激光扩束镜
- 格式:pdf
- 大小:351.12 KB
- 文档页数:9
激光扩束器选择指南 消色差系列伽利略式激光扩束镜高功率系列伽利略式激光扩束镜低功率系列伽利略式激光扩束镜可变倍率系列伽利略式激光扩束镜紫外波段伽利略式激光扩束镜大光束大倍率开普勒式激光扩束镜消色差系列伽利略式激光扩束镜该设计使用一片平-凹单透镜来提供所需的发散度,以及经过优化设计的空气间隔透镜组来平衡像差和重准直光束。
调节单透镜控制发散透镜的调节,分度为50微米。
所有的设计均提供A (400-650纳米),B(650-1050纳米)或C(1050-1620纳米)宽带增透膜。
● 降低光束发散度● 提供衍射极限性能,引入的波前误差小于λ/4 ● 光洁度:20-10 ● 增透膜: R avg < 0.5% ● 抗损伤阈值:100W/cm 2CW2倍伽利略式扩束器ItemInput BeamCoating(nm)ThreadPrice(RMB ) BE02M-A Ø8mm 350 - 6501.035”-40¥2240 BE02M-B Ø8mm 650 - 10501.035”-40¥2240 BE02M-CØ8mm1050 - 16201.035”-40¥2240典型波前畸变网格线图3倍伽利略式扩束器Item Input Beam Coating(nm) Thread Price(RMB) BE03M-AØ8mm 350 - 650 1.035”-40 ¥2650 BE03M-BØ8mm 650 - 1050 1.035”-40 ¥2650 BE03M-CØ8mm 1050 - 1620 1.035”-40 ¥26505倍伽利略式扩束器Item Input Beam Coating(nm) Thread Price(RMB) BE05M-AØ4.5mm 350 - 650 1.035”-40 ¥2820 BE05M-BØ4.5mm 650 - 1050 1.035”-40 ¥2820 BE05M-CØ4.5mm 1050 - 1620 1.035”-40 ¥282010倍伽利略式扩束器Item Input Beam Coating(nm) Thread Price(RMB) BE10M-AØ3.5mm 350 - 650 1.035”-40 ¥3048 BE10M-BØ3.5mm 650 - 1050 1.035”-40 ¥3048 BE10M-CØ3.5mm 1050 - 1620 1.035”-40 ¥304815倍伽利略式扩束器Item Input Beam Coating(nm) Thread Price(RMB) BE15M-AØ3.0mm 350 - 650 1.035”-40 ¥3336 BE15M-BØ3.0mm 650 - 1050 1.035”-40 ¥3336 BE15M-CØ3.0mm 1050 - 1620 1.035”-40 ¥3336高功率系列伽利略式激光扩束镜恒兢科技高功率系列激光扩束镜通过对第一入射面采用凸面设计,使入射光的回波反射无法会聚,以避免对其他元件的损伤。
激光扩束镜结构激光扩束镜是一种常见的光学元件,用于调整激光束的直径和扩束角度。
它由两个主要部分组成:透镜和反射镜。
透镜用于调整激光束的直径,而反射镜用于调整激光束的扩束角度。
激光扩束镜的透镜通常是凸透镜,它具有向外凸起的形状。
当激光束通过透镜时,透镜会将光线聚焦到一个点上,这可以减小激光束的直径。
透镜的曲率半径和直径决定了光线的聚焦程度。
较小的曲率半径和较大的直径将导致更大的扩束角度,而较大的曲率半径和较小的直径将导致更小的扩束角度。
激光扩束镜的反射镜通常是平面镜或曲面镜。
平面镜可以改变激光束的方向,而曲面镜可以改变激光束的扩束角度。
曲面镜通常是凸面镜或凹面镜。
凸面镜会使激光束扩束,而凹面镜会使激光束聚束。
反射镜的选择取决于需要调整的激光束特性。
激光扩束镜的结构可以是单透镜结构或双透镜结构。
单透镜结构包括一个透镜和一个反射镜,它们组合在一起以实现激光束的扩束。
双透镜结构包括两个透镜和一个反射镜,透镜和反射镜交替排列以实现更精确的扩束控制。
激光扩束镜的设计需要考虑许多因素,包括所需的扩束角度、激光束直径和波长等。
此外,材料的选择也很重要,因为不同的材料对激光束的传输和扩束特性有不同的影响。
激光扩束镜在许多应用中发挥着重要的作用。
例如,它们可以用于激光切割、激光打标和激光焊接等工艺中,以调整激光束的特性,使其适应特定的加工需求。
此外,激光扩束镜还可以用于激光通信和激光雷达等领域,以实现远距离的光信号传输和探测。
激光扩束镜是一种重要的光学元件,用于调整激光束的直径和扩束角度。
它由透镜和反射镜组成,可以采用单透镜结构或双透镜结构。
激光扩束镜的设计需要考虑多个因素,并在各种应用领域中发挥着关键作用。
激光准直扩束镜波前差的ptv值
对于激光扩束镜,有两种经典的结构,一种是开普勒型,一种是伽利略型。
对于激光扩束镜而言,优先使用伽利略型。
设计一个在波长$\lambda$=0.6382μm下操作的激光扩束器,光束输入直径为5mm,输出直径为25mm,输入输出均为准直光,系统总长不超过250mm。
在实际的使用过程中,希望镜头的扩束效果比较好,所以在激光扩束后,波前差的PTV值小于$\lambda$/10。
PTV值是指峰值到谷值的光程差,激光扩束镜波前差的PTV值越小越好。
在实际应用中,设计人员可以根据具体的应用场景和需求,选择合适的激光扩束镜,并对其进行优化设计,以获得更好的扩束效果。
激光扩束镜选择指南激光扩束镜是一种用于控制和调节激光光束直径的光学元件。
随着激光技术的广泛应用,激光扩束镜的选择变得越来越重要。
本文将从激光波长、光束直径、材料选择、镜面质量等多个方面,为您提供一份激光扩束镜的选择指南。
1. 激光波长:激光波长是选择激光扩束镜的关键因素之一、不同波长的激光会对材料产生不同的影响,因此需要根据激光的波长来选择合适的激光扩束镜。
常见的激光波长包括红色(650nm)、绿色(532nm)、蓝色(445nm),对应的激光扩束镜也有所不同。
2.光束直径:激光扩束镜的主要功能是调节光束的直径。
光束直径是激光技术中一个重要的参数,它决定了激光束的聚焦能力和传输效率。
根据实际需要,选择合适的光束直径,可以提高激光系统的性能和稳定性。
3.材料选择:激光扩束镜通常由光学玻璃、石英和金属等材料制成。
不同材料具有不同的光学性能。
例如,光学玻璃具有较好的透光性和耐热性,适用于大多数常见的激光波长。
而石英具有优秀的耐热性和耐化学性,适用于高功率激光器系统。
4.镜面质量:激光扩束镜的镜面质量直接影响光束的质量。
在选购激光扩束镜时,要选择具有高表面质量和小表面粗糙度的镜面。
这样可以减少激光束透射和反射时的损耗,提高激光束的质量和传输效率。
5.环境适应性:激光扩束镜通常用于工业和科研领域,工作环境复杂多变。
因此,在选择激光扩束镜时,要考虑其适应不同工作环境的能力。
例如,工业应用通常需要耐高温、耐振动和防护等特性,而科研应用可能需要更高的准确性和稳定性。
6.成本效益:激光扩束镜的成本也是选择的重要因素之一、根据不同的应用需求,选择合适的激光扩束镜,既要满足技术要求,又要符合预算限制。
因此,要充分考虑成本和性能的平衡,选择性价比较高的激光扩束镜。
综上所述,选择适合的激光扩束镜需要考虑多个因素,包括激光波长、光束直径、材料选择、镜面质量、环境适应性和成本效益等。
只有综合考虑这些因素,才能选择到最合适的激光扩束镜,提高激光技术的应用效果。
扩束镜的原理及应用1. 引言扩束镜是一种光学器件,它通过合理设计的光学透镜系统,可以将发散光束聚焦成平行光束或收敛光束。
扩束镜具有广泛的应用领域,包括激光器、光纤通信、医疗器械等。
本文将介绍扩束镜的原理和一些常见的应用。
2. 扩束镜的原理扩束镜的原理基于凸透镜的折射原理和光具系统的成像原理。
当光线从空气进入玻璃等折射率较大的介质时,会发生折射现象。
凸透镜的形状可以使得光线在透镜内部发生折射后会收敛或者聚焦到一个特定的焦点上。
扩束镜通常由一个凸透镜和一个凹透镜组成。
凸透镜负责将发散光束聚焦,而凹透镜负责将聚焦光束再次扩散为平行光束。
扩束镜的原理可以用以下步骤来解释: - 发散光束进入扩束镜系统时,凸透镜对光线进行折射,使光线向中心聚焦。
- 凹透镜接收凸透镜的聚焦光束,并使光束再次扩散为平行光束。
3. 扩束镜的应用3.1 激光器扩束镜在激光器系统中起着重要作用。
激光器发出的激光光束通常是发散的,而应用领域中往往需要平行光束或收敛光束。
扩束镜可以将发散的激光光束聚焦成平行光束,使得激光能够更好地传输和利用。
3.2 光纤通信光纤通信是一种通过光纤传输信息的技术,而光纤传输中的光束也需要扩束镜进行调整。
扩束镜可以将从光纤中发出的发散光束聚焦成平行光束,从而提高光纤通信的传输效率。
3.3 医疗器械在医疗器械中,使用光学技术进行诊断和治疗已经成为常见的方法。
扩束镜可以在医疗器械中起到对光束进行聚焦或扩散的作用。
例如,在激光手术中,扩束镜可以将激光光束聚焦到需要治疗的部位,从而实现精确的治疗。
3.4 显微镜显微镜是生物学、物理学等领域中常用的实验设备,它可以放大微小的物体或样本。
在显微镜中,扩束镜可以用于调整光路,以获得清晰的视野和高分辨率的图像。
3.5 摄影和摄像在摄影和摄像领域,扩束镜可以用于对光线进行调整,以获得所需的拍摄效果。
例如,在望远镜中,扩束镜可以将远处物体的发散光束聚焦成平行光束,使得观察者能够得到清晰的图像。
激光扩束镜结构激光扩束镜是一种用于调整激光光束直径的光学元件。
它通常由一个具有一定曲率的球面镜面组成。
激光扩束镜结构的设计和制造对于激光器的性能和应用具有重要影响。
一般而言,激光扩束镜由两个主要部分组成:球面镜面和支撑结构。
球面镜面是调整激光光束直径的关键部分,它通常由光学玻璃或光学晶体制成。
球面镜面的曲率决定了光束扩束的方式,不同的曲率可以实现不同的扩束效果。
支撑结构则是用于固定和支撑球面镜面的部分,它通常由金属或塑料材料制成,具有足够的刚度和稳定性。
在激光扩束镜结构中,球面镜面的形状和曲率是关键因素。
一般来说,球面镜面可以分为凸面镜和凹面镜两种类型。
凸面镜具有正的曲率,可以将激光光束聚焦到一个点上,实现光束的收束。
而凹面镜则具有负的曲率,可以将激光光束扩散开来,实现光束的扩束。
根据需要,激光扩束镜可以选择不同曲率的球面镜面来实现不同的扩束效果。
在激光扩束镜结构中,还可以通过调整球面镜面的位置来进一步调整光束的直径。
通过改变球面镜面与光源之间的距离,可以改变光束的扩束或聚束效果。
例如,将球面镜面与光源距离缩小,可以实现光束的扩束;而将球面镜面与光源距离增大,则可以实现光束的聚束。
除了球面镜面和支撑结构,激光扩束镜结构中还可能包括其他辅助部件,如调节装置和冷却系统等。
调节装置可以用于微调球面镜面的位置和角度,以便实现更精确的光束扩束效果。
冷却系统则可以用于控制激光扩束镜的温度,以确保其稳定性和性能。
激光扩束镜结构是由球面镜面和支撑结构组成的光学元件。
通过调整球面镜面的形状、曲率和位置,激光扩束镜可以实现不同的光束扩束效果。
激光扩束镜的设计和制造对于激光器的性能和应用具有重要影响,因此在实际应用中需要根据具体需求进行选择和优化。
激光扩束镜原理讲解
首先,激光束经过一个凹透镜,这个透镜被称为聚焦透镜。
聚焦透镜
具有凸透镜的形状,当激光束通过透镜时,光束的入射角度被改变,导致
光束偏离原始路径。
根据折射定律,入射角和折射角之间的关系可以描述为:sinθ1/sinθ2 = n1/n2,其中θ1和θ2分别是入射角和折射角,
n1和n2是介质的折射率。
通过选择适当的折射率,我们可以将激光束偏
离原始路径。
然后,偏离的激光束经过一个反射镜。
反射镜通常是一个倾斜的平面
镜或曲面镜。
当光束垂直入射到镜子上时,它会沿着相同的路径反射。
但是,当光束以斜角入射时,光束的反射角度也会发生变化。
通过调整反射
镜的位置和角度,我们可以进一步调节光束的方向和直径。
最后,反射后的激光束再经过透镜。
这个透镜被称为发散透镜,它具
有凹透镜的形状。
与聚焦透镜相反,发散透镜会导致光束向外展开,直径
变大。
通过选择适当的透镜,我们可以控制光束的直径和发散的程度。
通过使用聚焦透镜、反射镜和发散透镜的组合,激光扩束镜可以将一
个窄束的激光扩展为一个较大直径的激光束。
通过调整元件的位置和角度,我们可以控制激光束的直径和发散的程度。
这在许多应用中都是非常重要的,例如激光切割、激光打标和激光照明等。
总结起来,激光扩束镜的原理是基于折射和反射的原理。
通过使用聚
焦透镜、反射镜和发散透镜的组合,可以将一个窄束的激光扩展为一个较
大直径的激光束。
这种机制允许我们控制激光束的直径和发散的程度,从
而满足各种应用的需求。
激光扩束镜原理与应用讲解一、激光扩束镜的原理1.透镜:透镜是激光扩束镜的核心部件,通常采用凹透镜。
透镜的功能是改变光线的传播方向,并使光线的角度发生变化。
当光线通过透镜时,透镜会改变光线的传播方向,使光线发生偏折。
2.凸透镜:凸透镜是激光扩束镜中的关键组件,它能够使光线发生折射,并且将光束聚焦到一个点上。
通过调整凸透镜的位置和角度,可以改变光束的直径。
3.透镜支架:透镜支架是用来支撑透镜和凸透镜的结构,使其固定在一定的位置上。
透镜支架通常由金属材料制成,具有较高的稳定性和耐用性。
二、激光扩束镜的应用1.激光加工:在激光加工过程中,激光扩束镜可用于调节激光束的直径,以满足不同加工要求。
通过调整激光束的直径,可以控制激光的能量密度和聚焦效果,从而实现精确加工。
2.激光测量:激光扩束镜可用于激光测距仪、激光测厚仪等激光测量设备中。
通过调整激光束的直径,可以改变激光测量设备的测量范围和精度。
3.激光打印:激光扩束镜常常用于激光打印机中,通过调整激光束的直径,可以控制打印机的打印速度和打印质量。
激光扩束镜还可用于打印机的校准和调试。
4.激光显示:激光扩束镜可用于激光显示器中,通过调整激光束的直径和角度,可以控制激光显示器的显示效果和分辨率。
5.光通信:激光扩束镜也广泛应用于光通信设备中,通过调整激光束的直径和角度,可以改变光通信设备的传输距离和信号强度。
总结:激光扩束镜是一种能够调整光束直径的光学设备,其原理是通过透镜和凸透镜的运用,改变光线的传播方向和角度,从而实现光束的扩束。
激光扩束镜在激光加工、激光测量、激光打印、激光显示和光通信等领域都有广泛的应用。
通过调整激光束的直径和角度,可以实现不同工艺的需求,并能改变光学设备的性能和特性。
激光扩束器光源发出的激光一般是一束准直的细圆柱光束,直径为1~2mm,而实际要求激光束有一定的宽度.下面讨论两种常用扩束方法.1) 棱镜扩束法由于棱镜材料的折射,使出射光方向与入射光方向不同,其入射角与棱镜顶角的变化可以引起光束宽度的改变.棱镜扩束示意图如图1a .每个棱镜的扩束比为D/d=M=cos[arcsin(sinφ/μp)]/cosφ′式中D为出射光的宽度;d为入射光的宽度;M为扩束比;φ为入射角;φ′为折射角;μp 是棱镜的折射率.玻璃棱镜的μp=1.54.根据现有的数据,d=2mm,D=47mm,则总的扩束比为Mn=D/d=23.5图1 棱镜扩束系统若想用3个棱镜完成扩束比,则每个棱镜的扩束比应为M=M1/3n=2.8由M=cos[arcsin(sinφ/μp)]/cosφ′=2.8 ,可近似算得φ=81°.由折射定律μp=sinφ/sinφ′,可得φ′=53°.在选择棱镜的顶角时,应使得出射光束尽可能垂直于出射面,以使这个出射面反射最小.由几何学可知,应取棱镜顶角ψ=φ′=53°.实际的棱镜扩束光路如图1b.和下面的透镜扩束相比,具有体积小,无象差等优点,并同时使入射光方向转了近90°,用在系统光路中即扩展了光束,也使光线方向发生改变,起到了扩束镜和反射镜的双重作用.总尺寸为10cm×10cm.2) 透镜扩束法设透镜的焦距为F,物距和象距分别为S01和S02,它们之间的关系为当S01=F时,S02=∞,说明透镜焦点上的一个点光源经过透镜后为一平行光;当S02=F时,S01=∞,表明当入射光为一平行光时,经过透镜后,聚焦在透镜的焦点上,如图2所示.图2 透镜聚光原理利用这一特点,采用两个焦距不同的透镜,可以构成如图3所示的扩束和准直系统.F1、F2分别为两个透镜的焦距,由几何光学原理很容易得出束宽放大比率为M=F2/F1设激光束直径为d,光束宽度为D,那么M=D/d=F2/F1图3 扩束系统和棱镜相比,透镜存在相差的影响,其中最主要的是球差.球差是由于非傍轴光线通过透镜时屈折得过分利害引起的,从而引起聚焦不好,如图4a.但是如果把一块透镜想象成两块棱镜在底部连接而成,那么明显的是:当入射光线同镜面和出射光线同镜面大致成同样大小的角度时,入射光线的偏转将最小,在图4b中,只要把透镜翻转过来,就使球差显著减小,当入射光是平行光时,对一个简单的凸透镜来说,若其后表面几乎为平面但不完全是平面时,将会有最小的球差.由于光路是可逆的,用两个透镜进行扩束时,应使两个透镜较平的一面相对,来减小相差.图4 一个平凸透镜的球差。