平面解析几何初步直线圆的方程等章节综合考点检测练习(三)含答案人教版高中数学高考真题汇编家教辅导
- 格式:doc
- 大小:376.50 KB
- 文档页数:8
高中数学专题复习
《平面解析几何三角形、圆相关》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为______.(汇编年普通高等学校招生统一考试天津数学(理)试题(含答案))
2.如图,在ABC 中,090C ∠=, 0
60,20A AB ∠==,过C 作ABC 的外接圆的切线CD ,BD CD ⊥,BD 与外接圆交于点E ,则DE 的长为__________(汇编年普通高等学校招生统一考试重庆数学(理)试题(含答案))。
高中数学平面解析几何初步检测考试题(附答案)试卷分析第2章平面解析几何初步综合检测(时间:120分钟;满分:150分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线3a_-y-1=0与直线(a-23)_+y+1=0垂直,则a的值是()A.-1或13 B.1或13C.-13或-1 D.-13或1解析:选D.由3a(a-23)+(-1)1=0,得a=-13或a=1.2.直线l1:a_-y+b=0,l2:b_-y+a=0(a0,b0,ab)在同一坐标系中的图形大致是图中的()解析:选C.直线l1:a_-y+b=0,斜率为a,在y轴上的截距为b,设k1=a,m1=b.直线l2:b_-y+a=0,斜率为b,在y轴上的截距为a,设k2=b,m2=a.由A知:因为l1∥l2,k1=k20,m10,即a=b0,b0,矛盾.由B知:k1k2,m10,即ab,b0,矛盾.由C知:k10,m20,即a0,可以成立.由D知:k10,m2m1,即a0,ab,矛盾.3.已知点A(-1,1)和圆C:(_-5)2+(y-7)2=4,一束光线从A经_轴反射到圆C上的最短路程是()A.62-2 B.8C.46 D.10解析:选B.点A关于_轴对称点A(-1,-1),A与圆心(5,7)的距离为5+12+7+12=10.所求最短路程为10-2=8.4.圆_2+y2=1与圆_2+y2=4的位置关系是()A.相离 B.相切C.相交 D.内含解析:选D.圆_2+y2=1的圆心为(0,0),半径为1,圆_2+y2=4的圆心为(0,0),半径为2,则圆心距02-1=1,所以两圆内含.5.已知圆C:(_-a)2+(y-2)2=4(a0)及直线l:_-y+3=0,当直线l被圆C截得的弦长为23时,a的值等于()A.2B.2-1C.2-2 D.2+1解析:选B.圆心(a,2)到直线l:_-y+3=0的距离d=|a-2+3|2=|a+1|2,依题意|a+1|22+2322=4,解得a=2-1.6.与直线2_+3y-6=0关于点(1,-1)对称的直线是()A.3_-2y-6=0B.2_+3y+7=0C.3_-2y-12=0D.2_+3y+8=0解析:选D.∵所求直线平行于直线2_+3y-6=0,设所求直线方程为2_+3y+c=0,由|2-3+c|22+32=|2-3-6|22+32,c=8,或c=-6(舍去),所求直线方程为2_+3y+8=0.7.若直线y-2=k(_-1)与圆_2+y2=1相切,则切线方程为()A.y-2=34(1-_)B.y-2=34(_-1)C._=1或y-2=34(1-_)D._=1或y-2=34(_-1)解析:选B.数形结合答案容易错选D,但要注意直线的表达式是点斜式,说明直线的斜率存在,它与直线过点(1,2)要有所区分.8.圆_2+y2-2_=3与直线y=a_+1的公共点有()A.0个 B.1个C.2个 D.随a值变化而变化解析:选C.直线y=a_+1过定点(0,1),而该点一定在圆内部.9.过P(5,4)作圆C:_2+y2-2_-2y-3=0的切线,切点分别为A、B,四边形PACB的面积是()A.5 B.10C.15 D.20解析:选B.∵圆C的圆心为(1,1),半径为5.|PC|=5-12+4-12=5,|PA|=|PB|=52-52=25,S=122552=10.10.若直线m_+2ny-4=0(m、nR,nm)始终平分圆_2+y2-4_-2y-4=0的周长,则mn的取值范围是()A.(0,1) B.(0,-1)C.(-,1) D.(-,-1)解析:选C.圆_2+y2-4_-2y-4=0可化为(_-2)2+(y-1)2=9,直线m_+2ny-4=0始终平分圆周,即直线过圆心(2,1),所以2m+2n-4=0,即m+n=2,mn=m(2-m)=-m2+2m=-(m-1)2+11,当m=1时等号成立,此时n=1,与“mn”矛盾,所以mn<1.11.已知直线l:y=_+m与曲线y=1-_2有两个公共点,则实数m的取值范围是()A.(-2,2) B.(-1,1)C.[1,2) D.(-2,2)解析:选C. 曲线y=1-_2表示单位圆的上半部分,画出直线l与曲线在同一坐标系中的图象,可观察出仅当直线l在过点(-1,0)与点(0,1)的直线与圆的上切线之间时,直线l与曲线有两个交点.当直线l过点(-1,0)时,m=1;当直线l为圆的上切线时,m=2(注:m=-2,直线l为下切线).12.过点P(-2,4)作圆O:(_-2)2+(y-1)2=25的切线l,直线m:a_-3y=0与直线l平行,则直线l与m的距离为()A.4 B.2C.85D.125解析:选A.∵点P在圆上,切线l的斜率k=-1kOP=-11-42+2=43.直线l的方程为y-4=43(_+2),即4_-3y+20=0.又直线m与l平行,直线m的方程为4_-3y=0.故两平行直线的距离为d=|0-20|42+-32=4.二、填空题(本大题共4小题,请把答案填在题中横线上)13.过点A(1,-1),B(-1,1)且圆心在直线_+y-2=0上的圆的方程是________.解析:易求得AB的中点为(0,0),斜率为-1,从而其垂直平分线为直线y=_,根据圆的几何性质,这条直线应该过圆心,将它与直线_+y-2=0联立得到圆心O(1,1),半径r=|OA|=2.答案:(_-1)2+(y-1)2=414.过点P(-2,0)作直线l交圆_2+y2=1于A、B两点,则|PA||PB|=________. 解析:过P作圆的切线PC,切点为C,在Rt△POC中,易求|PC|=3,由切割线定理,|PA||PB|=|PC|2=3.答案:315.若垂直于直线2_+y=0,且与圆_2+y2=5相切的切线方程为a_+2y+c=0,则ac的值为________.解析:已知直线斜率k1=-2,直线a_+2y+c=0的斜率为-a2.∵两直线垂直,(-2)(-a2)=-1,得a=-1.圆心到切线的距离为5,即|c|5=5,c=5,故ac =5.答案:516.若直线3_+4y+m=0与圆_2+y2-2_+4y+4=0没有公共点,则实数m的取值范围是__________.解析:将圆_2+y2-2_+4y+4=0化为标准方程,得(_-1)2+(y+2)2=1,圆心为(1,-2),半径为1.若直线与圆无公共点,即圆心到直线的距离大于半径,即d=|31+4-2+m|32+42=|m-5|5>1,m<0或m>10.答案:(-,0)(10,+)三、解答题(本大题共6小题,解答时应写出必要的文字说明、证明过程或演算步骤)17.三角形ABC的边AC,AB的高所在直线方程分别为2_-3y+1=0,_+y=0,顶点A(1,2),求BC边所在的直线方程.解:AC边上的高线2_-3y+1=0,所以kAC=-32.所以AC的方程为y-2=-32(_-1),即3_+2y-7=0,同理可求直线AB的方程为_-y+1=0.下面求直线BC的方程,由3_+2y-7=0,_+y=0,得顶点C(7,-7),由_-y+1=0,2_-3y+1=0,得顶点B(-2,-1).所以kBC=-23,直线BC:y+1=-23(_+2),即2_+3y+7=0.18.一束光线l自A(-3,3)发出,射到_轴上,被_轴反射后与圆C:_2+y2-4_-4y+7=0有公共点.(1)求反射光线通过圆心C时,光线l所在直线的方程;(2)求在_轴上,反射点M的横坐标的取值范围.解:圆C的方程可化为(_-2)2+(y-2)2=1.(1)圆心C关于_轴的对称点为C(2,-2),过点A,C的直线的方程_+y=0即为光线l所在直线的方程.(2)A关于_轴的对称点为A(-3,-3),设过点A的直线为y+3=k(_+3).当该直线与圆C相切时,有|2k-2+3k-3|1+k2=1,解得k=43或k=34,所以过点A的圆C的两条切线分别为y+3=43(_+3),y+3=34(_+3).令y=0,得_1=-34,_2=1,所以在_轴上反射点M的横坐标的取值范围是[-34,1].19.已知圆_2+y2-2_-4y+m=0.(1)此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线_+2y-4=0相交于M、N两点,且OMON(O为坐标原点),求m的值;(3)在(2)的条件下,求以MN为直径的圆的方程.解:(1)方程_2+y2-2_-4y+m=0,可化为(_-1)2+(y-2)2=5-m,∵此方程表示圆,5-m>0,即m<5.(2)_2+y2-2_-4y+m=0,_+2y-4=0,消去_得(4-2y)2+y2-2(4-2y)-4y+m=0,化简得5y2-16y+m+8=0.设M(_1,y1),N(_2,y2),则y1+y2=165,①y1y2=m+85. ②由OMON得y1y2+_1_2=0即y1y2+(4-2y1)(4-2y2)=0,16-8(y1+y2)+5y1y2=0.将①②两式代入上式得16-8165+5m+85=0,解之得m=85.(3)由m=85,代入5y2-16y+m+8=0,化简整理得25y2-80y+48=0,解得y1=125,y2=45._1=4-2y1=-45,_2=4-2y2=125.M-45,125,N125,45,MN的中点C的坐标为45,85.又|MN|= 125+452+45-1252=855,所求圆的半径为455.所求圆的方程为_-452+y-852=165.20. 已知圆O:_2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,|PQ|=|PA|成立,如图.(1)求a、b间关系;(2)求|PQ|的最小值;(3)以P为圆心作圆,使它与圆O有公共点,试在其中求出半径最小的圆的方程.解:(1)连接OQ、OP,则△OQP为直角三角形,又|PQ|=|PA|,所以|OP|2=|OQ|2+|PQ|2=1+|PA|2,所以a2+b2=1+(a-2)2+(b-1)2,故2a+b-3=0.(2)由(1)知,P在直线l:2_+y-3=0上,所以|PQ|min=|PA|min,为A到直线l的距离,所以|PQ|min=|22+1-3|22+12=255.(或由|PQ|2=|OP|2-1=a2+b2-1=a2+9-12a+4a2-1=5a2-12a+8=5(a-1.2)2+0.8,得|PQ|min=255.)(3)以P为圆心的圆与圆O有公共点,半径最小时为与圆O相切的情形,而这些半径的最小值为圆O到直线l的距离减去圆O的半径,圆心P为过原点与l垂直的直线l与l的交点P0,所以r=322+12-1=355-1,又l:_-2y=0,联立l:2_+y-3=0得P0(65,35).所以所求圆的方程为(_-65)2+(y-35)2=(355-1)2.21.有一圆与直线l:4_-3y+6=0相切于点A(3,6),且经过点B(5,2),求此圆的方程.解:法一:由题意可设所求的方程为(_-3)2+(y-6)2+(4_-3y+6)=0,又因为此圆过点(5,2),将坐标(5,2)代入圆的方程求得=-1,所以所求圆的方程为_2+y2-10_-9y+39=0.法二:设圆的方程为(_-a)2+(y-b)2=r2,则圆心为C(a,b),由|CA|=|CB|,CAl,得3-a2+6-b2=r2,5-a2+2-b2=r2,b-6a-343=-1,解得a=5,b=92,r2=254.所以所求圆的方程为(_-5)2+(y-92)2=254.法三:设圆的方程为_2+y2+D_+Ey+F=0,由CAl,A(3,6),B(5,2)在圆上,得32+62+3D+6E+F=0,52+22+5D+2E+F=0,-E2-6-D2-343=-1,解得D=-10,E=-9,F=39.所以所求圆的方程为_2+y2-10_-9y+39=0.法四:设圆心为C,则CAl,又设AC与圆的另一交点为P,则CA的方程为y-6=-34(_-3),即3_+4y-33=0.又因为kAB=6-23-5=-2,所以kBP=12,所以直线BP的方程为_-2y-1=0.解方程组3_+4y-33=0,_-2y-1=0,得_=7,y=3.所以P(7,3).所以圆心为AP的中点(5,92),半径为|AC|=52.所以所求圆的方程为(_-5)2+(y-92)2=254.22.如图在平面直角坐标系_Oy中,已知圆C1:(_+3)2+(y-1)2=4和圆C2:(_-4)2+(y-5)2=4.(1)若直线l过点A(4,0),且被圆C1截得的弦长为23,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被C2截得的弦长相等.试求所有满足条件的点P的坐标.解:(1)由于直线_=4与圆C1不相交,所以直线l的斜率存在.设直线l的方程为y=k(_-4),圆C1的圆心到直线l的距离为d,因为圆C1被直线l截得的弦长为23,所以d=22-32=1.由点到直线的距离公式得d=|1-k-3-4|1+k2,从而k(24k+7)=0,即k=0或k=-724,所以直线l的方程为y=0或7_+24y-28=0.(2)设点P(a,b)满足条件,不妨设直线l1的方程为y-b=k(_-a),k0,则直线l2的方程为y-b=-1k(_-a).因为圆C1和C2的半径相等,且圆C1被直线l1截得的弦长与圆C2被直线l2截得的弦长相等,所以圆C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等,即|1-k-3-a-b|1+k2=|5+1k4-a-b|1+1k2,整理得|1+3k+ak-b|=|5k+4-a-bk|,从而1+3k+ak-b=5k+4-a-bk 或1+3k+ak-b=-5k-4+a+bk,即(a+b-2)k=b-a+3或(a-b+8)k=a+b-5,因为k的取值有无穷多个,所以a+b-2=0,b-a+3=0,或a-b+8=0,a+b-5=0,解得a=52,b=-12,或a=-32,b=132.这样点P只可能是点P152,-12或点P2-32,132.经检验点P1和P2满足题目条件.。
直线和圆的方程一、知识导学1.两点间的距离公式:不论A(x 1,y 1),B(x 2,y 2)在坐标平面上什么位置,都有d=|AB|=221221)()(y y x x -+-,特别地,与坐标轴平行的线段的长|AB|=|x 2-x 1|或|AB|=|y 2-y 1|.2.定比分点公式:定比分点公式是解决共线三点A(x 1,y 1),B(x 2,y 2),P(x ,y )之间数量关系的一个公式,其中λ的值是起点到分点与分点到终点的有向线段的数量之比.这里起点、分点、终点的位置是可以任意选择的,一旦选定后λ的值也就随之确定了.若以A 为起点,B 为终点,P 为分点,则定比分点公式是⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x .当P 点为AB 的中点时,λ=1,此时中点坐标公式是⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x . 3.直线的倾斜角和斜率的关系(1)每一条直线都有倾斜角,但不一定有斜率.(2)斜率存在的直线,其斜率k 与倾斜角α之间的关系是k =tan α.4.确定直线方程需要有两个互相独立的条件。
直线方程的形式很多,但必须注意各种5.两条直线的夹角。
当两直线的斜率1k ,2k 都存在且1k ·2k ≠ -1时,tan θ=21121k k k k +-,当直线的斜率不存在时,可结合图形判断.另外还应注意到:“到角”公式与“夹角”公式的区别.6.怎么判断两直线是否平行或垂直?判断两直线是否平行或垂直时,若两直线的斜率都存在,可以用斜率的关系来判断;若直线的斜率不存在,则必须用一般式的平行垂直条件来判断.(1)斜率存在且不重合的两条直线l 1∶11b x k y +=, l 2∶22b x k y +=,有以下结论: ①l 1∥l 2⇔1k =2k ,且b1=b2 ②l 1⊥l 2⇔1k ·2k = -1(2)对于直线l 1∶0111=++C y B x A ,l 2 ∶0222=++C y B x A ,当A 1,A 2,B 1,B 2都不为零时,有以下结论:①l 1∥l 2⇔21A A =21B B ≠21C C②l 1⊥l 2⇔A 1A 2+B 1B 2 = 0 ③l 1与l 2相交⇔21A A ≠21B B ④l 1与l 2重合⇔21A A =21B B =21C C 7.点到直线的距离公式.(1)已知一点P (00,y x )及一条直线l :0=++C By Ax ,则点P 到直线l 的距离d =2200||BA C By Ax +++;(2)两平行直线l 1: 01=++C By Ax , l 2: 02=++C By Ax 之间的距离d=2221||BA C C +-.8.确定圆方程需要有三个互相独立的条件。
2019年高中数学单元测试卷平面解析几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB ∙的最小值为( )(A) 4-+ (B)3- (C) 4-+ (D)3-+ (2010全国1理11)二、填空题2.若圆222410x y x y ++-+=关于直线2ax -by +2=0(a ,b ∈R )对称,则ab 的取值范围是 .3.过定点(1,2)作两直线与圆2222150x y kx y k ++++-=相切,则k 的所有的值组成的集合A=4.直线x +2y -2=0与直线2x -y =0的位置关系为 ▲ .(填“平行”或“垂直”)5.若(3,2),(7,6)P Q --,则线段PQ 的中点坐标为________,PQ =______,线段PQ 的垂直平分线的方程为____________6.经过点(4,1)且在两坐标轴上的截距相等的直线方程为_________7.已知圆22x y m +=与圆2268110x y x y ++--=相交,则实数m 的取值范围为 .8.已知方程222(2)20a x a y ax a ++++=表示的曲线是圆,则实数a 的值是 .9.已知点)15,2(),5,3(B A -,在直线0443:=+-y x l 上求一点P ,使PB PA +最小.10.过直线x y l 2:=上一点P 作圆()()218:22=-+-y x C 的切线21,l l ,若21,l l 关于直线l 对称,则点P 到圆心C 的距离为 。
【解答】根据平面几何知识可知,因为直线21,l l 关于直线l 对称,所以直线21,l l 关于直线PC 对称并且直线PC 垂直于直线l ,于是点P 到点C 的距离即为圆心C 到直线l 的距离,d ==。
2019年高中数学单元测试卷平面解析几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有( )A .1条B .2条C .3条D .4条(2004全国2理8)2.方程aax y 1+=表示的直线可能是( ) 二、填空题3.已知直线x +a 2y -a =0(a >0,a 是常数),则当此直线在x ,y 轴上的截距和最小时,a 的值是 。
4.直线l :10x y ++=的倾斜角为____________5.(1)经过点(2,0)A -,且斜率为3的直线方程为_________________(2)经过点(1,2)B ,且倾斜角为30的直线方程为_______________6.在空间直角坐标系中,已知定点(1,2,1)A -,(2,2,2)B .点P 在z 轴上,且满足||||PA PB =,则P 点的坐标为__________________7.若动点P 在直线43100x y -+=上,Q 为原点,则OP 的最小值为______8.若实数,x y 满足222(5)(12)14x y +++=,则22x y +的最小值是_________9.正方形ABCD 的中心为(3,0),AB 所在直线的方程为220x y -+=,则正方形ABCD 的外接圆的方程为 .10.若过点()2,1P 的直线l 与圆C:222470x y x y ++--=相交于两点A ,B,且60ACB ∠=(其中C 为圆心),则直线l 的方程为11.已知圆22(2)9x y -+=和直线y kx =交于A,B 两点,O 是坐标原点, 若2OA OB O +=,则||AB = ▲ .12.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 ▲ .13.已知直线2(0)y x a a =-+>与圆229x y +=交于A B 、两点,且92OA OB ⋅=,则实数a 的值为______________.14.过点()1,0且倾斜角是直线210x y --=的倾斜角的两倍的直线方程是 ▲ .15.在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于A 、B 两点,则弦AB 的长等于16.已知0<k <4,直线l 1:kx -2y -2k +8=0和直线l 2:2x +k 2y -4k 2-4=0与两坐标轴围成一个四边形,则使得这个四边形面积最小的k 值为____ __.17.设集合{}22(,)|()(1)1A x y x a y =-++=,{}22(,)|(1)()9B x y x y a =-+-=,若A B φ=,则实数a 的取值范围是18.已知2s i n c o s 2a a θθ+=,2sin cos 2()b b a b θθ+=≠,对任意,a b R ∈,经过两点22(,),(,)a a b b 的直线与一定圆相切,则圆方程为______________;19.已知点P (1,1)圆22()()4x a y a -++=的内部,求实数a 的取值范围为__________;20.已知过两点(,3),(5,)A a B a --的直线的斜率为1,则a = ▲ .21.若直线1=+by ax 与圆122=+y x 相切,则实数ab 的取值范围是 .三、解答题22. 已知圆M 过两点)1,1(),1,1(--D C ,且圆心M 在02=-+y x 上.(1)求圆M 的方程;(2)设P 是直线0843=++y x 上的动点,PB PA ,是圆M 的两条切线,B A , 为切点,求四边形PAMB 面积的最小值.答案: (1) ()()22114x y -+-=(试题分析:(1)设圆M 的方程为:(x -a)2+(y -b)2=r 2(r>0). 根据题意,得222222(1)(1)(1)(1)20a b r a b r a b ⎧-+--=⎪⎨⎪⎩--+-=+-= ﹍﹍﹍﹍﹍﹍﹍3分又|AM|=|BM|=2,|PA|=|PB|, 所以S =2|PA|, ﹍﹍﹍﹍﹍﹍﹍8分 而|PA|即S =.因此要求S 的最小值,只需求|PM|的最小值即可,即在直线3x +4y +8=0上找一点P ,使得|PM|的值最小,﹍﹍﹍﹍﹍﹍﹍9分所以|PM|min=3, ﹍﹍﹍﹍﹍﹍﹍10分所以四边形PAMB 面积的最小值为S ===﹍﹍﹍12分23.(本题满分17分)已知圆M :()2244x y +-=,直线l 的方程为20x y -=,点P 是直线l 上一动点,过点P 作圆的切线PA 、PB ,切点为A 、B .(Ⅰ)当P 的横坐标为165时,求∠APB 的大小; (Ⅱ)求证:经过A 、P 、M 三点的圆N 必过定点,并求出所以定点的坐标. (Ⅲ)求线段AB 长度的最小值.24.(本小题14分)已知过点()1,4A -的圆的圆心为()3,1C .⑴ 求圆C 的方程;⑵ 若过点()2,1B -的直线l 被圆C 截得的弦长为l 的方程.25. (本小题满分16分)已知圆C 通过不同的三点P(m,0)Q(2,0)R(0,1)、、,且圆C 在点P 处的切线的斜率为1.(1)试求圆C 的方程;(2)若点A 、B 是圆C 上不同的两点,且满足CP CA CP CB ⋅=⋅,①试求直线AB 的斜率;②若原点O 在以AB 为直径的圆的内部,试求直线AB 在y 轴上的截距的范围。
高中数学专题复习《平面解析几何初步直线圆的方程等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、选择题1.1 .(2020年高考江西卷(文))如图.已知l1⊥l2,圆心在l1上、半径为1m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cosx,则y与时间t(0≤x≤1,单位:s)的函数y=f(t)的图像大致为2.(2020年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为( ) A .524- B .171- C .622- D .17 3.若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 取值范围是( )A .[3,1]--B .[1,3]-C .[3,1]-D .(,3][1,)-∞-+∞(2020安徽文)4.过点(-1,3)且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y x D.072=+-y x (2020全国4理3) 5.直线l 过点(-1,2)且与直线2x -3y +4=0垂线,则l 的方程是( ) A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D . 2x -3y +8=0(2020安徽文)6.过点(1,0)且与直线x-2y-2=0平行的直线方程是( )A .x-2y-1=0B .x-2y+1=0C .2x+y-2=0D .x+2y-1=0(2020安徽文4)7.已知圆1C 的方程为0),(=y x f ,且),(00y x P 在圆1C 外,圆2C 的方程为 ),(y x f =),(00y x f ,则1C 与圆2C 一定( )A .相离B .相切C .同心圆D .相交 8.如果直线0=++C By Ax 的倾斜角为45,则有关系式...(B)A.B A = B.0=+B A C.1=AB D.以上均不可能9.两平行直线0962043=-+=-+y x y x 与的距离是 .10.已知直线1:30l Ax y C ++=与2:2340l x y -+=,若12l l 、的交点在y 轴上,则C 的值为A、4 B、-4 C、4或-4 D、与A 的取值有关第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题11.在等腰直角三角形ABC 中,=4AB AC =,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到点P (如图1).若光线QR 经过ABC ∆的重心(三角形三条中线的交点),则AP = ▲ .12.已知实数,a b 是方程2s i n c o s 10(,)x x k k Z θθθπ+-=≠∈的两个不同的实数解,点22(,),(,)A a a B b b ,则直线AB 与圆221x y +=的位置关系是 ▲13.与圆224240x y x y +-++=关于直线0x y +=对称的圆的方程是 . 14.已知两点()3,1A 、()4,1--B 分别在直线013=++y ax 的同侧,则a 的取值范围是 ▲ ;15.若过点()2,1P 的直线l 与圆C:222470x y x y ++--=相交于两点A ,B,且60ACB ∠=(其中C 为圆心),则直线l 的方程为16.已知两条直线()12:60;:2320l x my l m x y m ++=-++=,当直线12l l 与平行时,m= ▲ . 评卷人得分 三、解答题17.已知点P (0,5)及圆C :x 2+y 2+4x -12y +24=0.(1)若直线l 过点P 且被圆C 截得的线段长为43,求l 的方程;(2)求过P 点的圆C 的弦的中点的轨迹方程.18.(本小题满分l4分)已知圆C 经过三点)0,0(O ,)3,1(A ,)0,4(B .(1)求圆C 的方程;(2)求过点)6,3(P 且被圆C 截得弦长为4的直线的方程.19.已知ABC ∆的顶点坐标为(3,9),(2,2),(5,3)A B C -,(1)求AC 边的长;(2)求AC 边中线所在直线的方程;(3)求ABC ∆的面积.20.求经过直线0623=++y x 和0752=-+y x 的交点,且在两坐标轴上的截距相等的直线方程。
高中数学专题复习《平面解析几何初步直线圆的方程等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.1 .(2020年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))使得()13nx n N nx x +⎛⎫+∈ ⎪⎝⎭的展开式中含有常数项的最小的为 ( )A .4B .5C .6D .72.在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于A 、B 两点,则弦AB 的长等于( ) A .33B .23C .3D .1(2020广东文)(解析几何)3.已知直线x=a (a>0)和圆(x -1)2+y 2=4相切,那么a 的值是( ) A .5 B .4C .3D .2(2020全国文3)4.设R n m ∈,,若直线02)1()1(=-+++y n x m 与圆1)1()1(22=-+-y x 相切,则m+n 的取值范围是(A )]31,31[+- (B )),31[]31,(+∞+⋃--∞(C )]222,222[+- (D )),222[]222,(+∞+⋃--∞5.下列说法正确的是 . [答]( ) (1)若直线l 的倾斜角为α,则0απ≤<;(2)若直线l 的一个方向向量为(,)d u v =,则直线l 的斜率v k u=; (3)若直线l 的方程为220(0)ax by c a b ++=+≠,则直线l 的一个法向量为(,)n a b =.A .(1)(2) B. (1)(3) C.(2)(3) D.(1)(2)(3)6.直线1:2l y k x ⎛⎫=+⎪⎝⎭与圆22:1C x y +=的位置关系为( ). A.相交或相切 B.相交或相离 C.相切 D.相交7.圆x 2+y 2+2x +6y +9=0与圆x 2+y 2-6x +2y +1=0的位置关系是 ( )A .相交B .相外切C .相离D .相内切8.圆224460x y x y +-++=截直线50x y --=所得弦长为( ) A、6 B、522C、1 D、59.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A 、425x y += B 、425x y -= C 、25x y += D 、25x y -=10. 直线l 过点(-1,2)且与直线垂直,则l 的方程是 A .3210x y +-= B.3270x y ++=C. 2350x y -+=D.2380x y -+=第II 卷(非选择题)请点击修改第II 卷的文字说明评卷人得分二、填空题11.在平面直角坐标系xOy 中,已知圆C 与x 轴交于A (1,0),B (3,0)两点,且与直线x -y -3=0相切,则圆C 的半径为 ▲ . 解析:可设圆心为(2,b ),半径r =b 2+1,则|-1-b |2=b 2+1,解得b =1.故r =2.12. 已知从点(2,1)-发出的一束光线,经x 轴反射后,反射光线恰好平分 圆:222210x y x y +--+=的圆周,则反射光线所在的直线方程为 13.圆2240x y x +-=在点(1,3)P 处的切线方程为 ▲ .14.如果直线210mx y ++=与20x y +-=互相垂直,那么实数m = ▲ .15.两圆221:2220C x y x y +++-=与222:4210C x y x y +--+=的公切线有且仅有_____条。
新高中数学《平面解析几何》专题解析一、选择题1.如图,设椭圆E :22221(0)x y a b a b+=>>的右顶点为A ,右焦点为F ,B 为椭圆在第二象限上的点,直线BO 交椭圆E 于点C ,若直线BF 平分线段AC 于M ,则椭圆E 的离心率是( ) A .12B .23C .13D .14【答案】C 【解析】如图,设AC 中点为M ,连接OM ,则OM 为△ABC 的中位线, 于是△OFM ∽△AFB ,且OF OM 1FAAB2==, 即c c a -=12可得e=c a =13. 故答案为13. 点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2.已知椭圆22:12y C x +=,直线:l y x m =+,若椭圆C 上存在两点关于直线l 对称,则m 的取值范围是( )A .2233⎛- ⎝⎭B .22,44⎛- ⎝⎭C .3333⎛⎫- ⎪ ⎪⎝⎭ D .3344⎛- ⎝⎭【答案】C 【解析】 【分析】设()11,A x y ,()22,B x y 是椭圆C 上关于l 对称的两点,AB 的中点为()00,M x y ,根据椭圆C 上存在两点关于直线:l y x m =+对称,将A ,B 两点代入椭圆方程,两式作差可得002y x =,点M 在椭圆C 内部,可得2221m m +<,解不等式即可.【详解】设()11,A x y ,()22,B x y 是椭圆C 上关于l 对称的两点,AB 的中点为()00,M x y , 则1202x x x +=,1202y y y +=,1AB k =-.又因为A ,B 在椭圆C 上,所以221112y x +=,222212y x +=,两式相减可得121212122y y y y x x x x -+⋅=--+,即002y x =. 又点M 在l 上,故00y x m =+,解得0x m =,02y m =.因为点M 在椭圆C 内部,所以2221m m +<,解得m ⎛∈ ⎝⎭.故选:C 【点睛】本题考查了直线与椭圆的位置关系以及在圆锥曲线中“设而不求”的思想,属于基础题.3.设抛物线E :26y x =的弦AB 过焦点F ,||3||AF BF =,过A ,B 分别作E 的准线的垂线,垂足分别是A ',B ',则四边形AA B B ''的面积等于( ) A.B.C.D.【答案】C 【解析】 【分析】由抛物线的方程可得焦点坐标及准线方程,设直线AB 的方程,与抛物线联立求出两根之和及两根之积,进而求出弦长AB ,由抛物线的性质可得梯形的上下底之和求出,求出A ,B 的纵坐标之差的绝对值,代入梯形的面积公式即可求出梯形的面积.【详解】解:由抛物线的方程 可得焦点3(2F ,0),准线方程:32x =-,由题意可得直线AB 的斜率存在且不为0,设直线AB 的方程为:32x my =+,1(A x ,1)y ,2(B x ,2)y ,联立直线与抛物线的方程:2326x my y x⎧=+⎪⎨⎪=⎩,整理可得:2690y my --=,所以126y y m +=,129y y =-,21212()363x x m y y m +=++=+,因为||3||AF BF =,所以3AF FB =uu u r uu r,即13(2x -,123)3(2y x -=-,2)y ,可得:123y y =-, 所以可得:2222639y m y -=⎧⎨-=-⎩即213m =, 由抛物线的性质可得: 21233166668223AA BB AB x x m ''+==+++=+=+=g , 221212121||()436363636433y y y y y y m -=+-=+=+=g ,由题意可知,四边形AA B B ''为直角梯形,所以1211()||84316322AA B B S AA BB y y ''''=+-==gg g , 故选:C .【点睛】本题考查抛物线的性质及直线与抛物线的相交弦长,梯形的面积公式,属于中档题.4.已知双曲线2222:1(0,0)x y C a b a b-=>>,过其右焦点F 作渐近线的垂线,垂足为B ,交y轴于点C ,交另一条渐近线于点A ,并且满足点C 位于A ,B 之间.已知O 为原点,且53OA a =,则||||FB FC =( ) A .45B .23C .34D .13【答案】A 【解析】 【分析】设出直线AB 的方程,联立直线AB 方程和渐近线方程,由此求得,A B 两点的坐标,以及求得C 点的坐标,根据53OA a =列方程,求得,,a b c 的关系,由此求得||||FB FC 的值.【详解】由于双曲线渐近线为b y x a =±,不妨设直线AB 的斜率为ab-,故直线AB 的方程为()a y x c b =--.令0x =,得0,ac C b ⎛⎫ ⎪⎝⎭.由()a y x c bb y x a ⎧=--⎪⎪⎨⎪=⎪⎩解得2,a ab B c c ⎛⎫ ⎪⎝⎭,.由()a y x c bb y x a ⎧=--⎪⎪⎨⎪=-⎪⎩解得22222,a c abc A a b a b ⎛⎫- ⎪--⎝⎭,由53OA a =得22222222259a c abc a a b a b ⎛⎫-⎛⎫+= ⎪ ⎪--⎝⎭⎝⎭,化简得()()2222440a b a b --=,解得12b a =或2b a =.由于C 位于,A B 之间,故12b a =舍去,所以2b a=,即2b a =.故22222222||44||45B C aby FB b b a c ac FC y c a b a a b======++. 故选:A.【点睛】本小题主要考查双曲线的渐近线方程,考查直线和直线相交所得交点坐标的求法,考查双曲线的几何性质,考查运算求解能力,考查数形结合的数学思想方法,属于中档题.5.已知直线(3)(0)y k x k =+>与抛物线2:4C y x =相交于A ,B 两点,F 为C 的焦点.若5FA FB =,则k 等于( ) A .23B .12C .23D 2 【答案】B 【解析】 【分析】 由2(3)4y k x y x=+⎧⎨=⎩,得()22226490k x k x k +-+=,()22464360k k ∆=-->,得213k <,129x x =①,再利用抛物线的定义根据5FA FB =,得到1254x x =+②,从而求得21x =,代入抛物线方程得到(1,2)B ,再代入直线方程求解. 【详解】设()11,A x y ,()22,B x y ,易知1 0x >,20x >,10y >,20y >,由2(3)4y k x y x=+⎧⎨=⎩,得()22226490k x k x k +-+=,()22464360k k ∆=-->, 所以213k <,129x x =①.因为1112p FA x x =+=+,2212pFB x x =+=+,且5FA FB =, 所以1254x x =+②. 由①②及20x >得21x =, 所以(1,2)B ,代入(3)y k x =+,得12k =. 故选:B 【点睛】本题考查抛物线的定义,几何性质和直线与抛物线的位置关系,还考查了运算求解的能力,属于中档题.6.直线3y kx =+与圆22(3)(2)4x y -+-=相交于M ,N 两点,若||23MN ≥.则k 的取值范围是( )A .3,04⎡⎤-⎢⎥⎣⎦B .30,4⎡⎤⎢⎥⎣⎦C .3,03⎡⎤-⎢⎥⎣⎦D .2,03⎡⎤-⎢⎥⎣⎦【答案】A 【解析】 【分析】可通过将弦长转化为弦心距问题,结合点到直线距离公式和勾股定理进行求解 【详解】如图所示,设弦MN 中点为D ,圆心C(3,2),330y kx kx y =+⇒-+=Q∴弦心距222(1)1CD k k ==+-+,又2||23||33MN DN DN 厖?,∴由勾股定理可得222222231DN CN CD k ⎛⎫=-=-+…,2231|31|(31)1(43)004k k k k k k ⇒+++⇒+⇒-剟剟答案选A 【点睛】圆与直线的位置关系解题思路常从两点入手:弦心距、勾股定理。
高中数学专题复习《平面解析几何初步直线圆的方程等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(2020年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为 ( )A .524-B .171-C .622-D .172.若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 取值范围是 ( )A .[3,1]--B .[1,3]-C .[3,1]-D .(,3][1,)-∞-+∞(2020安徽文)3.圆2x 2+2y 2=1与直线xsin θ+y -1=0(θ∈R,θ≠2π+k π,k ∈Z )的位置关系是( ) A .相交B .相切C .相离D .不确定的(2020京皖春理8)4.若直线1+=kx y 与圆122=+y x 相交于P 、Q 两点,且∠POQ =120°(其中O 为原点),则k 的值为( )A .⎪⎭⎫ ⎝⎛-72,73B .⎪⎭⎫ ⎝⎛-214,72C .⎪⎭⎫ ⎝⎛-72,73D .⎪⎭⎫ ⎝⎛-214,72(2020重庆文8)5.直线(23-)x+y=3和直线x+(32-)y=2的位置关系是( )A .相交不垂直B .垂直C .平行D .重合(2020北京安徽春季6)6.若直线l :y =kx 3-与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .)3,6[ππ B .)2,6(ππC .)2,3(ππ D .]2,6[ππ(2020北京文6)方法一:⎪⎪⎩⎪⎪⎨⎧+-=++=⇒⎩⎨⎧=-+-=k k y kx y x kx y 3232632)32(306323 ∵交点在第一象限,∴⎩⎨⎧>>0y x∴⎪⎪⎩⎪⎪⎨⎧>+->++032326032)32(3kk k∴k ∈(33,+∞)∴倾斜角范围为(2,6ππ)7.如果直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率为( ) A .-31 B .-3C .31 D .3(2020全国5)8.直线032=--y x 与圆9)3()2(22=++-y x 交于E F 、两点,则EOF ∆(O 为原点) 的面积为_________________9.下列方程中圆心在点(2,3)P -,并且与y 轴相切的圆是( ) A、22(2)(3)4x y -++= B、22(2)(3)4x y ++-= C、22(2)(3)9x y -++= D、22(2)(3)9x y ++-=10.等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( )(全国二11)A .3B .2C .13-D .12-第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11.设圆22(1)1x y +-=的切线l 与x 轴正半轴,y 轴正半轴分别交于点,A B ,当AB 取最小值时,切线l 在y 轴上的截距为 ▲ .12.已知△ABC 的两个顶点坐标为B (1,4)、C (6,2),顶点A 在直线x -y +3=0上,若△ABC 的面积为21.则顶点A 的坐标为____ __.13. 在平面直角坐标系xOy 中,若三条直线052=-+y x ,01=--y x 和03=-+y ax 相交于一点,则实数a 的值为__________。
14. 在平面直角坐标系xOy 中,点P (1,2)到直线0534=++y x 的距离为__________。
15.直线20x y +-=与直线230x y -+=的交点坐标为_____16. 已知)(),(),(),(13,75,31,-b D C B a A 是菱形ABCD 的四个顶点,则=+b a ▲ . 评卷人得分三、解答题17.已知⊙O :221x y +=和定点(2,1)A ,由⊙O 外一点(,)P a b 向⊙O 引切线PQ ,切点为Q ,且满足PA PQ =.(1) 求实数a b 、间满足的等量关系; (2) 求线段PQ 长的最小值;(3) 若以P 为圆心所作的⊙P 与⊙O 有公共点,试求半径取最小值时的⊙P 方程.18.已知点),(y x Q 位于直线3x =-右侧,且到点(1,0)F -与到直线3x =-的距离之和等于4.(1)求动点),(y x Q 的坐标之间满足的关系式,并化简且指出横坐标x 的范围;(2)设(1)中的关系式表示的曲线为C ,若直线l 过点(1,0)M 且交曲线C 于不同的两点A 、B ,①求直线l 的斜率的取值范围,②若点P 满足1()2FP FA FB =+,且0EP AB ⋅=,其中点E 的坐标为0(,0)x ,试求x 0的取值范围。
19.(本题满分10分)已知以点P 为圆心的圆经过点A (1,4),B (3,6),线段AB 的垂直平分线与圆P 交于点C ,D ,且CD =4.(1)求直线CD 的方程; (2)求圆P 的方程.20.已知3条直线123:10,:230,:(1)50l x y l kx y l x k y +-=-+=-+-=相交于一点,求k 的值。
【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.A2.选C 圆22()2x a y -+=的圆心(,0)C a 到直线10x y -+=的距离为d 则 12212312a d r a a +≤=⇔≤⇔+≤⇔-≤≤3.C 4.A5.B 直线(23-)x+y=3的斜率k 1=32-,直线x+(32-)y=2的斜率k 2=23+,∴k 1·k 2=)23)(32(+-=-1.O QylxFM -36.B 7.A8.3559. B10.A第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11.解析:设直线与坐标轴的交点分别为,,显然,.则直线:,依题意:,即,所以,所以,设,则设,则,,,又,故当时,单调递减;当时,单调递增;所以当,时,有最小值. 解析:352+ 解析:设直线l 与坐标轴的交点分别为(,0)A a ,(0,)B b ,显然1a >,2b >.则直线l :1x ya b+=,依题意:221|1|111b a b-=+,即22211121a b b b +=-+,所以22ba b =-, 所以22222b AB a b b b =+=+-,设2()2xf x x x =+-, 则22222[(2)1]'()2(2)(2)x x f x x x x ---=+=--322222(441)2(1)(31)(2)(2)x x x x x x x x -+---+==--(2)x >设'()0f x =,则11x =,2352x -=,3352x +=, 又2x >,故当3(2,)x x ∈时,()f x 单调递减;当3(,)x x ∈+∞时,()f x 单调递增; 所以当352b +=,2522ba b ==+-时,AB 有最小值.12.(7,10)或(-5,-2)解析:点C(6,2)到直线x -y +3=0的距离为d ==,因为点A 在直线x -y +3=0上,可以验证点B(1,4)也在直线x -y +3=0上,所以设A(x ,y).又因为直线x解析: (7,10)或(-5,-2) 解析:点C (6,2)到直线x -y +3=0的距离为d =|6-2+3|2=72,因为点A 在直线x -y +3=0上,可以验证点B (1,4)也在直线x -y +3=0上,所以设A (x ,y ).又因为直线x -y +3=0的倾斜角为45°,所以|AB |=|1-x|cos45°=2|1-x |,所以三角形面积S =12|AB |d =12×2|1-x |·72=21.所以x =7或x =-5.故A 点坐标为(7,10)或(-5,-2). 13.1 14.15.17(,)33- 16.6或14 评得三、解答题17. (1)连,OP Q 为切点,PQ OQ ⊥,由勾股定理有222PQ OP OQ =-又由已知PQ PA =,故22PQ PA =.即:22222()1(2)(1)a b a b +-=-+-. 化简得实数a 、b 间满足的等量关系为:230a b +-=. ……………………(5分 (2)由230a b +-=,得23b a =-+.22221(23)1PQ a b a a =+-=+-+-25128a a =-+=2645()55a -+.故当65a =时,m i n 2 5.5PQ =即线段PQ 长的最小值为2 5.5 (10)(3)设圆P 的半径为R ,圆P 与圆O 有公共点,圆O 的半径为1,1 1.R OP R ∴-≤≤+即1R OP ≥-且1R OP ≤+.而2222269(23)5()55OP a b a a a =+=+-+=-+, 故当65a =时,mi n3 5.5OP =此时, 3235b a =-+=,min 3515R =-.得半径取最小值时圆P的方程为222633()()(51)555x y -+-=-. ……………………15分解法2:圆P 与圆O 有公共点,圆 P 半径最小时为与圆O 外切(取小者)的情形,而这些半径的最小值为圆心O 到直线l 的距离减去1,圆心P 为过原点与l 垂直的直线l’ 与l 的交点P 0. r = 32 2 + 1 2-1 = 355 -1. 又l’:x -2y = 0,解方程组20,230x y x y -=⎧⎨+-=⎩,得6,535x y ⎧=⎪⎪⎨⎪=⎪⎩.即P 0( 65 ,35).∴所求圆方程为222633()()(51)555x y -+-=-. ……………………15分18. (本题满分16分)解:(1)设点(,)(3)Q x y x >-,由题意得223(1)4x x y ++++=,-------------2分化简得x y 42-= -----------------------------------4分]0,3(-∈x ------------------------------------------------------------------6分(2)①由题意可直线l 的斜率k 存在且不为0,故可设方程为)1(-=x k y ,由⎩⎨⎧-=-=)1(42x k y x y 得,0)24(2222=+-+k x k x k ,]0,3(-∈x , 由0>∆,得2k <1, ---------------------------------8分由]0,3(-∈x ,令2222)24()(k x k x k x f +-+=,得⎪⎪⎩⎪⎪⎨⎧≤-<-≥>-0230)0(0)3(22k k f f ,即432>k ,故1432<<k -------------------------------------------12分 ②由)(21FB FA FP +=可知,点P 为线段AB 的中点,∴)2,2(22k kk P --. 由0=⋅AB EP 可知,EP ⊥AB ,22OPQxyA P 0lO Q y lxF M -3∴122220-=⋅--k k k x k ,整理得,1220--=k x -------------------------14分 ∴x 0的取值范围是)3,311(--------- ---------------------------------------16分 19.(本题满分10分)解 (1)因为直线AB 的斜率k =1,AB 中点坐标为M (2,5), ……………………2分所以直线CD 方程为y -5=-(x -2),即x +y -7=0. ……………………………4分(2)设圆心P (a ,b ),则由P 在CD 上得, a +b -7=0. ① 又直径CD =4,所以PA =2,即(a -1)2+(b -4)2=4. ② …………………………6分由①②解得⎩⎨⎧a =1,b =6,或⎩⎨⎧a =3,b =4.所以圆心P (1,6)或P (3,4).所以圆P 的方程为(x -1)2+(y -6)2=4或(x -3)2+(y -4)2=4. ………………………10分说明:按评分标准给分,第(2)问若少一解扣2分. 20.7k =-。