第三课时—6.2同底数幂的乘法导学案
- 格式:doc
- 大小:72.00 KB
- 文档页数:2
$同底数幂的乘法 导学案 课题 同底数幂的乘法 课时 第1课学习目标 1.理解同底数幂的乘法法则.2.运用同底数幂的乘法法则解决一些实际问题.3.通过“同底数幂的乘法法则”的推导和应用,•使学生初步理解特殊到一般,一般到特殊的认知规律. 学习重点正确理解同底数幂的乘法法则. 学习难点正确理解和应用同底数幂的乘法法则. 学具使用 多媒体课件、小黑板、彩粉笔、三角板等学习过程设计意图 一、自主预习(独学)(5分钟)课前知识回顾:表示 ,这种运算叫做 ,这种运算的结果叫 ,其中叫做 ,是 。
(观察右图,体会概念)问题:一种电子计算机每秒可进行次运算,它工作秒可进行多少次运算?应用乘方的意义可以得到:1012×103=121010)⨯⨯个(10×(10×10×10)=15101010)⨯⨯⨯个(10=1015.通过观察可以发现1012、103这两个因数是底数相同的幂的形式,所以我们把像1012×103的运算叫做同底数幂的乘法.......。
预习检测计算(1)25×22 (2)a 3·a 2 (3)5m ·5n (m 、n 都是正整数)(1)5222(22222)(22)⨯=⨯⨯⨯⨯⨯⨯=(2)32⨯=a a(3)二、合作探究、归纳展示(对学、群学)(约20分钟)【1】复习a n的意义: a n表示n个a相乘,我们把这种运算叫做乘方.乘方的结果叫幂;a叫做底数,•n是指数.【2】问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?【3】计算下列各式:(1)25×22(2)a3·a2(3)5m·5n(m、n都是正整数)【4】你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言描述.【5】议一议◆a m·a n等于什么(m、n都是正整数)?为什么?【6】a m·a n表示同底数幂的乘法.根据幂的意义可得:a m·a n=(a·a·a·......·a) (a·a·a·......·a) m个a n个a于是有a m·a n=a m+n(m、n都是正整数),用语言来描述此法则即为:三、归纳总结巩固新知(约10分钟)1、知识点的归纳总结:“同底数幂相乘,底数不变,指数相加”.a m·a n=a m+n(m、n都是正整数),2、运用新知解决问题:(重点例习题的强化训练)[例1]计算:(1)x2·x5(2)a·a6。
《同底数幂的乘法》教学案例(5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《同底数幂的乘法》教学案例(5篇)同底数幂的乘法(一)这次本店铺为您整理了5篇《《同底数幂的乘法》教学案例》,在大家参考的同时,也可以分享一下本店铺给您的好友哦。
同底数幂的乘法导学案姓名: 班级: 日期:一、复习回顾1.什么是整式?我们学习了整式的哪些运算?2. a n 表示什么含义?3.试试看:(1)下面请同学们根据乘方的意义做下面一组题:①34722(222)(2222)2⨯=⨯⨯⨯⨯⨯⨯=②3555⨯=_____________=()5③a 3.a 4=_____________=a ( )(2)根据上面的规律,请以幂的形式直接写出下列各题的结果:421010⨯= 4233⨯=n m 44⨯= =32.a a二、新知探究(一)法则探究1、猜一猜:当m,n为正整数时候,a m ·a n 等于什么?为什么?即a m ·a n = (m 、n 都是正整数)2. 同底数幂的乘法法则:同底数幂相乘, 运算形式:(同底、乘法) 运算方法:(底不变、指加法)(此处学生思考完之后,老师借助微课进一步讲解,加深记忆)3.当三个或三个以上同底数幂相乘时,也具有这一性质, 用公式表示为 a m ·a n ·a p = a m+n+p (m 、n 、p 都是正整数)4.公式的逆用:a m+n =a m ·a n(二)运用法则例1:计算(1)( -3 )7 × ( -3 )6; (2)(1111 )3 × (1111); (3)-x 3·x 5; (4)b 2m ·b 2m +1.(三)分层提高例2.计算(1)(x+y)3 · (x+y)4 (2)26()x x -⋅-(3)35()()a b b a -⋅- (4)123-⋅m m a a (m 是正整数)例3 :光在真空中的速度约为 3 × 108 m/s ,太阳光照射到地球上大约需要5 × 102 s .地球距离太阳大约有多远?三、巩固练习计算(1)52×57; (2)7×73×72;(3)-x 2·x 3; (4)(-c )3·(-c )m .(5) a 5·a 2·a四、总结归纳1.同底数幂的乘法法则是什么?应用法则时应该注意什么?2.同底数幂的乘法法则是幂的运算的第一个性质,也是整式乘法运算的重要依据之一.五、当堂检测1.下面的计算是否正确? 如果错,请在旁边改正(1).a 3·a 4=a 12 (2).m·m 4=m 4(3).a2·b3=ab5(4).x5+x5=2x10(5).3c4·2c2=5c6(6).x2·x n=x2n(7).2m·2n=2m·n(8).b4·b4·b4=3b4 2.填空:(1)x5·()= x 8(2)a.()= a6(3)x ·x3()= x7(4)x m·()=x3m(5)x5·x( )=x3·x7=x( )·x6=x·x( )(6)a n+1·a( )=a2n+1=a·a( )3.若a m=3,a n=4,则a m+n= .六、作业1.计算(1)c.c11 (2)104×102×10 (3)(-b)3×(-b)2 (4)-b3.b2(5)x m-1.x m+1(m〉1) (6)a.a3.a n2.已知 a m=2,a n=8,求a m+n.。
同底数幂的乘法导学案教学设计教学设计目标:1.理解同底数幂的乘法规则;2.通过实际生活中的例子和练习,运用同底数幂的乘法规则解决问题;3.培养学生的逻辑思维和解决问题的能力。
教学准备:1.教师准备黑板、彩色粉笔、同底数幂的乘法导学案副本,实际生活中的例子(如面积、体积等);2.学生准备笔记本、铅笔。
教学过程:引入部分:(10分钟)Step 1:教师出示一个实际生活中的问题,如一些房间的面积为4平方米,再有一个房间的面积是原房间的平方,问第二个房间的面积是多少?指导学生思考及讨论,并记录学生的回答。
Step 2:教师引导学生回顾指数的定义和乘法的概念,如何表示一个数的乘方。
提问,如果求一个数的乘方,指数相同的情况下,需要做什么操作?学生思考并回答。
Step 3:教师出示同底数幂的乘法规则,指导学生理解规则的含义,并进行讲解。
同底数幂相乘,底数不变,指数相加。
探究部分:(30分钟)Step 4:教师再次引导学生回顾刚才的问题,以及同底数幂的乘法规则。
学生尝试运用同底数幂的乘法规则解决问题,并在黑板上展示解题过程。
Step 5:教师指导学生观察和总结同底数幂的乘法规则及特点。
指导学生完成同底数幂相乘的练习题,强化理解。
Step 6:教师出示更复杂的实际生活中的例子,如一个饭店每天卖出200份汉堡,一个月的时间里总共卖了多少份汉堡?引导学生运用同底数幂的乘法规则解决问题。
巩固部分:(20分钟)Step 7:教师让学生自主完成同底数幂的乘法练习题,并相互交流讨论解题思路。
Step 8:教师出示一个新的问题,让学生运用同底数幂的乘法规则进行求解。
问题如下:有一个正方体,边长为2厘米,求该正方体的体积。
学生思考并回答。
Step 9:教师总结本节课的学习内容,并强调同底数幂的乘法规则在实际生活中的应用。
拓展部分:(10分钟)Step 10:教师设计一个小组活动,让学生分成小组,每个小组设计一个实际生活中的问题,并运用同底数幂的乘法规则进行求解,然后进行展示。
《同底数幂的乘法》导学案教学目标(一)知识与技能1、理解同底数幂的乘法的法则。
2、能正确运用同底数幂的乘法的运算性质。
3、能运用它解决一些实际问题。
(二)能力训练要求1、经历探索同底数幂的乘法运算性质的过程,感受幂的意义,发展推理能力和表达能力,提高计算能力。
2、通过“同底数幂的乘法法则”的推导和应用,使学生初步理解特殊——一般——特殊的认知规律。
(三)情感、态度与价值观在小组合作交流中,培养协作精神、探究精神,增强学习信心。
(四)教学重、难点1、重点:同底数幂乘法运算性质的推导和应用。
2、难点:同底数幂的乘法的法则的应用。
(五)教学方法采用“情境导入——自主探究——发现问题”的方法,让学生从生活实际出发,认识同底数幂的运算法则。
(六)教具准备多媒体课件教学过程一、创设情境“盘古开天壁地”的故事:公元前一百万年,没有天没有地,整个宇宙是混浊的一团,突然间窜出来一个巨人,他的名字叫盘古,他手握一把巨斧,用力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流。
提问:盘古的左眼变成了太阳,那么,太阳离我们多远呢?你可以计算一下,太阳到地球的距离是多少?光的速度为3×105千米/秒,太阳光照射到地球大约需要5×102秒,你能计算出地球距离太阳大约有多远呢?分析:距离=×即:105×102如何计算呢?(引入课题)二、引导自学1、上式的问题中:①式子105×102的意义是什么?②这两个式子中的两个因式有何特点?2、学生自学课本P141-142内容并完成如下自学引导思考题:①105×102=()×()()=()()=10()=10()+()②a3×a2=()×()()=()()=a()=a()+()三、合作探究1、请观察上面各题左、右两边,底数、指数有什么关系? 猜想:①23×24=2()+()=2(); ②53×54=5()+()=5();③5m ×5n =5()+()=5()。
《同底数幂的乘法》导学案一、学习目标1、理解同底数幂乘法的运算性质。
2、能够熟练运用同底数幂乘法的运算性质进行计算。
3、通过对同底数幂乘法法则的推导和应用,体会从特殊到一般、从具体到抽象的数学思维方法,提高数学推理能力和计算能力。
二、学习重点同底数幂乘法的运算性质及其应用。
三、学习难点同底数幂乘法运算性质的推导过程及灵活运用。
四、知识回顾1、幂的概念:幂指乘方运算的结果。
$a^n$中,$a$叫做底数,$n$叫做指数,$a^n$读作“$a$的$n$次幂”。
2、乘方的意义:$a^n$表示$n$个$a$相乘。
五、探索新知1、计算下列式子:(1)$2^3×2^2$(2)$5^4×5^3$思考:观察上述式子,它们的底数有什么特点?指数呢?2、计算:(1)$a^3×a^2$($a≠0$)(2)$10^m×10^n$($m$、$n$为正整数)通过计算,我们可以发现:同底数幂相乘,底数不变,指数相加。
用字母表示为:$a^m×a^n = a^{m + n}$($m$、$n$都是正整数)六、例题讲解例 1:计算(1)$x^2×x^5$(2)$a^6·a$(3)$(-2)×(-2)^3×(-2)^2$解:(1)$x^2×x^5 = x^{2 + 5} = x^7$(2)$a^6·a = a^6×a^1 = a^{6 + 1} = a^7$(3)$(-2)×(-2)^3×(-2)^2 =(-2)^{1 + 3 + 2} =(-2)^6 = 64$例 2:计算(1)$x^m·x^{3 + m}$(2)$(x + y)^3·(x + y)^4$解:(1)$x^m·x^{3 + m} = x^{m + 3 + m} = x^{2m + 3}$(2)$(x + y)^3·(x + y)^4 =(x + y)^{3 + 4} =(x +y)^7$七、课堂练习1、计算:(1)$10^5×10^6$(2)$b^7×b$(3)$y^3·y^2·y$2、计算:(1)$(a)^3·(a)^2$(2)$(x y)^2·(x y)^3$3、已知$a^m = 3$,$a^n = 5$,求$a^{m + n}$的值。
最新人教版《同底数幂的乘法》教案一、教学目标1. 让学生理解同底数幂的乘法概念,掌握同底数幂相乘的运算法则。
2. 培养学生运用同底数幂的乘法解决实际问题的能力。
3. 提高学生的数学思维能力和运算能力。
二、教学内容1. 同底数幂的乘法定义及运算法则。
2. 实例讲解和练习。
三、教学重点与难点1. 教学重点:同底数幂的乘法概念及运算法则。
2. 教学难点:如何运用同底数幂的乘法解决实际问题。
四、教学方法1. 采用讲解、示范、练习、讨论、总结的教学方法。
2. 利用多媒体辅助教学,增强学生的直观感受。
3. 结合生活实例,激发学生的学习兴趣。
五、教学过程1. 导入新课:复习幂的定义,引出同底数幂的乘法概念。
2. 讲解与示范:讲解同底数幂的乘法运算法则,并进行示范。
3. 练习:学生独立完成练习题,巩固所学知识。
4. 讨论:分组讨论生活中的实际问题,运用同底数幂的乘法解决。
5. 总结:对本节课的内容进行总结,强调重点和难点。
6. 布置作业:布置适量作业,巩固所学知识。
六、教学策略1. 案例分析:通过分析具体案例,让学生理解同底数幂的乘法在实际问题中的应用。
2. 问题解决:引导学生运用同底数幂的乘法解决数学问题,提高学生的解决问题的能力。
3. 小组合作:组织学生进行小组合作,共同探讨同底数幂的乘法运算法则,培养学生的团队合作精神。
七、教学评价1. 课堂提问:通过提问了解学生对同底数幂的乘法的理解和掌握情况。
2. 作业批改:检查学生作业,评估学生对同底数幂的乘法的掌握程度。
3. 课堂表现:观察学生在课堂上的参与程度和表现,了解学生的学习状态。
八、教学资源1. 教材:最新人教版数学教材。
2. 多媒体课件:制作精美的多媒体课件,辅助教学。
3. 练习题库:准备一定量的练习题,供学生课后巩固练习。
九、教学进度安排1. 第1周:讲解同底数幂的乘法定义及运算法则。
2. 第2周:通过实例讲解和练习,巩固同底数幂的乘法知识。
3. 第3周:组织小组讨论,运用同底数幂的乘法解决实际问题。
同底数幂的乘法教案7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作报告、军训心得、学习心得、培训心得、条据文书、读后感、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work plans, work reports, military training experiences, learning experiences, training experiences, doctrinal documents, post reading feedback, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!同底数幂的乘法教案7篇教案的准备可以帮助我们更好地与学生进行互动和沟通,为了实现个性化教育,我们需要在教案中考虑学生的学习能力和学习需求,本店铺今天就为您带来了同底数幂的乘法教案7篇,相信一定会对你有所帮助。
章节:§6.2同底数幂的乘法运算
学习内容:
一、课前复习:
1、n a 表示什么运算?它的意义是什么?其中a 、n 分别叫什么?
2、43 ,(-2)5﹣52 分别表示什么意义?分别指出它们的底数、指数和结果?
3、把10×10×10×10×10可写成 的形式;
把a ﹒a ﹒a ﹒a ﹒a 可写成 的形式;
二、探究新知:
1、自学知识要点:(书66页—67页)
2、填空:
(1)102×103 (2)a 3×a 4
﹦( )×( ) ﹦( )×( )
﹦( ) ﹦( )
﹦10( ) ﹦a
( )
(3)自己再举例: 思考:
(1)这些算式具有的特点是什么?
(2)结果与算式之间有什么联系?
3、同底数幂的乘法运算性质用语言表述为: ________________ ____
用数学式子表示:
4、思考:当三个或三个以上的同底数幂相乘时,是否符合上述性质呢?说明原因? 用数学式子表示为
三、巩固新知:
1、计算:
(1)23×43 (2)2y .2y .6y ·y (3) 3x ·31n x
+.21n x -
(4) (4).()x x -- (5)-2x .7x (6)-3 3.(3)-
(7) 2x ·3x ﹣2x ·x 4 (8)32x .5x ﹢23x .4x
2、完成教材68页1,2题:
3、计算:
(1)(x-y ).2()y x -.3()x y - (2) 2()y x -.(x-y)5
四、拓展提高:
1、填空:
(1) x 3 ·( )= x 8 (2) b a ·b 3=b 2a ·b 2 ,则a=( )
(3)若3×27×9﹦3x ,x ﹦( ) (4)若a m =2,a n =3,则a m+n =( )
(5)若2x =3,则2x+3的值为( )
2、若3x ﹦81,3y﹦27,求3x+y 的值。
3、若a n+1·a m+n ﹦a 6 , m ﹣2n ﹦1,则m n 的值是多少?
五、知识梳理:这节课你学到了什么知识?掌握了什么解题方法?
六、作业:教材68页3题,72页1,2题。