占主导地位。70年代以后,单片半导体集成日臻完善,中低功率集成电路都采用单片

集成,有些大功率的集成电路仍然采用混合集成电路。功率集成放大器是功率集成电路中

的主流产品,它是信号处理与功率驱动电路的集成,目前国内功率集成运放主要以混合集

成工艺为主,单片功率集成运放设计这一领域,产品技术复杂,可靠性要求高、价格昂贵。

按照应用的电压和电流的不同,功率集成电路可以作如图1所示的分类。

图1功率集成电路的应用

4 功率集成电路中的主要问题

集成功率电路领域主要研究的问题包括集成功率应用、集成功率技术和集成功率器件[5]三个方面。集成功率应用是指在特定的背景或应用环境下对功率集成电路的一些改进。功

率集成电路的应用中包括电路结构细化,改进工艺或优化器件性能,以及采用新技术开发

新器件、新结构等[6];功率集成技术是指用于制备功率集成电路的制造技术。功率集成技

术要实现高压器件和低压器件的工艺兼容,尤其要选择合适的隔离技术,为控制制造成本,还必须考虑工艺层次的复用性。随着电子系统应用需求的发展,要求集成更多的低压逻辑

电路和存储模块,实现复杂的智能控制;作为强弱电桥梁的功率集成电路还必须实现低功

耗和高效率;恶劣的应用环境要求其具有良好的性能和可靠性。因此,功率集成技术需要在

有限的芯片面积上实现高低压兼容、高性能、高效率与高可靠性[7];集成功率器件是指用

于高压IC或者智能功率IC中的高压LDMOS,它是各种LED驱动器、开关调节器、电池IC、音频放大器、电机驱动器、各种显示驱动器中重要的开关器件,高压集成研究重点在

于保证工艺与低压集成电路兼容的同时,优化、提高高压器件性能[8]。

电子行业的飞速进步对功率电子学中的功率集成提出了越来越高的要求,图2概括了

功率集成电路领域需要考虑的主要问题,包括电路类型、器件类型、隔离技术和兼容技术。近些年学术界和产业界的功率集成领域的研究主要包括新型单片集成电路拓扑或技术方案

的提出、集成功率器件优化或集成工艺技术平台改进等方面内容[9]。

图2 功率集成电路中的主要技术

5功率集成电路发展现状

国际功率半导体器件与功率集成电路会议(ISPSD:International Symposium on Power Semiconductor Devices and ICs)是美国电气与电子工程师协会主办的不带地区色彩的国际性学术会议。会议自1988年举行第一届起至今已经举办了28届。ISPSD会议是国际上功率半导体器件与功率集成电路专业领域最权威、最大型的国际会议。ISPSD会议论文代表了国际上专业领域最顶尖水平。下文参考2015年ISPSD会议论文介绍功率集成电路的发展现状。

5.1新型单片集成电路拓扑或技术方案

HVIC(High voltage half-bridge gate driver integrated circuits)高电压的半桥门级驱动集成电路,由于具有高可靠性、面积小、高效率广泛应用于电机驱动领域,但由于HVIC的寄生效应及应用环境的影响,需要具有高噪声容限的门驱动电路。负的Vs 和dVS/dt噪声是HVIC电路中的两个重要因素。很多解决方案中消除了dVS/dt噪声,但同时也削弱了负Vs噪声容限。论文10提出一种用于HVIC的电容负载电平移位电路(CLLS),该电路具有以下特性:一、dVS/dt噪声容限提高到85V/ns;二、可容忍的最大负Vs达到-12V;三、电路可采用0.5微米的600V BCD工艺制造,未增加电路复杂度和芯片尺寸。

HVIC因具有开关速度快、面积小、低功耗等特性而被广泛应用于IGBT的门极驱动,如马达驱动器、LED照明等均采用了HVIC电路作为驱动。传统的HVIC电路基于PN结

隔离(JI:junction isolation)和自隔离工艺(SI:self-isolation)制作,会产生负浪涌电流,这种浪涌电流会对门驱动电路造成破坏或故障。论文11提出了一种抗高负浪涌的高压集成

电路方案。该电路仍基于PN结隔离和自隔离工艺,具有很好的抗负浪涌能力。该技术的

基本思想是通过一个与地隔离的衬底来阻塞浪涌电流。基于这种思想,制造出了1200V的HVIC电路。这种新结构的HVIC电路的抗负浪涌能力较传统电路提高了十倍。

5.2集成工艺技术平台改进

在20世纪80年代中期以前,功率集成电路是由双极工艺制造而成,主要应用领域是音

频放大和电机控制,但随着对逻辑控制部分功能要求的不断提高,功耗和面积越来越大。

对双极工艺来说,工艺线宽减小所带来的芯片面积的缩小非常有限。而CMOS器件具有非

常低的功耗,并且随着工艺线宽的减小,芯片面积可以按比例减小,因此逻辑部分用CMOS电路来替代双极型电路成为必然,另外DMOS功率器件可以提供大功率且不需要直

流驱动,在高速开关应用中具有优势。因此,BCD(bipolar-CMOS-DMOS)集成技术也就应

运而生,顾名思义,BCD集成工艺就是将双极晶体管,低压CMOS器件,高压DMOS器

件及电阻、电容等无源器件在同一工艺平台上集成的技术。BCD工艺可以充分利用集成的

三种有源器件的优点:双极器件的低噪声、高精度和大电流密度等;CMOS器件的高集成度、方便的逻辑控制和低功耗等;DMOS器件的快开关速度、高输入阻抗和良好的热稳定

性等。这些优点使BCD工艺具有非常广泛的应用,如DC-DC转换等电源管理LCD驱动,LED驱动,PDP显示驱动及全/半桥驱动等。

根据系统应用电压的不同,可以将基于BCD工艺的功率集成电路分为三类:100V以下,100-300V及300V以上。如图1所示,100V以下的产品种类最多,应用最广泛,包括DC-DC转换,LCD显示驱动,背光LED显示驱动等;100-300V的产品主要是100-200V

的PDP显示驱动及200V电机驱动等;300V以上的产品主要是半桥/全桥驱动、AC-DC电

源转换、高压照明LED驱动等。

基于BCD工艺的功率集成电路经历了几代的发展,以100V电压以下BCD功率集成

技术为例,从上世纪八十年代开始至今共经历了六代的发展。第一代BCD 集成技术基于Bipolar 工艺,线宽4μm;第二代BCD集成技术集成了EPROM/EEPROM,线宽1.2μm;第五代BCD集成技术线宽0.18μm,开始进入深亚微米极大提高集成度;第六代BCD 集

成技术线宽0.13μm,当前最先进的BCD工艺。图3所示的是全球各大Fab关于BCD工

艺的发展趋势图,从图中看出,100V以下的BCD工艺应用领域最为广泛,因此也是各大Fab的发展重点,朝着更小线宽、更低功耗、更智能化的趋势发展,100V以上的BCD工

艺则根据不同应用领域的需求,不断优化发展,低损耗和高可靠是其追求的目标。

图3 BCD功率集成技术的发展路线图

2014年的ISPSD会议中,论文12在0.18微米节点,采用一种新的SOI BCD技术,基于1.8V和5.0V的CMOS核,实现了40V/60V的N/Pch MOS,40VNMOS达到了25m Ω·mm2 RonA/57V BVdss,且工艺稳定。还实现了耗尽型NMOS、低压高压二极管,5v 稳压管,高增益BJT,高匹配电阻电容以及顶层厚铜金属化互连,嵌入式存储器的集成。论文工作在X-FAB XT018工艺线上完成,为与现有的汽车电子应用兼容,采用相同的材料和深槽氧化隔离技术。为与原来的工艺隔离开,额外加一层掩膜进行离子注入,采用模块化的工艺过程。

横向高压器件如LDMOSFET、LIGBT由于其与CMOS工艺兼容、接地衬底、体积小而广泛用于LED照明、手机充电器等低功耗的应用中。HV器件的量产需要控制工艺具有良好的均一性,研究表明除了基本的注入剂量、能量等制造工艺的典型参数外,接触孔的设计对LIGBT器件性能有较大影响。2014年ISPSD论文13深入研究了HV LIGBT中与接触刻蚀深度有关的物理现象,提出了一种可以用于LIGBT量产的技术。首次证明了金属接触的几何形状和位置对LIGBT集电结的注入效率有较大影响。通过优化接触孔实现了800V LIGBT的改进设计,这种结构增加了15%的产量。

5.3集成功率器件优化

高压功率MOSFET都存在低比导通电阻和高击穿电压的平衡问题,与厚SOI技术相比,采用VLD(variable lateral doping)技术的薄SOI LDMOS能显著提高BV,但VLD会出现

热点(hot-spot:温度分布不均匀的点)。论文14基于VLD技术,采用积累态外延门级(AEG:accumulation-mode extended gate)表面结构,实现了一种高击穿电压、超低比导通电阻的薄SOI LDMOS。论文提出的新型的AEG-VLD SOI LDMOS 相比传统VLD SOI LDMOS比导通电阻减小了70%,器件温度分布更加均匀。该器件结构与单、双、三RESURF器件相比,能够更好的平衡击穿电压和比导通电阻,性能指标更为优异。

LIGBT常用于三相单片逆变集成电路中,为了降低逆变电路的成本,LIGBT需具有大

电流特性。多沟道多发射极结构(multi-channel 、multi-emitter)是提高电流的一种解决方案,但会减小击穿电压。论文15基于厚膜SOI技术提出了一种具有高电流密度和高抗闩锁

效应的新型HV LIGBT。器件结构采用U型沟道,集电极电流密度达到了240A/cm2,且在

电压VCE为500V时也没有出现闩锁效应。该结构与传统的LIGBT具有相同击穿电压,集电极电流提高了118%,且实现了击穿电压在500V-700V范围内比导通电阻和击穿电压有

之间的trade-off。

6 功率集成电路未来发展趋势

PIC总的技术发展趋势是工作频率更高、功率更大、功耗更低和功能更全。目前PIC

的主要研究内容为:开发高成品率、低成本的工艺和兼容十CMO S的研究,针对包括多个

大功率器件的单片PIC的研究,能在高温下工作并具有较好稳定性的PIC的研究,大电流

高速MO S控制并有自保护功能的横向功率器件的研究。将多个高压大电流功率器件与低

压电路集成在同一芯片上,使之具备系统功能,进而实现单片式功率系统的集成是PIC努

力的目标。

从功率半导体器件及集成技术的发展趋势看,更高能效、更高工作频率和更高器件耐

压的功率半导体器件和更加集成化、更加智能化、更加可靠的功率集成技术的研究是目前

功率半导体技术所面临的主要技术难题和研究热点。

参考文献

[1]功率集成电路技术的进展

[2]1971国外功率集成电路概况

[3]2007年硕士论文功率集成电路的研究与设计

[4]2004年广西大学—电力电子器件发展概况及应用现状

[5]2010年IEEE功率半导体器件及集成电路国际会议综述_胡冬青

[6]2009年IEEE功率半导体器件及功率集成电路国际会议述评_下_

[7]功率半导体器件与功率集成技术的发展现状及展望孙伟锋

? , 张波-, 肖胜安?, 苏巍ˉ, 成建兵°

[8]2010年IEEE功率半导体器件及集成电路国际会议综述_胡冬青

[9]2011年IEEE国际电力电子器件及功率集成电路会议综述

10 A Capacitive-Loaded Level Shift Circuit for Improving the Noise Immunity of High Voltage Gate Drive IC

11A Breakthrough Concept of HVICs for High Negative Surge Immunity

12A 0.18μm SOI BCD Technology for Automotive Application

13 The Effect of the Collector Contact Design on the Performance and Yield of 800V Lateral IGBTs for Power Ics

14Accumulation-Mode High Voltage SOI LDMOS with Ultralow Specific On-Resistance

15 High Voltage Thick SOI-LIGBT with High Current Density and Latch-Up Immunity

集成电路的现状与发展趋势

集成电路的现状与发展趋势 1、国内外技术现状及发展趋势 目前,以集成电路为核心的电子信息产业超过了以汽车、石油、钢铁为代表的传统工业成为第一大产业,成为改造和拉动传统产业迈向数字时代的强大引擎和雄厚基石。1999年全球集成电路的销售额为1250亿美元,而以集成电路为核心的电子信息产业的世界贸易总额约占世界GNP的3%,现代经济发展的数据表明,每l~2元的集成电路产值,带动了10元左右电子工业产值的形成,进而带动了100元GDP的增长。目前,发达国家国民经济总产值增长部分的65%与集成电路相关;美国国防预算中的电子含量已占据了半壁江山(2001年为43.6%)。预计未来10年内,世界集成电路销售额将以年平均15%的速度增长,2010年将达到6000~8000亿美元。作为当今世界经济竞争的焦点,拥有自主版权的集成电路已曰益成为经济发展的命脉、社会进步的基础、国际竞争的筹码和国家安全的保障。 集成电路的集成度和产品性能每18个月增加一倍。据专家预测,今后20年左右,集成电路技术及其产品仍将遵循这一规律发展。集成电路最重要的生产过程包括:开发EDA(电子设计自动化)工具,利用EDA进行集成电路设计,根据设计结果在硅圆片上加工芯片(主要流程为薄膜制造、曝光和刻蚀),对加工完毕的芯片进行测试,为芯片进行封装,最后经应用开发将其装备到整机系统上与最终消费者见面。 20世纪80年代中期我国集成电路的加工水平为5微米,其后,经历了3、1、0.8、0.5、0.35微米的发展,目前达到了0.18 微米的水平,而当前国际水平为0.09微米(90纳米),我国与之相差约为2-3代。 (1)设计工具与设计方法。随着集成电路复杂程度的不断提高,单个芯片容纳器件的数量急剧增加,其设计工具也由最初的手工绘制转为计算机辅助设计(CAD),相应的设计工具根据市场需求迅速发展,出现了专门的EDA工具供应商。目前,EDA主要市场份额为美国的Cadence、Synopsys和Mentor等少数企业所垄断。中国华大集成电路设计中心是国内唯一一家EDA开发和产品供应商。 由于整机系统不断向轻、薄、小的方向发展,集成电路结构也由简单功能转向具备更多和更为复杂的功能,如彩电由5片机到3片机直到现在的单片机,手机用集成电路也经历了由多片到单片的变化。目前,SoC作为系统级集成电路,能在单一硅芯片上实现信号采集、转换、存储、处理和I/O等功能,将数字电路、存储器、MPU、MCU、DSP等集成在一块芯片上实现一个完整系统的功能。它的制造主要涉及深亚微米技术,特殊电路的工艺兼容技术,设计方法的研究,嵌入式IP核设计技术,测试策略和可测性技术,软硬件协同设计技术和安全保密技术。SoC以IP复用为基础,把已有优化的子系统甚至系统级模块纳入到新的系统设计之中,实现了集成电路设计能力的第4次飞跃。

集成电路使用常识

集成电路使用常识 费仲兴编译 前言 在多年的半导体器件的推广应用中了解到,很多整机厂的技术人员并不太了解集成电路使用的必要常识,即使是对于我公司的技术人员来说,关于这方面知识的掌握也不够全面,因此有必要把有关这方面的材料编译出来,供大家参考。 本材料主要根据日本东芝公司、三洋公司双极集成电路手册中的有关内容编译而成,有些地方加进了一些个人的理解。一共包含了以下三个方面的内容,一是有关集成电路最大额定值的物理意义以及和产品性能的关系;二是整机设计中功率集成电路的热设计方法;三是集成电路使用中的注意事项。其中最大额定值中的各种使用条件和环境温度的相互关系、关系集成电路功耗等的考虑方法还是值得参考的。 一、最大额定值 1、最大额定值的必要性和意义 根据半导体物理理论,半导体器件中载流子密度和温度成指数关系,因此温度对集成电路性能影响很大。 如果在集成电路内部器件的PN结上施加上足够的电压,载流子就会得到附加的能量,引起雪崩倍增,反向电流迅速增大,这时往往会发生击穿现象。 电流所引起的变化不像电压所引起的变化那样剧烈,但它会使半导体元件的性能缓慢地劣化,逐步地失去功能。此外,流过PN结的电流和施加电压的乘积变为功耗,引起温升,如果温度过高,也会引起热破坏。因此,温度、电压、电流和功耗就成为限制集成电路工作的四大因素。 据于上述理由,集成电路制造厂家往往对施加在集成电路上的电压、电流、功耗和温度规定最大容许值,要求用户遵照执行,这就是通常所说的最大额定值。 究竟什么是最大额定值,日本JIS7030(日本工业标准晶体管试验方法)中是这样定义的: 关于集成电路的最大额定值,JIS中没有明确定义过,但只要把上述定义中的晶体管换成集成电路的话,就成为集成电路最大额定值的定义。 集成电路最大额定值,就是为了保证集成电路的寿命和可靠性不可超越的额定值。这些额定值受结构材料、设计和生产条件等限制,因集成电路的种类不同其数值也不同。如果采用绝对最大额定值的概念,可以作如下表述。 所谓绝对最大额定值,就是在工作中即使瞬间也不能超过的值,如果定有两个以上项目的最大额定值时,其中的任何一个项目也不容许超过。 此外,最大额定值的大小不仅决定于半导体芯片内部的特征,同时还要考虑芯片以外的结构材料,如封装树指、芯片焊料等材料的特征。 超过最大额定值使用时,有时会不回复其特性。此外,应在设计时考虑电压的变化、零件特性的元件误差、环境温度的变化及输入信号的变化等,避免超过最大额定值中的任何一项。 2、电压的最大额定值 集成电路内部有许多PN结,当PN结上施加的电压一高,PN结空间电荷区内形成高电场强度,由于载流子的倍增作用,会引起电子雪崩,如果没有足够大的限流电阻,就会引起PN结的损坏。

集成电路版图复习课答案总结

1、描述集成电路工艺技术水平的五个技术指标及其物理含义 ⑴集成度(Integration Level):以一个IC芯片所包含的元件(晶体管或门/数)来衡量,(包括有源和无源元件)。 ⑵特征尺寸 (Feature Size) /(Critical Dimension):特征尺寸定义为器件中最小线条宽度(对MOS器件而言,通常指器件栅电极所决定的沟道几何长度),也可定义为最小线条宽度与线条间距之和的一半。 ⑶晶片直径(Wafer Diameter):当前的主流晶圆的尺寸为12寸(300mm),正在向18寸(450mm)晶圆迈进。 ⑷芯片面积(Chip Area):随着集成度的提高,每芯片所包含的晶体管数不断增多,平均芯片面积也随之增大。 ⑸封装(Package):指把硅片上的电路管脚,用导线接引到外部接头处,以便于其它器件连接。封装形式是指安装半导体集成电路芯片用的外壳。 2、简述集成电路发展的摩尔定律。 集成电路芯片的集成度每三年提高4倍,而加工特征尺寸缩小倍,这就是摩尔定律。当价格不变时,集成电路上可容纳的晶体管数目,约每隔18个月便会增加一倍,性能也将提升一倍 3、集成电路常用的材料有哪些? 集成电路中常用的材料有三类:半导体材料,如Si、Ge、GaAs?以及InP?等;绝缘体材料,如SiO2、SiON?和Si3N4?等;金属材料,如铝、金、钨以及铜等。

4、集成电路按工艺器件类型和结构形式分为哪几类,各有什么特点。 双极集成电路:主要由双极晶体管构成(NPN型双极集成电路、PNP型双极集成电路)。优点是速度高、驱动能力强,缺点是功耗较大、集成度较低。 CMOS集成电路:主要由NMOS、PMOS构成CMOS电路,功耗低、集成度高,随着特征尺寸的缩小,速度也可以很高。 BiCMOS集成电路:同时包括双极和CMOS晶体管的集成电路为BiCMOS集成电路,综合了双极和CMOS器件两者的优点,但制作工艺复杂。 5、解释基本概念: 微电子、集成电路、集成度、场区、有源区、阱、外延 微电子:微电子技术是随着集成电路,尤其是超大型规模集成电路而发展起来的一门新的技术。微电子技术包括系统电路设计、器件物理、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术,微电子技术是微电子学中的各项工艺技术的总和。微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、电路及微电子系统的电子学分支。 集成电路:通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路互连,“集成”在一块半导体单晶片(如硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能。 集成度:集成电路的集成度是指单块芯片上所容纳的元件数目。

智能功率集成电路发展概述

微电子技术学科前沿(三) ——智能功率集成电路发展技术前沿调研 指导老师:罗萍 学生:叶庆国 学号:2011032030018 SPIC:智能功率集成电路。随着微电子技术和功率MOS器件的发展,目前又新兴出一个领域:SPIC,Smart Power IC 。将输出功率集成器件与低压控制的信号处理以及传感、保护、检测、诊断等功能电路集成到同一芯片,是微电子技术和电力电子技术、控制技术、检测技术相结合的产物。SPIC自问世以来已经有了巨大的进步,汽车电子、平板显示、开关电源,电机驱动,工业控制,电源管理各方面应用广泛。 现就从SPIC(智能功率集成电路)的电路层面的技术实现,新型功率器件,封装技术,应用领域等多方面调研来了解智能集成电路的前沿动态。 1、Spic电路 SPIC 将所有的高压器件与低压电路集成在同一芯片上,消除了原来电力电子装置中各模块之间多余的连接[6]。这样既提高了电路的稳定性,也可以明显降低原来在高频工作时各模块之间引线对电路造成的破坏性影响,甚至可将过温、过流、过压和欠压等保护电路都集成进芯片去增强对功率器件的保护。因此,不仅显著地提高集成度、降低成本,更可令芯片整体的可靠性获得提升。 SPIC 共分为三个功能模块,分别是功率控制、传感保护和智能接口,如图1-3所示。其中,功率控制主要包括用作开关的各种功率半导体器件以及它们的驱动电路,在常见的率器件图腾柱式应用中,由于高侧器件的驱动电路与低侧器件的驱动电路分别参考不同的基准电位,驱动电路部分通常还要包含一个高压电平位移电路用以顺利从低侧向高侧传递控制信号。传感保护模块通过模拟电路采集芯片内各种电压、电流、温度信息并反馈给保护电路,在适当之时对芯片进行有效防护。另外,电力电子装置除了要与源和负载对接之外,还常常要与外部的计算机对接以实现编码控制。因此智能接口模块也非常重要,它使得SPIC 外界信息沟通及各种高级指令得以实现。 单片式 单片式智能功率集成电路具有成本低、体积小、工作稳定等诸多优点,自20世纪90 年代中期问世以来已得到广泛应用。功率半导体器件是单片式智能功率集成电路发展的关键所在,如何提高功率半导体器件的耐压、降低其导通电阻以及解决其工艺兼容性直接关系着单片式智能功率集成电路的发展。RESURF(REduced SURface Field)技术是设计横向功率半导体器件的关键技术之一,它能够在保证横向功率半导体器件击穿电压不变的同时,降低横向功率半导体器件的导通电阻。 开关电源,即是电路中的功率器件通过开关两种状态切换来控制电源向负载 输出稳定功率的一种电力电子装置。传统的开关电源,由于生产工艺技术水平不 足的原因,除其功率管和控制电路之外,还另有若干个分立器件,使得开关电源 在成本、体积以及可靠性等方面都受到不小的限制。因此,开关电源一直沿着以 下两个方向不断发展。 第一个方向是对开关电源的核心单元——控制电路实现集成化[27],1977 年国外率先推出PWM(Pulse Width Modulation,脉冲宽度调制)控制器集成电路,如美国SiliconGeneral 公司的SG3524、美国Uuitrode 公司(已被美国Texas Instruments公司收购)的UC3842。

数字集成电路设计_笔记归纳..

第三章、器件 一、超深亚微米工艺条件下MOS 管主要二阶效应: 1、速度饱和效应:主要出现在短沟道NMOS 管,PMOS 速度饱和效应不显著。主要原因是 TH G S V V -太大。在沟道电场强度不高时载流子速度正比于电场强度(μξν=) ,即载流子迁移率是常数。但在电场强度很高时载流子的速度将由于散射效应而趋于饱和,不再随电场 强度的增加而线性增加。此时近似表达式为:μξυ=(c ξξ<),c s a t μξυυ==(c ξξ≥) ,出现饱和速度时的漏源电压D SAT V 是一个常数。线性区的电流公式不变,但一旦达到DSAT V ,电流即可饱和,此时DS I 与GS V 成线性关系(不再是低压时的平方关系)。 2、Latch-up 效应:由于单阱工艺的NPNP 结构,可能会出现VDD 到VSS 的短路大电流。 正反馈机制:PNP 微正向导通,射集电流反馈入NPN 的基极,电流放大后又反馈到PNP 的基极,再次放大加剧导通。 克服的方法:1、减少阱/衬底的寄生电阻,从而减少馈入基极的电流,于是削弱了正反馈。 2、保护环。 3、短沟道效应:在沟道较长时,沟道耗尽区主要来自MOS 场效应,而当沟道较短时,漏衬结(反偏)、源衬结的耗尽区将不可忽略,即栅下的一部分区域已被耗尽,只需要一个较小的阈值电压就足以引起强反型。所以短沟时VT 随L 的减小而减小。 此外,提高漏源电压可以得到类似的效应,短沟时VT 随VDS 增加而减小,因为这增加了反偏漏衬结耗尽区的宽度。这一效应被称为漏端感应源端势垒降低。

4、漏端感应源端势垒降低(DIBL): VDS增加会使源端势垒下降,沟道长度缩短会使源端势垒下降。VDS很大时反偏漏衬结击穿,漏源穿通,将不受栅压控制。 5、亚阈值效应(弱反型导通):当电压低于阈值电压时MOS管已部分导通。不存在导电沟道时源(n+)体(p)漏(n+)三端实际上形成了一个寄生的双极性晶体管。一般希望该效应越小越好,尤其在依靠电荷在电容上存储的动态电路,因为其工作会受亚阈值漏电的严重影响。 绝缘体上硅(SOI) 6、沟长调制:长沟器件:沟道夹断饱和;短沟器件:载流子速度饱和。 7、热载流子效应:由于器件发展过程中,电压降低的幅度不及器件尺寸,导致电场强度提高,使得电子速度增加。漏端强电场一方面引起高能热电子与晶格碰撞产生电子空穴对,从而形成衬底电流,另一方面使电子隧穿到栅氧中,形成栅电流并改变阈值电压。 影响:1、使器件参数变差,引起长期的可靠性问题,可能导致器件失效。2、衬底电流会引入噪声、Latch-up、和动态节点漏电。 解决:LDD(轻掺杂漏):在漏源区和沟道间加一段电阻率较高的轻掺杂n-区。缺点是使器件跨导和IDS减小。 8、体效应:衬底偏置体效应、衬底电流感应体效应(衬底电流在衬底电阻上的压降造成衬偏电压)。 二、MOSFET器件模型 1、目的、意义:减少设计时间和制造成本。 2、要求:精确;有物理基础;可扩展性,能预测不同尺寸器件性能;高效率性,减少迭代次数和模拟时间 3、结构电阻:沟道等效电阻、寄生电阻 4、结构电容: 三、特征尺寸缩小 目的:1、尺寸更小;2、速度更快;3、功耗更低;4、成本更低、 方式: 1、恒场律(全比例缩小),理想模型,尺寸和电压按统一比例缩小。 优点:提高了集成密度 未改善:功率密度。 问题:1、电流密度增加;2、VTH小使得抗干扰能力差;3、电源电压标准改变带来不便;4、漏源耗尽层宽度不按比例缩小。 2、恒压律,目前最普遍,仅尺寸缩小,电压保持不变。 优点:1、电源电压不变;2、提高了集成密度 问题:1、电流密度、功率密度极大增加;2、功耗增加;3、沟道电场增加,将产生热载流子效应、速度饱和效应等负面效应;4、衬底浓度的增加使PN结寄生电容增加,速度下降。 3、一般化缩小,对今天最实用,尺寸和电压按不同比例缩小。 限制因素:长期使用的可靠性、载流子的极限速度、功耗。

功率半导体应用提速 电源管理芯片一马当先

科学技术的飞速发展,使半导体技术形成两大分支:一个是以大规模集成电路为核心的微电子技术,实现对信息的处理、存储与转换;另一个则是以功率半导体器件为主,实现对电能的处理与变换。功率半导体器件与大规模集成电路一样具有重要价值,在国民经济和社会生活中具有不可替代的关键作用。 电力、电子两大领域并行发展 功率半导体器件在其发展的初期(上世纪60年代-80年代)主要应用于工业和电力系统,近二十年来,随着4C产业(通信、计算机、消费电子、汽车)的蓬勃发展,功率半导体器件的应用范围有了大幅度的扩展,已渗透到国民经济与国防建设的各个领域,其技术已成为航空、航天、火车、汽车、通讯、计算机、消费类电子、工业自动化和其他科学与工业部门的至关重要的基础。 过去,通常把大规模集成电路和功率半导体器件的关系比喻为大脑和四肢,因为大规模集成电路的作用是接受和处理信息,而功率器件则根据这些信息指令产生控制功率,去驱动相关电机进行所需的工作。上世纪80年代以后,随着新型功率半导体器件如VDMOS、IGBT及功率集成电路的兴起,功率半导体器件步入一个新的领域,除了驱动电机之外,其为信息系统提供电源|稳压器的功能也越来越引人注目。因此,功率半导体器件在系统中的地位已不仅限于“四肢”,而是为整个系统“供血”的“心脏”。 概括而言,功率半导体器件的技术领域主要分为两大门类,即以发电、变电、输电为代表的电力领域和以电源管理应用为代表的电子领域。随着技术的进步,这两大领域的功率半导体器件正沿着不同的路径发展。在电力领域,功率半导体器件以超大功率晶闸管、IG CT技术为代表,继续向高电压、大电流的方向发展;而在电子领域,电源管理器件则倾向于集成化、智能化以及更高的频率和精度。北京工业大学电子信息与控制工程学院亢宝位教授在接受记者采访时表示:“功率半导体器件的这两大技术领域由于用途各异,不存在谁替代谁的问题,两个领域的技术发展是并行不悖的。”不过,亢宝位同时也指出,由于历史的原因,按照很早以前的管理体制,电力领域归原机械部系统管理,而电子领域归原电子工业部门管理,原有挂靠在两个管理系统的企业、学会、协会等社会网络需要加强合作、加速融合,以促进我国的功率半导体产业快速发展。 促进节能及产业升级 使用功率半导体器件的最根本的目的,一是为了将电压、电流、频率转换到负载所需要的数值,二是为了更有效地利用电能。 功率半导体器件的广泛应用可以实现对电能的传输转换及最佳控制,大幅度提高工业生产效率、产品质量和产品性能,大幅度节约电能、降低原材料消耗,因此,它已经愈加明显地成为加速实现我国能源、通信、交通等量大面广基础产业的技术改造和技术进步的支柱。例如在绿色照明工程中,在节能灯中使用VDMOS产品将提高节能灯的性能及寿命,彻底纠正节能灯在人们头脑中留下的寿命短、节电不省钱的印象,使节能灯应用到千家万户。I GBT的出现及在空调、UPS电源等中的广泛应用,使效率得到大幅提高,同时体积也大幅缩小。如逆变焊机原来要两个人才能拿动,采用了IGBT器件之后,体积只有书包大小,重量仅为几公斤,同时其性能、效率及可靠性等也得到质的改进。 功率半导体器件的应用对于节约能源具有深远影响。在人类所消耗的电能中有75%需经功率半导体器件转换成一定的形式后才可供最终设备使用。新型功率半导体器件能较大

集成电路技术及其发展趋势

集成电路技术及其发展趋势 摘要目前,以集成电路为核心的电子产业已超过以汽车、石油、钢铁为代表的传统工业成为第一大产业,成为改造和拉动传统产业迈向数字时代的强大引擎和雄厚基石。作为当今世界竞争的焦点,拥有自主知识产权的集成电路已日益成为经济发展的命脉、社会进步的基础、国际竞争的筹码和国家安全的保障。 关键词集成电路系统集成晶体管数字技术

第一章绪论 1947年12月16日,基于John Bardeen提出的表面态理论、Willianm Shockley给出的放大器基本设想以及Walter Brattain设计的实验,美国贝尔实验室第一次观测到具有放大作用的晶体管。1958年12月12日,美国德州仪器公司的Jack 发明了全世界第一片集成电路。这两项发明为微电子技术奠定了重要的里程碑,使人类社会进入到一个以微电子技术为基础、以集成电路为根本的信息时代。50多年来,集成电路已经广泛地应用于军事、民用各行各业、各个领域的各种电子设备中,如计算机、手机、DVD、电视、汽车、医疗设备、办公电器、太空飞船、武器装备等。集成电路的发展水平已经成为衡量一个国家现代化水平和综合实力的重要标志[1]。 现代社会是高度电子化的社会。在日常生活中,小到电视机、计算机、手机等电子产品,大到航空航天、星际飞行、医疗卫生、交通运输等行业的大型设备,几乎都离不开电路系统的应用。构成电路系统的基本元素为电阻、电容、晶体管等元器件。早期的电路系统是将分立的元器件按照电路要求,在印刷电路板上通过导线连接实现的。由于分立元件的尺寸限制,在一块印刷电路板上可容纳的元器件数量有限。因此,由分立元器件在印刷电路板上构成的电路系统的规模受到限制。同时,这种电路还存在体积大、可靠性低及功耗高等问题。 半导体集成电路是通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路规则,互连“集成”在一块半导体单晶片上。封装在一个外壳内,执行特定的电路或系统功能。与印刷电路板上电路系统的集成不同,在半导体集成电路中,构成电路系统的所有元器件及其连线是制作在同一块半导体材料上的,材料、工艺、器件、电路、系统、算法等知识的有机“集成”,使得电路系统在规模、速度、可靠性和功耗等性能上具有不可比拟的优点,已经广泛的应用于日常生活中。半导体集成电路技术推动了电子产品的小型化、信息化和智能化进程。它彻底改变了人类的生活方式,成为支撑现代化发展的基石[2]。 1959年,英特尔(Intel)的始创人,Jean Hoerni 和Robert Noyce,在Fairchild Semiconductor开发出一种崭新的平面科技,令人们能在硅威化表面铺上不同的物料来制作晶体管,以及在连接处铺上一层氧化物作保护。这项技术上的突破取代了以往的人手焊接。而以硅取代锗使集成电路的成本大为下降,令

集成电路的发展与应用

粉体(1)班学号:1003011020 集成电路技术的发展与应用 摘要: 集成电路(Integrated Circuit,简称IC)是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,这样,整个电路的体积大大缩小,且引出线和焊接点的数目也大为减少,从而使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。它在电路中用字母“IC”(也有用文字符号“N”等)表示。 关键词:集成电路模拟集成电路电子元件晶体管发展应用集成电路对一般人来说也许会有陌生感,但其实我们和它打交道的机会很多。计算机、电视机、手机、网站、取款机等等,数不胜数。除此之外在航空航天、星际飞行、医疗卫生、交通运输、武器装备等许多领域,几乎都离不开集成电路的应用,当今世界,说它无孔不入并不过分。 在当今这信息化的社会中,集成电路已成为各行各业实现信息化、智能化的基础。无论是在军事还是民用上,它已起着不可替代的作用。 一、集成电路的定义、特点及分类介绍 1、什么是集成电路:所谓集成电路(IC),就是在一块极小的硅单晶片上,利用半导体 工艺制作上许多晶体二极管、三极管及电阻、电容等元件,并连接成完成特定电子技术功能的电子电路。从外观上看,它已成为一个不可分割的完整器件,集成电路在体积、重量、耗电、寿命、可靠性及电性能方面远远优于晶体管元件组成的电路,目前为止已广泛应用于电子设备、仪器仪表及电视机、录像机等电子设备中。[1] 2、集成电路的特点:集成电路或称微电路(microcircuit)、微芯片(microchip)、 芯片(chip)在电子学中是一种把电路(主要包括半导体装置,也包括被动元件等)小型化的方式,并通常制造在半导体晶圆表面上。前述将电路制造在半导体芯片表面上的集成电路又称薄膜(thin-film)集成电路。另有一种厚膜(thick-film)混成集成电路(hybrid integrated circuit)是由独立半导体设备和被动元件,集成到衬底或线路板所构成的小型化电路。集成电路具有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。它不仅在工、民用电子设备如收录机、电视机、计算机等方面得到广泛的应用,同时在军事、通讯、遥控等方面也得到广泛的应用。用集成电路来装配电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。 3、集成电路的分类: (1)按功能结构分类:集成电路,又称为IC,按其功能、结构的不同,可以分为模拟集成电路、数字集成电路和数/模混合集成电路三大系。

集成电路分析期末复习总结要点

集成电路分析 集成工业的前后道技术:半导体(wafer)制造企业里面,前道主要是把mos管,三极管作到硅片上,后道主要是做金属互联。 集成电路发展:按规模划分,集成电路的发展已经历了哪几代? 参考答案: 按规模,集成电路的发展已经经历了:SSI、MSI、LSI、VLSI、ULSI及GSI。它的发展遵循摩尔定律 解释欧姆型接触和肖特基型接触。 参考答案: 半导体表面制作了金属层后,根据金属的种类及半导体掺杂浓度的不同,可形成欧姆型接触或肖特基型接触。 如果掺杂浓度比较低,金属和半导体结合面形成肖特基型接触。 如果掺杂浓度足够高,金属和半导体结合面形成欧姆型接触。 、集成电路主要有哪些基本制造工艺。 参考答案: 集成电路基本制造工艺包括:外延生长,掩模制造,光刻,刻蚀,掺杂,绝缘层形成,金属层形成等。 光刻工艺: 光刻的作用是什么?列举两种常用曝光方式。 参考答案: 光刻是集成电路加工过程中的重要工序,作用是把掩模版上的图形转换成晶圆上的器件结构。 曝光方式:接触式和非接触式 25、简述光刻工艺步骤。 参考答案: 涂光刻胶,曝光,显影,腐蚀,去光刻胶。 26、光刻胶正胶和负胶的区别是什么? 参考答案: 正性光刻胶受光或紫外线照射后感光的部分发生光分解反应,可溶于显影液,未感光的部分显影后仍然留在晶圆的表面,它一般适合做长条形状;负性光刻胶的未感光部分溶于显影液

中,而感光部分显影后仍然留在基片表面,它一般适合做窗口结构,如接触孔、焊盘等。常规双极型工艺需要几次光刻?每次光刻分别有什么作用? 参考答案: 需要六次光刻。第一次光刻--N+隐埋层扩散孔光刻;第二次光刻--P+隔离扩散孔光刻 第三次光刻--P型基区扩散孔光刻;第四次光刻--N+发射区扩散孔光刻;第五次光刻--引线接触孔光刻;第六次光刻--金属化内连线光刻 掺杂工艺: 掺杂的目的是什么?举出两种掺杂方法并比较其优缺点。 参考答案: 掺杂的目的是形成特定导电能力的材料区域,包括N型或P型半导体区域和绝缘层,以构成各种器件结构。 掺杂的方法有:热扩散法掺杂和离子注入法掺杂。与热扩散法相比,离子注入法掺杂的优点是:可精确控制杂质分布,掺杂纯度高、均匀性好,容易实现化合物半导体的掺杂等;缺点是:杂质离子对半导体晶格有损伤,这些损伤在某些场合完全消除是无法实现的;很浅的和很深的注入分布都难以得到;对高剂量的注入,离子注入的产率要受到限制;一般离子注入的设备相当昂贵, 试述PN结的空间电荷区是如何形成的。 参考答案: 在PN结中,由于N区中有大量的自由电子,由P区扩散到N区的空穴将逐渐与N区的自由电子复合。同样,由N区扩散到P区的自由电子也将逐渐与P区内的空穴复合。于是在紧靠接触面两边形成了数值相等、符号相反的一层很薄的空间电荷区,称为耗尽层。简述CMOS工艺的基本工艺流程(以1×poly,2×metal N阱为例)。 参考答案: 形成N阱区,确定nMOS和pMOS有源区,场和栅氧化,形成多晶硅并刻蚀成图案,P+扩散,N+扩散,刻蚀接触孔,沉淀第一金属层并刻蚀成图案,沉淀第二金属层并刻蚀成图案,形成钝化玻璃并刻蚀焊盘。 表面贴装技术:电子电路表面组装技术(Surface Mount Technology,SMT), 称为表面贴装或表面安装技术。它是一种将无引脚或短引线表面组装元器件(简称SMC/SMD,中文称片状元器件)安装在印制电路板(Printed Circuit Board,PCB)的表面或其它基板的表面上,通过再流焊或浸焊等方法加以焊接组装的电路装连技术。[1]工艺流程简化为:印刷-------贴片-------焊接-------检修 有源区和场区:有源区:硅片上做有源器件的区域。(就是有些阱区。或者说是采用STI等隔离技术,隔离开的区域)。有源区主要针对MOS而言,不同掺杂可形成n或p型有源区。有源区分为源区和漏区(掺杂类型相同)在进行互联

集成电路制造工艺流程之详细解答

集成电路制造工艺流程之详细解答 1.晶圆制造( 晶体生长-切片-边缘研磨-抛光-包裹-运输 ) 晶体生长(Crystal Growth) 晶体生长需要高精度的自动化拉晶系统。 将石英矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.99999999999。 采用精炼石英矿而获得的多晶硅,加入少量的电活性“掺杂剂”,如砷、硼、磷或锑,一同放入位于高温炉中融解。 多晶硅块及掺杂剂融化以后,用一根长晶线缆作为籽晶,插入到融化的多晶硅中直至底部。然后,旋转线缆并慢慢拉出,最后,再将其冷却结晶,就形成圆柱状的单晶硅晶棒,即硅棒。 此过程称为“长晶”。 硅棒一般长3英尺,直径有6英寸、8英寸、12英寸等不同尺寸。 硅晶棒再经过研磨、抛光和切片后,即成为制造集成电路的基本原料——晶圆。 切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) 切片是利用特殊的内圆刀片,将硅棒切成具有精确几何尺寸的薄晶圆。 然后,对晶圆表面和边缘进行抛光、研磨并清洗,将刚切割的晶圆的锐利边缘整成圆弧形,去除粗糙的划痕和杂质,就获得近乎完美的硅晶圆。 包裹(Wrapping)/运输(Shipping) 晶圆制造完成以后,还需要专业的设备对这些近乎完美的硅晶圆进行包裹和运输。 晶圆输送载体可为半导体制造商提供快速一致和可靠的晶圆取放,并提高生产力。 2.沉积 外延沉积 Epitaxial Deposition 在晶圆使用过程中,外延层是在半导体晶圆上沉积的第一层。 现代大多数外延生长沉积是在硅底层上利用低压化学气相沉积(LPCVD)方法生长硅薄膜。外延层由超纯硅形成,是作为缓冲层阻止有害杂质进入硅衬底的。 过去一般是双极工艺需要使用外延层,CMOS技术不使用。 由于外延层可能会使有少量缺陷的晶圆能够被使用,所以今后可能会在300mm晶圆上更多

集成电路技术十年发展报告【精编版】

集成电路技术十年发展报告【精编版】

集成电路技术十年发展2012-11-27 17:06:17

清华大学教授、微电子学研究所所长魏少军 一、总体情况 集成电路产业是关系国民经济和社会发展全局的基础性、先导性和战略性产业,是电子信息产业的核心,是关系到国家经济社会安全、国防建设极其重要的基础产业。集成电路产业的竞争力已经成为衡量国家间经济和信息产业可持续发展水平的重要标志,是世界各先进技术国抢占经济科技制高点、提升综合国力的重要领域。 新世纪以来,我国的集成电路科技与产业在国务院国发2000(18号)文件和各级地方政府的持续支持下,获得了长足进步,取得了一系列重要成果: (一)集成电路产业链格局日渐完善 中国集成电路产业结构逐步由小而全的综合制造模式逐步走向设计、制造、封装测试三业并举,各自相对独立发展的格局。目前,中国集成电路产业已经形成了集成电路设计、芯片制造、封装测试及支撑配套业共同发展的较为完善的产业链格局。 (二)集成电路设计产业群聚效应日益凸现 以上海为中心的长江三角洲地区、以北京为中心的环渤海地区以及以深圳为中心的珠江三角洲地区已经成为国内集成电路产业集中分布的区域。全国集成电路设计、制造和封装产业90%以上的销售收入集中于以上三个地区。其中,包括上海、江苏和浙江的长江三角洲地区是国内最主要的集成电路制造基地,在国内集成电路产业中占有重要地位 (三)集成电路设计技术水平显著提高

国内集成电路设计企业的技术开发实力也有显著的提高,已经取得多项掌握核心技术的研发成果。2000年以来,“申威”高性能CPU、“龙芯”和“众志”桌面计算机用CPU、苏州国芯C*Core和杭州中天CK-Core嵌入式CPUIP核、智能卡集成电路芯片、第二代居民身份证专用芯片、自主高清电视(HDTV)标准和自主音视频标准AVS芯片、华为网络通讯交换装备核心系统芯片、大唐电信COMIPTM和展讯移动通信终端SoC、超大规模集成电路制造工艺、智能卡芯片专用工艺及高压特色工艺等技术和产品都取得了重要成果,大部分成果取得了产品化和产业化的重大进展,并获得国家科技进步奖励。 (四)人才培养和引进开始显现成果 集成电路是知识密集型的高技术产业,其持续、快速、健康的发展需要大量高水平的人才。但是,人才匮乏,人员流失严重却一直是困扰我国集成电路科技和产业发展的主要问题之一。为扭转这一局面,加大集成电路专业人才的培养力度,2003年国务院科教领导小组批准实施国家科技重大专项——集成电路与软件重大专项,并实施了“国家集成电路人才培养基地”计划。随后教育部、科技部批准建设国家集成电路人才培养基地。 二、集成电路设计 集成电路设计业是包括中国在内的全球整个集成电路产业中最为活跃的部分。集成电路设计企业在新兴产品的开发上扮演着关键作用。在中央处理器(CPU)、数字信号处理器(DSP)、半导体存储器、可编程逻辑阵列(FPGA)、专用集成电路(ASIC)和系统芯片(SoC)等主流产品领域,都可以发现集成电路设计企业的身影。在过去的十年间,我国集成电路设计业在

Layout(集成电路版图)注意事项及技巧总结

Layout主要工作注意事项 ●画之前的准备工作 ●与电路设计者的沟通 ●Layout 的金属线尤其是电源线、地线 ●保护环 ●衬底噪声 ●管子的匹配精度 一、l ayout 之前的准备工作 1、先估算芯片面积 先分别计算各个电路模块的面积,然后再加上模块之间走线以及端口引出等的面积,即得到芯片总的面积。 2、Top-Down 设计流程 先根据电路规模对版图进行整体布局,整体布局包括:主要单元的大小形状以及位置安排;电源和地线的布局;输入输出引脚的放置等;统计整个芯片的引脚个数,包括测试点也要确定好,严格确定每个模块的引脚属性,位置。 3、模块的方向应该与信号的流向一致 每个模块一定按照确定好的引脚位置引出之间的连线 4、保证主信号通道简单流畅,连线尽量短,少拐弯等。 5、不同模块的电源,地线分开,以防干扰,电源线的寄生电阻尽可能较小,避免各模块的 电源电压不一致。 6、尽可能把电容电阻和大管子放在侧旁,利于提高电路的抗干扰能力。 二、与电路设计者的沟通

搞清楚电路的结构和工作原理明确电路设计中对版图有特殊要求的地方 包含内容:(1)确保金属线的宽度和引线孔的数目能够满足要求(各通路在典型情况和最坏情况的大小)尤其是电源线盒地线。 (2)差分对管,有源负载,电流镜,电容阵列等要求匹配良好的子模块。 (3)电路中MOS管,电阻电容对精度的要求。 (4)易受干扰的电压传输线,高频信号传输线。 三、layout 的金属线尤其是电源线,地线 1、根据电路在最坏情况下的电流值来确定金属线的宽度以及接触孔的排列方式和数目,以避免电迁移。 电迁移效应:是指当传输电流过大时,电子碰撞金属原子,导致原子移位而使金属断线。在接触孔周围,电流比较集中,电迁移更容易产生。 2、避免天线效应 长金属(面积较大的金属)在刻蚀的时候,会吸引大量的电荷,这时如果该金属与管子栅相连,可能会在栅极形成高压,影响栅养化层质量,降低电路的可靠性和寿命。 解决方案:(1)插一个金属跳线来消除(在低层金属上的天线效应可以通过在顶层金属层插入短的跳线来消除)。 (2)把低层金属导线连接到扩散区来避免损害。 3、芯片金属线存在寄生电阻和寄生电容效应 寄生电阻会使电压产生漂移,导致额外的噪声的产生 寄生电容耦合会使信号之间互相干扰 关于寄生电阻: (1)镜像电流镜内部的晶体管在版图上放在一起,然后通过连线引到各个需要供电的版图。

功率放大集成电路原理及应用解读

家电检修技术<资料版>2007第7期总页(?? 初 学者天地 压从0V 逐渐升高,刚开始可看到两个万用表的数 值都上升,当电压增高到某一值时,可以看到表1的电压值在增大,而表2的电流值却在减小,当电压继续增大到另一个值时,这时又可以看到两个表的电压、电流值都开始增大。如果测试过程与上述的一样,说明该管是好的。如果不一样或变化很不明显,表明该管是坏的。 (完 TD 表1 5V 表2 10mA 20k 图11(b 判断隧道二极管测试电路 功率放大集成电路原理及应用 !丁朋 要点提示: ▲功率放大集成电路的功能是对音频信号进行功率放大,其最大特点是具有较大的输出功率,能够推动扬声器等负载。

▲功率放大集成电路的主要参数有:电源电压、静态电流、输出功率、电压增益、频响范围和谐波失真等。▲O TL 电路的优点是可以使用单电源,缺点是由于输出电容的存在,低频响应较差。 一、功能与参数 1.功能与特点 功率放大集成电路的功能是对音频信号进行功率放大。其最大特点是:具有较大的输出功率,能够推动扬声器等负载。 功率放大集成电路品种规格众多。按声道数可分为单声道音频功放和双声道音频功放;按电路形式可分为O TL 功率放大器、O CL 功率放大器和BTL 功率放大器等。其输出功率从数十毫瓦到数百瓦,具有很多规格,并具有多种封装形式。许多功率放大集成电路自带散热板,但由于自带的散热板一般较小,因此功率较大的功率放大集成电路在应用时仍应按要求安装散热器。功率放大集成电路自带的散热板有的与内部电路绝缘,有的与内部电路的接地点连通,有的与内部输出功放管集电极连通,安装散热器时应区别对待。对于自带散热板与内部电路不绝缘的功率放大集成电路,应在集成电路与散热器之间放置耐热绝缘垫片,如图1所示。 2.参数 功率放大集成电路的主要参数有:电源电压V CC 、静态电流I O 、输出功率P O 、电压增益、频响范围和谐波失真THD 等。 (1电源电压V CC ,包括最高电源电压和额定电源 电压,对于O TL 功率放大器一般为单电源(+V CC ,对于 O CL 功率放大器一般为双电源(±V CC 。最高电源电压是极限参数,使用中不得超过,推荐使用额定电源电压。

(工艺技术)集成电路的基本制造工艺

第1章 集成电路的基本制造工艺 1.6 一般TTL 集成电路与集成运算放大器电路在选择外延层电阻率上有何区别?为什么? 答:集成运算放大器电路的外延层电阻率比一般TTL 集成电路的外延层电阻率高。 第2章 集成电路中的晶体管及其寄生效应 复 习 思 考 题 2.2 利用截锥体电阻公式,计算TTL “与非”门输出管的CS r ,其图形如图题2.2 所示。 提示:先求截锥体的高度 up BL epi mc jc epi T x x T T -----= 然后利用公式: b a a b WL T r c -? = /ln 1ρ , 2 1 2?? =--BL C E BL S C W L R r b a a b WL T r c -? = /ln 3ρ 321C C C CS r r r r ++= 注意:在计算W 、L 时, 应考虑横向扩散。 2.3 伴随一个横向PNP 器件产生两个寄生的PNP 晶体管,试问当横向PNP 器件在4种可能的偏置情况下,哪一种偏置会使得寄生晶体管的影响最大? 答:当横向PNP 管处于饱和状态时,会使得寄生晶体管的影响最大。 2.8 试设计一个单基极、单发射极和单集电极的输出晶体管,要求其在20mA 的电流负载下 ,OL V ≤0.4V ,请在坐标纸上放大500倍画出其版图。给出设计条件如下: 答: 解题思路 ⑴由0I 、α求有效发射区周长Eeff L ; ⑵由设计条件画图 ①先画发射区引线孔; ②由孔四边各距A D 画出发射区扩散孔; ③由A D 先画出基区扩散孔的三边; ④由B E D -画出基区引线孔; ⑤由A D 画出基区扩散孔的另一边;

郑州大学半导体集成电路复习总结

1.基本概念: 集成电路:是经过氧化、光刻、扩散、外延、蒸铝等半导体制造工艺,把构成具有一定功能的电路所需的半导体有源器件、电阻、电容等元件及它们之间的连接导线全部“集成”在一块半导体单晶片上,封装在一个外壳内,执行特定电路或系统功能的电路。集成度:每块集成电路芯片中包含的元器件数目。 多项目晶圆技术:多项目晶圆就是将多个使用相同工艺的集成电路设计放在同一晶圆片上流片,制造完成后,每个设计可以得到数十片芯片样品,这一数量对于原型设计阶段的实验、测试已经足够。而该次制造费用就由所有参加MPW的项目按照芯片面积分摊,成本仅为单独进行原型制造成本的5%-10%,极大地降低了产品开发风险、培养集成电路设计人才的门槛和中小集成电路设计企业在起步时的门槛。 无生产线集成电路设计: 代工厂:加工厂的铸造车间,无自己产品。优良的加工技术(包括设计和制造)及优质的服务为客户提供加工服务。 2.微电子的战略地位:对人类社会的巨大作用 3.集成电路分类: 按器件结构类型分类:①双极集成电路②金属-氧化物-半导体(MOS)集成电路 ③双极-MOS(BiMOS)集成电路 按集成度分类:①小规模集成电路②中规模集成电路③大规模集成电路 ④超大规模集成电路⑤特大规模集成电路⑥巨大规模集成电路按使用的基片材料分类:①单片集成电路②混合集成电路 按电路的功能结构分类:①数字集成电路②模拟集成电路③数模混合集成电路按应用领域分类:①标准通用集成电路②专用集成电路 4.集成电路按规模划分经历了哪几代?遵循什么定律? 小规模集成(SSI)→中规模集成(MSI)→大规模集成(LSI)→超大规模集成电路(VLSI) →特大规模集成电路(ULSI) → GSI(巨大规模集成) →SoC(系统芯片)。 摩尔定律:集成电路芯片的集成度每三年提高4倍,而加工特征尺寸缩小根号2倍。 5.IC(集成电路)、VLSI(超大规模集成电路)、ULSI(特大规模集成电路) 6.高K介质: 问题:90 nm工艺之前,晶体管之间的电流泄露问题并不是很严重,因为晶体管之间有较长的间距。但随着特征尺寸减小,不同晶体管间距变得很短,电流泄露现象变得异常严重,为了抵消泄露电流,芯片不得不要求更大的供电量,造成的直接后果就是芯片功耗增加。无论英特尔还是AMD(超微半导体),90纳米工艺制造的产品都没有在功耗方面表现出应有的优势,而按照惯例,每次新工艺都会让同型芯片的功耗降低30%左右。 解决:采用高K值的氧化物材料来制造晶体管的栅极,英特尔称之为“高K门电介

智能功率器件的原理

智能功率器件的原理与应用 1 智能功率器件的特点及产品分类 1.1 智能功率器件的特点 所谓智能功率器件,确实是把功率器件与传感器、检测和操纵电路、爱护电路及故障自诊断电路等集成为一体并具有功率输出能力的新型器件。由于这类器件可代替人工来完成复杂的功率操纵,因此它被给予智能的特征。例如,在智能功率器件中,常见的爱护功能有欠电压爱护、过电压爱护、过电流及短路爱护、过热爱护。此外,某些智能功率器件还具有输出电压过冲爱护、瞬态电流限制、软启动和最大输入功率限制等爱护电路,从而大大提高了系统的稳定性与可靠性。 智能功率器件具有体积小、重量轻、性能好、抗骚扰能力强、使用寿命长等显著优点,可广泛用于单片机测控系统、变频调速器、电力电子设备、家用电器等领域。

1.2 智能功率器件的产品分类 智能功率器件可分成两大类,即智能功率集成电路与智能功率模块。 1)智能功率集成电路 智能功率集成电路的种类专门多,下面仅列出几种典型产品。 ——高压功率开关调节器(High Voltage Power Switching Regulator)。例如,美国摩托罗拉公司研制的MC33370系列产品。 ——智能功率开关(IntelligentP ower Switch)。例如,德国西门子(Siemens)公司生产的Smart SIPMOS智能功率开关,产品型号有BTS412B、BTS611等。 2)智能功率模块 智能功率模块是采纳微电子技术和先进的制造工艺,把智能功率集成电路与微电子器件及外围功率器件组装成一体,能实现智能功率操纵的商品化部件。模块大多采纳密封式结构,以保证良好的电气绝缘和抗震性能。用户只须了解模块的外特性,即可使用。因此,它能简化

相关主题
文本预览
相关文档 最新文档