非晶纳米晶软磁材料
- 格式:docx
- 大小:25.01 KB
- 文档页数:14
如果金属或合金的凝固速度非常快(例如用每秒高达一百万度的冷却速率将铁-硼合金熔体凝固),原子来不及整齐排列便被冻结住了,其排列方式类似于液体,是混乱的,这就是非晶合金。
非晶纳米晶软磁材料都有哪些?您可以咨询安徽华晶机械有限公司,下面小编为您简单介绍,希望给您带来一定程度上的帮助。
非晶软磁合金材料的种类:1、铁基非晶合金铁基非晶合金:主要元素是铁、硅、硼、碳、磷等。
它们的特点是磁性强(饱和磁感应强度可达1.4-1.7T )、磁导率、激磁电流和铁损等软磁性能优于硅钢片,价格便宜,最适合替代硅钢片,特别是铁损低(为取向硅钢片的1/3-1/5),代替硅钢做配电 变压器可降低铁损60-70%。
铁基非晶合金的带材厚度为0.03毫米左右,广泛应用于中低频变压器的铁心(一般在10千赫兹以下),例如配电变压器、中频变压器、大功率电感、电抗器等。
2、铁镍基非晶合金铁镍基非晶合金:主要由铁、镍、硅、硼、磷等组成,它们的磁性比较弱(饱和磁感应强度大约为1T以下),价格较贵,但磁导率比较高,可以代替硅钢片或者坡莫合金,用作高要求的中低频变压器铁心,例如漏电开关互感器。
3、钴基非晶合金钴基非晶合金:由钴和硅、硼等组成,有时为了获得某些特殊的性能还添加其它元素,由于含钴,它们价格很贵,磁性较弱(饱和磁感应强度一般在1T以下),但磁导率极高,一般用在要求严格的军工电源中的变压器、电感等,替代坡莫合金和铁氧体。
4、纳米(超微晶)软磁合金材料由于非晶合金中原子的排列是混乱无序的这种特殊结构,使得非晶合金具有一些独特的性质。
安徽华晶机械有限公司位于安庆长江大桥经济开发区。
是人民解放军第4812工厂全资子公司。
公司经营以机械制造为主,拥有各类专业生产、检验试验设备94台(套),涉及铸造、橡胶制品、压力容器、制造等多个行业,主要从事非晶软磁设备、空压机及气源设备、橡胶件(含特种橡胶件)、餐余垃圾处理设备、铸件、机械加工等产品的研制、生产、经营和服务。
非晶纳米晶软磁材料在高效电机中的应用
随着现代工业的发展,高效电机的需求越来越大。
而非晶纳米晶软磁材料的出现,为高效电机的制造提供了新的选择。
非晶纳米晶软磁材料是一种新型的磁性材料,具有高饱和磁感应强度、低磁滞损耗、高导磁率等优点。
这些优点使得非晶纳米晶软磁材料成为高效电机的理想材料。
在高效电机中,非晶纳米晶软磁材料可以用于制造电机的铁芯。
铁芯是电机中的重要部件,它的质量和性能直接影响电机的效率和使用寿命。
非晶纳米晶软磁材料的高导磁率和低磁滞损耗可以减少铁芯的能量损失,提高电机的效率。
同时,非晶纳米晶软磁材料的高饱和磁感应强度可以使电机的输出功率更大,提高电机的使用寿命。
除了用于制造铁芯,非晶纳米晶软磁材料还可以用于制造电机的转子和定子。
转子和定子是电机中的另外两个重要部件,它们的质量和性能也会影响电机的效率和使用寿命。
非晶纳米晶软磁材料的高导磁率和低磁滞损耗可以减少转子和定子的能量损失,提高电机的效率。
同时,非晶纳米晶软磁材料的高饱和磁感应强度可以使电机的输出功率更大,提高电机的使用寿命。
非晶纳米晶软磁材料在高效电机中的应用具有广阔的前景。
随着科技的不断进步,非晶纳米晶软磁材料的性能将会不断提高,为高效
电机的制造提供更好的选择。
非晶纳米晶磁芯引言非晶纳米晶磁芯是一种新型的磁性材料,具有优异的磁性能和应用潜力。
它在电子设备、能源转换和储存等领域具有广泛的应用前景。
本文将从非晶材料的基本特性、制备方法、磁性能以及应用方面进行详细介绍。
非晶材料的基本特性非晶材料是指没有明确的晶体结构,具有无序排列的原子结构。
相对于传统的多晶材料,非晶材料具有以下几个基本特性:1.高硬度:非晶材料由于原子排列无序,其内部不存在长程有序结构,因此具有较高的硬度。
2.低磁滞损耗:非晶材料由于没有明确的磁畴结构,可以有效降低磁滞损耗。
3.宽工作温度范围:非晶材料具有较高的玻璃化转变温度,可以在较宽的温度范围内工作。
4.优异的软磁性能:非晶材料具有较高的饱和磁感应强度和低的矫顽力,适用于高频应用。
非晶纳米晶磁芯的制备方法非晶纳米晶磁芯的制备方法主要包括物理气相沉积法、溶液法和快速凝固法等。
1.物理气相沉积法:该方法通过在惰性气体环境中将金属材料蒸发,然后在基底上沉积形成非晶纳米晶薄膜。
这种方法制备的非晶纳米晶材料具有较高的均匀性和良好的磁性能。
2.溶液法:该方法是将金属盐溶液与还原剂混合,通过控制反应条件使金属离子还原并沉积形成非晶纳米晶材料。
这种方法制备的非晶纳米晶材料具有较高的化学均匀性和可扩展性。
3.快速凝固法:该方法通过将金属材料迅速冷却至超过其玻璃化转变温度以下,使其形成非晶态结构。
这种方法制备的非晶纳米晶材料具有较高的饱和磁感应强度和低的矫顽力。
非晶纳米晶磁芯的磁性能非晶纳米晶磁芯具有优异的磁性能,包括高饱和磁感应强度、低矫顽力、低磁滞损耗和宽工作温度范围等。
1.高饱和磁感应强度:非晶纳米晶材料由于其无序排列的原子结构,使得其具有较高的饱和磁感应强度。
这使得非晶纳米晶磁芯在高频应用中具有更好的性能。
2.低矫顽力:非晶纳米晶材料由于其无序结构,使得其具有较低的矫顽力。
这使得非晶纳米晶磁芯在电源变换器等高频电路中表现出更好的性能。
3.低磁滞损耗:非晶纳米晶材料由于没有明确的磁畴结构,可以有效降低磁滞损耗。
非晶、纳米晶软磁合金磁芯介绍1、讲授人:朱正吼,非晶、纳米晶软磁合金磁芯介绍,非晶及纳米晶软磁合金,牌号和基本成分铁基非晶合金铁镍基非晶合金铁基纳米晶合金非晶及纳米晶软磁合金磁芯非晶及纳米晶磁芯应用汇总销售---思索,,牌号和基本成分,,铁基非晶合金,组成:80%Fe、20%Si,B 类金属元素性能:1.高饱和磁感应强度〔1.54T〕;2.与硅钢片的损耗比较:磁导率、激磁电流和铁损等都优于硅钢片。
特殊是铁损低〔为取向硅钢片的1/3-1/5〕,代替硅钢做配电变压器可节能60-70%。
应用:广泛应用于配电变压器、大功率开关电源、脉冲变压器、磁放大器、中频变压器及逆变器铁芯,适合于10kHz以2、下频率使用。
,,铁镍基非晶合金,组成:40%Ni、40%Fe及20%类金属元素性能:1.具有中等饱和磁感应强度〔0.8T〕、较高的初始磁导率和很高的最大磁导率以及高的机械强度和优良的韧性。
2.在中、低频率下具有低的铁损。
3.空气中热处理不发生氧化,经磁场退火后可得到很好的矩形回线。
应用:广泛用于漏电开关、精密电流互感器铁芯、磁屏蔽等。
,,铁基纳米晶合金,组成:铁元素为主,加入少量的Nb、Cu、Si、B元素所构成的合金,经快速凝固工艺形成一种非晶态材料。
热处理后获得直径为10-20nm的微晶,弥散分布在非晶态的基体上,被称为微晶、纳米晶材料。
性能:具有优异3、的综合磁性能,高饱和磁感、高初始磁导率、低Hc,高磁感下的高频损耗低,电阻率比坡莫合金高。
经纵向或横向磁场处理,可得到高Br或低Br值。
是目前市场上综合性能最好的材料。
应用:广泛应用于大功率开关电源、逆变电源、磁放大器、高频变压器、高频变换器、高频扼流圈铁芯、电流互感器铁芯、漏电爱护开关、共模电感铁芯。
,,非晶及纳米晶软磁合金磁芯,磁放大器磁芯滤波电感磁芯高频大功率磁芯恒电感磁芯电流互感器磁芯实例1:磁芯在开关电源中使用实例2:非晶磁芯在LED灯具上应用,,磁放大器磁芯,什么是磁放大器性能特点应用范围计算机ATX电源和通讯开关电源,,性能特点,,应用范围4、,磁放大器能使开关电源得到精确的掌握,从而提高了其稳定性。
2024年非晶纳米晶磁芯市场前景分析引言在当今科技迅猛发展的时代,磁性材料在各个领域中扮演着重要角色。
非晶纳米晶磁芯作为一种新兴的磁性材料,在电力电子、新能源、传感器等应用中具有广阔的市场前景。
本文将对非晶纳米晶磁芯市场前景进行分析,探讨其在不同领域的应用潜力。
非晶纳米晶磁芯概述非晶纳米晶磁芯是一种结合了非晶态和纳米晶态特性的新型磁性材料。
由于其高饱和磁感应强度、低磁损耗以及优良的磁导率等特点,非晶纳米晶磁芯在电力电子领域中有着广泛的应用前景。
电力电子领域在电力电子领域中,非晶纳米晶磁芯主要应用于变压器、电感器等电力设备中。
其高饱和磁感应强度和低磁损耗的特点使得非晶纳米晶磁芯在高频电力转换装置中具有明显的优势。
非晶纳米晶磁芯可以显著提高装置的效率,减少能量损耗,同时也可以实现更小型化、轻量化的设计。
因此,在电力电子领域中,非晶纳米晶磁芯有着广阔的市场前景。
新能源领域新能源是未来发展的方向,而非晶纳米晶磁芯在新能源领域中有着巨大的应用潜力。
以风力发电为例,非晶纳米晶磁芯可以应用于风力发电机组的发电设备中,提高风力发电机组的转速、效率和可靠性。
非晶纳米晶磁芯的低磁损耗和优良的磁导率可以显著提高风力发电系统的发电效率,并降低由于能量转换过程中产生的热量损耗。
此外,在太阳能发电系统中,非晶纳米晶磁芯也可以应用于逆变器、控制器等设备中,提高太阳能发电的效率和可靠性。
因此,非晶纳米晶磁芯在新能源领域中有着广阔的应用前景。
传感器领域非晶纳米晶磁芯还可以应用于传感器领域。
传感器是现代化社会中不可或缺的组成部分,广泛应用于工业控制、汽车电子、医疗器械等领域。
非晶纳米晶磁芯在传感器领域中可以应用于电流传感器、磁场传感器等设备中,提高传感器的性能指标。
非晶纳米晶磁芯的高饱和磁感应强度和低磁损耗可以提高传感器的灵敏度和响应速度,同时也可以减小传感器体积,实现更小型化的设计。
因此,在传感器领域中,非晶纳米晶磁芯具有广阔的市场前景。
纳米晶磁环和非晶磁环磁性材料在现代科技中扮演着非常重要的角色,广泛应用于电子设备、医疗器械、能源领域等众多领域。
纳米晶磁环和非晶磁环作为磁性材料中的两种重要类型,具有各自独特的特性。
本文将对纳米晶磁环和非晶磁环进行详细介绍和比较。
纳米晶磁环是一种由纳米晶颗粒组成的磁性材料。
纳米晶材料的晶粒尺寸通常在1-100纳米之间,具有高度的晶界密度和较小的晶粒尺寸分布。
这种特殊结构使得纳米晶磁环具有一些优异的性能。
首先,纳米晶磁环具有较高的饱和磁感应强度和低的磁滞回线。
这使得纳米晶磁环在电力电子设备中得到广泛应用,例如变压器和电感器。
其次,纳米晶磁环具有较低的磁晶畴墙能量,使得其具有较小的磁晶畴壁移动能量。
这使得纳米晶磁环具有较低的交换耦合能量,从而提高了其磁滞回线的可逆性能。
此外,纳米晶磁环还具有较低的磁化失真和较高的矫顽力,使得其在高频电磁器件和传感器中应用广泛。
非晶磁环是一种非晶态磁性材料,其结构缺乏长程有序性。
非晶磁环具有高度随机的原子排列,使得其具有一些特殊的性能。
首先,非晶磁环具有较高的饱和磁感应强度和低的磁滞回线,这使得其在高频电磁器件和传感器中具有广泛应用。
其次,非晶磁环具有较低的磁晶畴墙能量,使得其具有较小的磁晶畴壁移动能量。
这使得非晶磁环具有较低的交换耦合能量,从而提高了其磁滞回线的可逆性能。
此外,非晶磁环还具有较低的磁化失真和较高的矫顽力,使得其在电力电子设备中得到广泛应用,例如变压器和电感器。
然而,纳米晶磁环和非晶磁环也存在一些差异。
首先,纳米晶磁环具有较高的饱和磁感应强度和较低的磁滞回线,而非晶磁环则具有更高的饱和磁感应强度和更低的磁滞回线。
其次,纳米晶磁环具有较小的晶粒尺寸和较高的晶界密度,而非晶磁环则具有高度随机的原子排列。
这些差异导致纳米晶磁环和非晶磁环在一些应用中具有不同的优势和适用性。
例如,在高频电磁器件和传感器中,纳米晶磁环由于其较小的晶粒尺寸和较高的晶界密度,更适合用于高频应用。
硅钢片铁芯、坡莫合金、非晶及纳米晶软磁合金一.磁性材料的大体特性1. 磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的转变曲线称为磁化曲线(M~H 或B~H曲线)。
磁化曲线一般来讲是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个肯定的饱和值Ms,继续增大H,Ms维持不变;和当材料的M值达到饱和后,外磁场H降低为零时,M并非恢复为零,而是沿MsMr曲线转变。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2. 软磁材料的常常利用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成份,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成份及缺点(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变成顺磁性,该临界温度为居里温度。
它肯定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝f2 t2 / ,ρ 降低,磁滞损耗Ph的方式是降低矫顽力Hc;降低涡流损耗Pe 的方式是减薄磁性材料的厚度t 及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3. 软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要按照电路的要求肯定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
2024年非晶纳米晶磁芯市场分析现状引言非晶纳米晶磁芯作为一种新型材料,在电子领域得到了广泛的应用。
本文将对非晶纳米晶磁芯市场的现状进行分析,并探讨其未来的发展前景。
市场概述非晶纳米晶磁芯是一种具有优异磁性和高频特性的材料,广泛应用于电源、通信、电子设备等领域。
其主要有以下几个特点: - 高饱和感应磁场 - 低损耗 - 高电阻率 - 高频特性好市场规模与增长趋势非晶纳米晶磁芯市场规模在过去几年中呈现稳步增长的趋势。
根据行业数据统计,市场规模预计将在未来几年内保持平稳增长。
以下是一些主要推动市场增长的因素:1. 电子设备市场的不断扩大:随着人们对电子产品需求的增长,电子设备市场不断扩大,进一步推动了非晶纳米晶磁芯的需求增长。
2. 技术进步与创新:随着科技的进步和创新,非晶纳米晶磁芯不断优化和改进,提升了其性能和应用领域,进一步扩大了市场规模。
3. 增长潜力的发展国家:一些发展中国家对电子设备的需求增长迅速,这些地区成为非晶纳米晶磁芯市场的潜在增长点。
市场竞争态势非晶纳米晶磁芯市场存在一定的竞争态势。
目前,市场上有多家厂商生产和销售非晶纳米晶磁芯产品。
主要竞争因素包括: - 产品性能:不同厂商生产的非晶纳米晶磁芯产品在性能上存在差异,包括饱和感应磁场、损耗、电阻率等方面,这些因素会直接影响消费者的购买决策。
- 价格竞争:非晶纳米晶磁芯市场价格波动较大,不同厂商之间进行价格竞争,以争夺市场份额。
- 售后服务:厂商提供的售后服务和技术支持也是消费者选择产品的考虑因素之一。
市场前景与机遇非晶纳米晶磁芯市场面临着巨大的发展机遇。
以下是一些市场前景与机遇: 1. 新能源车市场:随着新能源车市场的快速发展,对非晶纳米晶磁芯的需求也将大幅增长。
非晶纳米晶磁芯在新能源车中应用广泛,涉及到电动机、变频器等部分。
2.5G通信技术:随着5G通信技术的推广和商用,对高频磁芯的需求将大幅增加。
非晶纳米晶磁芯由于其优异的高频特性,将在5G通信设备中得到广泛应用。
非晶纳米晶软磁材料1、非晶纳米晶软磁材料非晶/纳米晶软磁材料一.应用领域非晶态软磁合金材料为20世纪70年月问世的一种新型材料,因具有铁芯损耗小、电阻率高、频率特性好、磁感应强度高、抗腐蚀性强等优点,引起了人们的极大重视,被誉为21世纪新型绿色节能材料。
其技术特点为:采纳超急冷凝固技术使合金钢液到薄带材料一次成型;采纳纳米技术,制成介于巨观和微观之间的纳米态(10-20nm)软磁物质。
非晶、纳米晶合金的优异软磁特性都来自于其特别的组织结构,非晶合金中没有晶粒和晶界,易于磁化;纳米晶合金的晶粒尺寸小于磁交换作用长度,导致平均磁晶各向异性很小,并且通过调整成分,可以使其磁致伸缩趋近于零。
【表1】列出了非晶/纳米晶软磁材料的典型性能及主要应用领域。
近年来,随着信息处理和电力电子技2、术的快速进展,各种电器设备趋向高频化、小型化、节能化。
在电力领域,非晶、纳米晶合金均得到大量应用。
其中铁基非晶合金的最大应用是配电变压器铁芯。
由于非晶合金的工频铁损仅为硅钢的1/5~1/3,利用非晶合金取代硅钢可使配电变压器的空载损耗降低60﹪~70﹪。
因此,非晶配电变压器作为换代产品有很好的应用前景。
纳米晶合金的最大应用是电力互感器铁芯。
电力互感器是特地测量输变电线路上电流和电能的特种变压器。
近年来高精度等级〔如0.2级、0.2S级、0.5S级〕的互感器需求量快速增加。
传统的冷轧硅钢片铁芯往往达不到精度要求,虽然高磁导率玻莫合金可以满足精度要求,但价格高。
而采纳纳米晶铁芯不但可以到达精度要求、而且价格低于玻莫合金。
在电力电子领域,随着高频逆变技术的成3、熟,传统大功率线性电源开始大量被高频开关电源所取代,而且为了提高效率,减小体积,开关电源的工作频率越来越高,这就对其中的软磁材料提出了更高的要求。
硅钢高频损耗太大,已不能满足使用要求。
铁氧体虽然高频损耗较低,但在大功率条件下仍旧存在许多问题,一是饱和磁感低,无法减小变压器的体积;二是居礼温度低,热稳定性差;三是制作大尺寸铁芯成品率低,本钱高。
目前采纳功率铁氧体的单个变压器的转换功率不超过20kW。
纳米晶软磁合金同时具有高饱和磁感和很低的高频损耗,且热稳定性好,是大功率开关电源用软磁材料的最正确选择。
采纳纳米晶铁芯的变压器的转换功率可达500kW,体积比功率铁氧体变压器削减50﹪以上。
目前在逆变焊机电源中纳米晶合金已经获得广泛应用,在通讯、电动交通工具、电4、解电镀等领域用开关电源中的应用正在主动开发之中。
在电子信息领域,随着计算机、网络和通讯技术的快速进展,对小尺寸、轻重量、高可靠性和低噪音的开关电源和网络接口设备的需求日益增长、要求越来越高。
例如,为了减小体积,计算机开关电源的工作频率已经从20kHz提高到500kHz;为了实现CPU的低电压大电流供电方式,采纳磁放大器稳定输出电压;为了消除各种噪音,采纳抑制线路自生干扰的尖峰抑制器,以及抑制传导干扰的共模和差模扼流圈。
因此,在开关电源和接口设备中增加了大量高频磁性器件。
非晶、纳米晶合金在此大有用武之地。
在电子防窃系统中,早期利用钴基非晶窄带的谐波式防盗标签在图书馆中获得了大量应用。
最近利用铁镍基非晶带材的声磁式防盗标签克服了谐波式防盗标签误报警率高、检5、测区窄等缺点,应用市场已经扩展到超级市场。
可以预见,随开放式服务方式的进展,作为防盗防伪的非晶合金带材和线材的应用会急剧增加。
在家用产品中,变频技术有利于节省电能、并减小体积和重量,正在大量普及。
但负面效应不行忽视,假如变频器中缺少必要的抑制干扰环节,会有大量高次谐波注入电网,使电网总功率因素下降。
削减电网污染最有效的方法之一是在变频器中加入功率因子校正〔PFC〕环节,其中关键部件是高频损耗低、饱和磁感大的电感铁芯。
铁基非晶合金在此类应用中有明显优势,将在变频家电绿色化方面发挥重要作用。
目前在变频空调中使用非晶PFC电感已经成为一个焦点。
在漏电爱护器中,近年来大量使用的漏电爱护器中的零序电流互感器的铁心是由软磁材料制成的,该互感器对漏电爱护器的灵敏度、6、可靠性、体积和本钱影响很大。
由软磁材料制成的互感器作为检测组件,其作用是当互感器初级有毫安级漏电电流或触电电流产生的弱磁场作用时,在互感器次级产生足够大的感应电势,通过执行机构动作,到达爱护人体及设备安全的目的。
允许的漏电电流的大小,即关系到漏电爱护器的灵敏度,铁心在其中起重要作用,对铁心材料的要求主要是:(1)在漏电电流作用下,具有高的沟通磁导率;(2)铁心随温度、时间的改变性能要稳定;(3)互感器平衡特性好。
坡莫合金是国内外漏电爱护器中互感器铁心的基本选用材料,它虽然有不少优点,但生产工艺冗杂、价格昂贵、对应力较为敏感,在运输及装配时要轻拿轻放,避开震动。
而非晶态材料具有许多优异的特性,是一种超高导磁材料,使用于互感器铁心,不仅能提高漏电爱护器的性 7、能,降低产品本钱,而且由于非晶铁心简洁,从原材料到铁心成品,可节省大量人力、物力和财力,节时、节电,经济效益显著。
另外非晶态材料与坡莫合金相比,不仅直流磁导率高,而且沟通磁导率也高。
非晶态材料的电阻率是坡莫合金的2倍。
它的硬度和强度也比坡莫合金高得多。
经过长时间和高低温试验说明它还有较高的稳定性。
总之,非晶、纳米晶合金不仅软磁性能优异,而且制程简洁、本钱低廉,正成为一项具有市场竞争优势的基础功能材料。
可以预见,非晶、纳米晶材料对传统产业转型和高科技快速进展将发挥越来越重要的作用二.非晶软磁合金的制备纳米晶体的制备方法有许多,如超细金属粉末冷压法,机械球磨法和新发明的非晶晶化法等。
其中以超细金属粉末冷压法最为普遍,但这种方法在工艺上存在很多缺乏之处,如工8、艺冗杂、本钱高、产量小且样品中存在微孔隙等。
(1)惰性气体冷凝法(IGC)制备纳米粉体(固体)这是目前用物理方法制备具有清洁界面的纳米粉体(固体)的主要方法之一。
其主要过程是:在真空蒸发室内充入低压惰性气体(He或Ar),将蒸发源加热蒸发,产生原子雾,与惰性气体原子碰撞而失去能量,凝聚形成纳米尺寸的团簇,并在液氮冷棒上聚集起来,将聚集的粉状颗粒刮下,传送至真空压实装置,在数百兆帕至几千兆帕压力下制成直径为几毫米,厚度为1~10mm的圆片。
纳米合金可通过同时蒸发两种或数种金属物质得到。
纳米氧化物的制备可在蒸发过程中或制得团簇后于真空室内通以纯氧使之氧化得到。
惰性气体冷凝法制得的纳米界面成分因颗粒尺寸大小而异,一般约占整个体积50%左右,其原子排列与相应的9、晶态和非晶态均有所不同,介于非晶态到晶态之间。
因此,其性质与化学成分和它相同的晶态和非晶态有明显的区分。
〔2〕机械球磨法机械合金化就是将欲合金化的元素粉末按肯定配比机械混合,在高能球磨机等设备中长时间运转将回转机械能传递给粉末,同时粉末在球磨介质的反复冲撞下承受冲力、剪切、摩擦和压缩多种力的作用,经受反复的挤压、冷焊合及粉碎过程成为弥散分布的超细粒子,在固态下实现合金化。
利用机械合金化制备纳米粉末是一个特别有效而简便的方法。
粉末机械合金化形成纳米晶有两种途径。
1.粗晶材料经过机械合金化形成纳米晶粗晶粉末经高强度机械球磨,产生大量塑性变形,并产生高密度位错。
在初期,塑性变形后的粉末中的位错先是纷乱地纠缠在一起,形成“位错缠结”。
随着球磨强度的增加,粉末变10、形量增大,缠结在一起的位错移动形成“位错胞”,高密度位错主要集中在胞的四周区域,形成胞壁。
这时变形的粉末是由很多“位错胞”组成,胞与胞之间有微小的取相差。
随着机械合金化强度进一步增加,粉末变形量增大,“位错胞”的数量增多,尺寸减小,跨越胞壁的平均取向差也渐渐增加。
当粉末的变形量足够大时,由于构成胞壁的位错密度急剧增加而使胞与胞之间的取向差到达肯定限度后,胞壁转变为晶界形成纳米晶。
2.非晶材料经过机械合金化形成纳米晶非晶粉末在机械合金化过程中的晶体生长是一个形核与长大的过程。
在肯定条件下,晶体在非晶基体中形核。
晶体的生长速率较低,且其生长受到机械合金化造成的严重塑性变形的限制。
由于机械合金化使晶体在非晶基体中形核位置多且生长速率低,所以形成纳米晶。
3.影11、响因素(1)球磨时间;(2)磨球的球径和转速;(3)球料比、装球容积比;(4)球磨气氛等。
〔3〕非晶晶化法最近,卢柯等提出非晶态合金晶化过程的微观机制,即有序原子集团切变沉积机制,进展了一种制备纳米晶体的新方法———非晶晶化法,即通过非晶态合金的晶化产生晶粒为纳米尺寸的超细多晶材料。
这种方法具有工艺简洁、本钱低、晶粒易掌握。
非晶态是一种热力学亚稳态,在肯定条件下易转变为较稳定的晶态。
这一转变的动力来自于非晶态和晶态之间的吉布斯自由能的差异。
当对非晶态样品进行热处理、辐射和微小机械粉碎[20]时,非晶态就转变为多晶。
其尺寸和化学成分与退火条件有着亲密的关系,非晶态转变为纳米尺度多晶粒子的过程通常称之为纳米晶化。
纳米晶化可分为恒温柔非恒温退火两种,其中恒温12、退火工艺为:用较快的速度将非晶态样品升温至退火温度,在爱护气氛中保温肯定时间使非晶态样品完全晶化,冷却至室温便得到纳米晶。
最基本的原则是通过选择合适的热处理条件(退火温度、时间、加热速率等)在动力学上对晶化进行掌握,①多形态纳米晶化,即单一化学成分非晶转变为单相纳米晶;②共晶纳米晶化,同时析出两相纳米晶相;③多步纳米晶化,某些成分先以共晶或多形态反应的形式形成纳米晶镶嵌在非晶合金里,余下的成分以共晶或多形态纳米晶化的形式纳米晶化。
非晶纳米晶复合材料主要采纳非晶退火制备,通过掌握晶化过程中各种条件,如时间、温度、升温速度和分步晶化,使合金中某一相或几相析出,其余大部分则仍为非晶态,从而可以得到纳米微晶镶嵌在非晶体的非晶纳米晶复合材料,〔4〕其他方法1深度13、范性形变法制备纳米晶体这是由Islamgaliev等人于1994年初进展起来的独特的纳米材料制备工艺,材料在准静态压力的作用下发生严重范性形变,从而将材料的晶粒细化到亚微米或纳米级。
例如:Φ=82μm的锗在6GPa准静压力作用后,材料结构转化为10~30nm 的晶相与10%~15%的非晶相共存;再经850℃热处理后,纳米结构开始形成,材料由粒径100nm的等轴晶组成,而当温度升至9400nm。
2物理气相沉积法制备纳米薄膜该法作为一种常规的薄膜制备手段被广泛应用于纳米薄膜的制备与讨论中,包括蒸镀、电子束蒸镀、溅射等。
这一方法主要通过两种途径获得纳米薄膜:①在非晶薄膜晶化的过程中掌握纳米结构的形成,比方采纳共溅射法制备Si/SiO2薄膜,在700~900℃氮14、气气氛下快速降温获得硅颗粒;②在薄膜的成核生长过程中掌握纳米结构的形成,薄膜沉积条件的掌握和在溅射过程中采纳高溅射气压、低溅射功率特殊重要,这样易得到纳米结构的薄膜。