2016最新北师大版七年级数学下第二章《平行线与相交线》学案
- 格式:doc
- 大小:384.00 KB
- 文档页数:21
七年级数学下册第二章相交线与平行线2.3.2平行线的性质教学设计新版北师大版一. 教材分析平行线的性质是七年级数学下册第二章相交线与平行线的一部分,这部分内容主要让学生了解和掌握平行线的性质。
教材通过引入生活中的实例,让学生探究平行线的性质,培养学生的动手操作能力和逻辑思维能力。
本节课的内容对于学生来说比较抽象,需要通过大量的练习来理解和掌握。
二. 学情分析七年级的学生已经学习过直线、射线、线段等基本概念,对图形的认知有一定的基础。
但是,对于平行线的性质,学生可能初次接触,需要通过实例和操作来理解和掌握。
学生的学习动机较强,对于新的知识充满好奇,但同时也可能存在一定的恐惧心理。
因此,教师在教学过程中要注重引导,让学生克服恐惧,积极参与学习。
三. 教学目标1.知识与技能:使学生理解和掌握平行线的性质,能够运用平行线的性质解决实际问题。
2.过程与方法:通过观察、操作、探究等方法,培养学生的动手操作能力和逻辑思维能力。
3.情感态度与价值观:激发学生的学习兴趣,培养学生的团队协作精神,使学生感受到数学与生活的紧密联系。
四. 教学重难点1.重点:平行线的性质。
2.难点:如何引导学生理解和掌握平行线的性质,以及如何运用平行线的性质解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入平行线的性质,让学生在具体的情境中感受和理解知识。
2.启发式教学法:引导学生观察、操作、探究,激发学生的思维,培养学生的解决问题的能力。
3.小组合作学习:让学生在小组内讨论、交流,培养学生的团队协作精神。
六. 教学准备1.准备相关的生活实例和图片,用于导入和呈现。
2.准备平行线的性质的PPT,用于讲解和展示。
3.准备一些练习题,用于巩固和拓展。
七. 教学过程1.导入(5分钟)利用生活实例引入平行线的性质,如在道路上的交通标志、书桌上的文具等。
引导学生观察和思考,激发学生的学习兴趣。
2.呈现(10分钟)通过PPT展示平行线的性质,让学生直观地理解和掌握。
七年级数学下册第二章相交线与平行线2.1.2两条直线的位置关系教学设计新版北师大版一. 教材分析本节课的内容是北师大版七年级数学下册第二章相交线与平行线2.1.2两条直线的位置关系。
这部分内容是学生继小学阶段对直线初步认识后的进一步学习,是对直线位置关系的深入探讨。
通过本节课的学习,学生能够理解两条直线相交和平行的概念,掌握判断两条直线位置关系的方法,为后续几何学习打下基础。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象能力,他们对直线、射线等基本概念有了初步的认识。
但是,对于两条直线位置关系的理解还需要通过实例和操作来进一步深化。
此外,学生可能对一些抽象的概念和理论的学习感到困难,需要教师通过生动形象的讲解和丰富的教学手段来帮助他们理解和掌握。
三. 教学目标1.知识与技能:学生能够理解两条直线相交和平行的概念,掌握判断两条直线位置关系的方法。
2.过程与方法:学生通过观察、操作、思考、交流等活动,培养空间想象能力和逻辑思维能力。
3.情感态度与价值观:学生培养对数学的兴趣,增强自信心,培养合作意识和探究精神。
四. 教学重难点1.教学重点:学生能够理解两条直线相交和平行的概念,掌握判断两条直线位置关系的方法。
2.教学难点:学生对两条直线位置关系的理解和判断方法的掌握。
五. 教学方法本节课采用以下教学方法:1.情境教学法:通过生活实例和图形模型,引导学生观察和思考两条直线的位置关系。
2.启发式教学法:教师提出问题,引导学生思考和探究,激发学生的学习兴趣和动力。
3.合作学习法:学生通过小组讨论和合作,共同解决问题,培养合作意识和交流能力。
4.实践操作法:学生通过动手操作,加深对两条直线位置关系的理解和记忆。
六. 教学准备1.教学课件:制作课件,包括图形模型、实例、问题等,以便进行直观展示和引导学生思考。
2.教学道具:准备一些直线模型和图形,用于操作和演示。
3.练习题:准备一些练习题,用于巩固学生的理解和掌握程度。
课 题第二章 相交线与平行线1、两条直线的位置关系(第1课时)教 学 目 标1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。
2.过程与方法:经历操作、观察、猜想、交流、推理等获取信息的过程,进一步发展空间观念、推理能力和有条理表达的能力。
3.情感与态度:激发学生学习数学的兴趣,认识到现实生活中蕴含着大量的数量和图形的有关问题,这些问题可以抽象成数学问题,用数学方法予以解决。
教学重、难点1. 2.教 学 过 程 教 学 内 容可根据学生实际增减内容 第一环节 走进生活 引入课题 活动内容一:两条直线的位置关系1. 巩固练习:教师展示下列图片,学生快速回答:2.1—1 2.1—2 结论:1.一般地,在同一平面内,两条直线的位置关系有两种: 和 . 2.定义分别为: 。
问题1:在2.1—1中,直线m 和n 的关系是 ;a 和b 是 ;a 和n 是 。
问题2:在2,1—2你能提出哪些问题?第二环节 动手实践 探究新知动手实践一m nab请先画一画:两条直线直线和,交于点O,再回答下列问题..问题1:观察2.1—4:∠1和∠2的位置有什么关系?大小有何关系?为什么?小组合作交流,尝试用自己的语言描述对顶角的定义。
问题2:剪子可以看成图2.1—4,那么剪子在剪东西的过程中,∠1和∠2还保持相等吗?∠3和∠4呢?你有何结论? 问题3:下列各图中,∠1和∠2是对顶角的是( )问题4:如图2.1—6所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数吗?你能说出所量角是多少度吗?为什么?动手实践二补角定义:一般地,如果两个角的和是1800,那么称这两个角互为补角( ) 余角定义:如果两个角的和是900,那么称这两个角互为余角( ) 动手实践三打台球时,选择适当的方向,用白球击打红球,反弹后的红球会直接入袋,此时∠1=∠2,将图2.1—7抽象成图2.1—8,与交于点O ,∠∠900,∠1=∠2小组合作交流,解决下列问题:在图2.1—8中 问题1:哪些角互为补角?哪些角互为余角?1 2 1 2 1 212A B CD 注意:互余与互补是指两个角之间的数量关系,与它们的位置无关。
DCBAA垂线段及其性质【学习目标】:1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力。
2.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义, 并会度量点到直线的距离【学习重点】:“垂线段最短”的性质,点到直线的距离的概念及其简单应用 【学法重点】: 对点到直线的距离的概念的理解.一、【自主探究】(阅读课本5-6页,把不懂的问题记录下来,课堂上我们共同讨论!) 我的疑难问题:二、【合作探究】 1 垂线段: 2 点到直线的距离:3.画图操作 (1)画出直线l, l 外一点P; (2)过P 点出PO ⊥l,垂足为O;(3)点A1,A2,A3……在L 上,连接PA.PA2.PA3……; (4)用叠合法或度量法比较PO 、PA1.PA2.PA3……长短.垂线性质2:四【达标测试】1.如图,AC ⊥AB,A 为垂足,AD ⊥BC,D 为垂足,AB=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么 点C 到AB 的距离是_______,点A 到BC 的距离是________,点B 到AD 的距离是_____, C.B 两点的距离是_ __2.点到直线的距离是指这点到这条直线的( )A.垂线段B.垂线的长C.长度D.垂线段的长 3.已知点O ,画和点O 的距离是3厘米的直线可以画( ) A.1条 B.2条 C.3条 D.无数条 4.如右图所示,下列说法不正确的是( )毛ED BAA.点B 到AC 的垂线段是线段AB;B.点C 到AB 的垂线段是线段ACC.线段AD 是点D 到BC 的垂线段;D.线段BD 是点B 到AD 的垂线段 5.如右图所示,能表示点到直线(线段)的距离的线段有( ) A.2条 B.3条 C.4条 D.5条 6.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线; ②在平面内,过直线外一点有且只有一条直线垂直于已知直线; ③在平面内,过一点可以任意画一条直线垂直于已知直线; ④在平面内,有且只有一条直线垂直于已知直线. A.1个 B.2个 C.3个 D.4个7已知直线A.b,过点a 上一点A 作AB ⊥a,交b 于点B,过B 作BC ⊥b 交a 上于点C.请说出哪一条线段的长是哪一点到哪一条直线的距离? 并且用刻度尺测量这个距离.。
七年级数学下册第二章相交线与平行线2.1.1两条直线的位置关系教案新版北师大版一. 教材分析本节课主要介绍两条直线的位置关系,分为相交和不相交两种情况。
通过观察生活中的实例,让学生理解并掌握两条直线相交和不相交的性质,为后续学习平行线打下基础。
二. 学情分析七年级的学生已经学习了平面几何的基本概念,对图形的认知有一定的基础。
但是,对于直线的位置关系,他们可能还停留在直观的层面,需要通过实例和操作来进一步理解和掌握。
三. 教学目标1.知识与技能:让学生了解两条直线的位置关系,能够判断直线是否相交,并能够用数学语言描述直线的位置关系。
2.过程与方法:通过观察、操作、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 教学重难点1.重点:直线相交和不相交的性质。
2.难点:直线位置关系的判断和数学语言的描述。
五. 教学方法1.采用问题驱动法,引导学生观察、思考和解决问题。
2.利用生活中的实例,让学生直观地理解直线的位置关系。
3.通过小组讨论和操作活动,培养学生的合作能力和动手能力。
4.运用归纳总结法,帮助学生形成系统化的知识结构。
六. 教学准备1.准备相关的实例图片,如交叉的道路、并行的铁路等。
2.准备直线相交和不相交的模型,如尺子、直板等。
3.准备黑板和粉笔,用于板书和展示。
七. 教学过程1.导入(5分钟)通过展示实例图片,引导学生观察直线的位置关系。
提问:这些直线有什么共同的特点?它们是如何相互位置的?让学生发表自己的观点,总结出直线相交和不相交的性质。
2.呈现(10分钟)利用模型和板书,呈现直线相交和不相交的情况。
解释相交线的定义:在同一平面内,两条直线相交于一点,称为相交线。
不相交线的定义:在同一平面内,两条直线永远不相交,称为不相交线。
3.操练(10分钟)让学生分组进行操作活动,用尺子和直板摆出不同的直线组合,观察它们的位置关系。
七年级数学下册第二章相交线与平行线2.1.2两条直线的位置关系教案新版北师大版一. 教材分析本节课的主要内容是相交线与平行线,是几何学中的基本概念。
通过学习,学生可以理解两条直线的位置关系,掌握相交线与平行线的判定方法,并能够应用这些知识解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了平面几何的基本概念,对图形的性质和判定有一定的了解。
但是学生对于两条直线位置关系的理解还不够深入,需要通过实例和练习来进一步巩固。
三. 教学目标1.理解两条直线的位置关系,能够用专业术语进行描述。
2.掌握相交线与平行线的判定方法,并能够应用这些知识解决实际问题。
3.培养学生的空间想象能力,提高学生的几何思维能力。
四. 教学重难点1.两条直线的位置关系及其判定方法。
2.如何用专业术语描述两条直线的位置关系。
3.如何应用相交线与平行线的知识解决实际问题。
五. 教学方法采用问题驱动法和案例教学法,引导学生通过观察、思考、讨论、实践等方式,理解两条直线的位置关系,掌握相交线与平行线的判定方法,提高学生的空间想象能力和几何思维能力。
六. 教学准备1.教学PPT。
2.教学案例和实例。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过PPT展示一些生活中常见的相交线和平行线的实例,如马路的交叉和铁路的平行,引导学生观察和思考这些实例中直线的位置关系,从而引出本节课的主题——两条直线的位置关系。
2.呈现(10分钟)介绍两条直线的位置关系的专业术语,如相交线、平行线、交点等,并通过PPT 和板书详细解释这些术语的含义。
3.操练(10分钟)通过PPT和板书,给出判定两条直线位置关系的方法,如利用交点、利用角度等,并给出一些实例,让学生尝试判断这些实例中直线的位置关系。
4.巩固(10分钟)让学生通过PPT上的练习题,巩固刚刚学到的知识,同时让学生尝试用专业术语描述这些直线的位置关系。
5.拓展(10分钟)利用刚刚学到的知识解决一些实际问题,如设计一个公园的平面图,让学生应用相交线与平行线的知识,解决公园中道路和花坛的布局问题。
1北师大版七年级下数学第二章《相交线与平行线》教案 《2.1两条直线的位置关系》教案一:教学目标1、掌握两条直线平行与垂直的条件;2、会运用条件判断两直线是否平行或垂直;3、能运用条件确定两平行或垂直直线的方程系数.二:教学重点、难点两条直线平行与垂直的条件, 两条直线平行与垂直的条件的应用.三:教学设计(一)情景引入A :两条直线位置关系当中平行为简单;现在我们来研究平面内两条直线平行的关系. ①先入为主的思想;在研究直线问题时首先考虑特殊情况:α=90°时,画图.这个情况很简单:当α=90°时只要x 1≠x 2,则两条直线平行.②一般情况:α≠90°时,则k 存在,∴y 1=kx +b 1 y 2=kx +b 2已知直线l 1,l 2的斜截式方程为:l 1:y =k 1x +b 1 l 2:y =k 2x +b 2,若l 1//l 2,则有α1=α2且b 1≠b 2,∴tan α=tan α [α1∈[0,180°),α2∈[0,180°)]∴k 1=k 2反之,是否成立?若k 1=k 2且b 1≠b 2则有tan α=tan α,∵0≤α1,α2<π,∴α1=α2且b 1≠b 2,∴l 1//l 2结论一:①特殊情况:若两条直线l 1,l 2斜率都不存在也不重合,则两直线l 1,l 2平行; ②有斜率的两条直线l 1//l 2 <=> k 1=k 2且b 1≠b 2∴判断不重合的两条直线平行的程序:两条直线方程——两条直线斜率都不存在且不重合→平行.两条直线方程——化为斜截式方程→求两条直线斜率.若k 1=k 2且b 1≠b 2→平行若k 1≠k 2→相交或者若A 1B 2≠B 1A 2且B 1C 2≠B 2C 1或A 1B 2=A 2B 1且A 1C 2≠A 2C 1 则两条直线平行.例1:已知两条直线l 1:4x +2y -7=0,l 2:2x -y -5=0求证l 1∥l 212122∵l 1的斜率为,l 2的斜率为 ∴k 1=k 2∴l 1∥l 2 例2:求过点A (1,-4)且与直线2x +3y +5=0平行的直线的方程?解:已知直线的斜率为-,因为所求直线与已知直线平行,因此它的斜率也是-. 根据点斜式,得到所求直线的方程是:y +4=-(x -1)即2x +3y +10=0 例3:如果直线ax +2y +2=0与3x -y -2=0平行,那么系数a =()A .3B .-6C .-D . 例4:求与直线3x +4y +1=0平行,且在两坐标轴上截距之和为的直线l 的方程? 法一:设直线方程为3x +4y +m =0,交x 轴于点(-,0)交y 轴于点(0,-),由题意可得(-)+(-)=即m =-4, ∴所求直线l 的方程为3x +4y -4=0, 法二:设直线方程为+=1, ∴a +b =,-=-,可得a =,b =1, ∴所求直线l 的方程为3x +4y -4=0B :平时我们已经理解了;接下来我们来研究两直线相互垂直的关系.①同样的先考虑特殊情况:若已知一条直线的倾斜角为90°,x =x 1,则求其另一条与它垂直的直线方程.②一般情况:若已知两条直线l 1:y =k 1x +b 1,l 2:y =k 2 x +b 2,相互垂直则k 1与k 2有何关系? α+(π-β)= ∴α-β=- ∴β=α+ 21213232322332373m 4m 3m 4m 37a x b y 37a b 43342π2π2π3tan β=tan (α+)=-cot α ∴tan α·tan β=tan α·(-cot α)=-1∴最后我们得证:若两条直线垂直则k 1k 2=-1.③α=90°时=>β=0°(特殊情况)k 1=0,k 2不存在.或者k 1不存在,k 2=0.例4:已知直线l 1:ax -y +2a =0与l 2:(2a -1)x +ay +a =0互相垂直,求a 的值一、①当α=90°即a =0时,l 2:x =0 ∴l 1:y =0 ∴l 1⊥l 2②当α≠90°则k 1·k 2=a ·(-)=-1 ∴a =1 二、A 1A 2+B 1B 2=0 =>a (2a -1)-a =0 2a ²-2a =0 =>a =1或a =0例5:求与3x +4y +1=0平行,且在两坐标轴上截距之和为7/3的直线l 的方程.(一)设直线方程为3x +4y +m =0,交x 轴于点(-,0)交y 轴于点(0,-) ∴(-)+(-)= ∴m =-4∴所求直线l 的方程为3x +4y -4=0(二)设直线方程为+=1 =>a +b =;-=-=>a =,b =1 ∴l :3x +4y -4=0例6:已知三角形两条高线为x +y =0和2x -3y +1=0且一个顶点C (1,2),求三角形AC ,BC 边所在直线的方程.∵AC ,BC 与两条高线垂直∴AC ,BC 的斜率为1和- ∴边AC ,BC 所在直线的方程为y -2=1(x -1),y -2=-(x -1) 即x -y +1=0,3x +2y -7=0《2.2探索直线平行的条件》教案一、导学目标1.使学生能够熟练识别同位角;2πaa )12(-3m 4m 3m 4m 37a xb y 37a b 433423232.使学生会用同位角相等判定二条直线平行.二、重点难点1.重点(1)识别同位角.(2)用同位角相等判定二条直线平行.2.难点用同位角相等判定二条直线平行.三、导学过程一、自主学习:操作---观察---探索如图:3根木条(或硬纸条)相交成∠1、∠2,固定木条b、c,转动木条a.问:1.在木条a的转动过程中,木条a、b的位置关系发生了什么变化?∠2与∠1的大小关系发生了什么变化?2.改变图中∠1的大小,按照上面的方式再试一试,当∠2与∠1的大小满足什么关系时,木条a与木条b平行?二、合作探究:活动一:利用平移三角尺的方法画平行线,探索直线平行的条件.当∠1与∠2相等,直线a、b就;当∠1与∠2不相等时,直线a、b平行吗?活动二:通过观察、比较,认识“同位角”,探索直线平行的条件.直线a、b被第三条直线c所截而成的8个角中,像∠1与∠2这样的一对角称为.请问图中还有没有其他的同位角?4归纳:相等,两直线.活动三:例题讲解.例:如图,∠1=∠C,∠2=∠C,请找出图中互相平行的直线,并说明理由.三、拓展提高:1.∠1与∠C、∠2与∠B、∠ 3与∠ C分别是哪两条直线被哪一条直线截成的同位角?2.如图,直线a、b被直线c所截,∠1=35°,∠2=145°,问:直线a与b平行吗?四、达标检测:1.如图,∠1与∠B是直线和被直线所截构成的同位角;∠2与∠A直线和被直线所截构成的同位角.2.如图,∠1、∠2、∠3中,和是同位角.3.如图,如果∠B=∠1,根据,那么可得DE//BC;如果∠B=∠2,根据同位角相等,两直线平行,那么可得// .4.如图,已知直线AB、CD被直线EF所截,如果∠BMN=∠DNF,∠1=∠2,那么MQ∥NP,为什么?AB CD EF13256《2.3平行线的性质》教案教学目标:理解平行线的性质的推导,掌握平行线的性质.教学重点:平行线的性质以及应用.教学难点:平行线的性质公理与判定公理的区别.教学过程:一、梳理旧知,引出新课平行线的判定:判定方法1、同位角相等,两直线平行.判定方法2、内错角相等,两直线平行.判定方法3、同旁内角互补,两直线平行.问题:反过来也成立吗?过去我们学过:如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.这两个句子都是正确的.现在换一个例子:如果两个角是对顶角,那么这两个角相等.它是对的.反过来,如果两个角相等,这两个角是对顶角.对吗?再看下面的例子:“如果一个整数个位上的数字是5,那么它一定能够被5整除.”对吗?这句话反过来怎么说?对不对?【结论】如果一个句子是正确的,反过来说(因果对调),就未必正确.二、动手操作,归纳性质上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?它还是对的吗?(板书)性质1、两直线平行,同位角相等.P Q M N21F ED C B A7如果把平行线性质1:“两直线平行,同位角相等”看作是基本事实(公理),我们可以利用这个公理证明平行线性质2:“两直线平行,内错角相等”.【例】如图,已知:直线a 、b 被直线c 所截,且a ∥b ,求证:∠1=∠2.证明:∵a ∥b ,∴∠1=∠3(__________________).∵∠3=∠2(对顶角相等),∴∠1=∠2(等量代换).(板书)性质2、两直线平行,内错角相等【变式】下面我们来证明平行线的性质3:两直线平行,同旁内角互补.请模仿范例写出证明.如图,已知:直线a 、b 被直线c 所截,且a ∥b ,求证:∠1+∠2=180º.证明:(略)(板书)性质:两直线平行,同旁内角互补三、巩固新知,深化理解例1、如图,平行线AB ,CD 被直线AE 所截.(1)从∠1=110º.可以知道∠2是多少度吗?为什么?(2)从∠1=110º可以知道∠3是多少度吗?为什么?(3)从∠1=110º可以知道∠4是多少度吗?为什么?例2、如图,已知AB ∥CD ,AE ∥CF ,∠A = 39°,∠C 是多少度?为什么?ab1 2 3 c ab 1 23c ED CB A12348方法一解:∵AB ∥CD , ∴ ∠C=∠1.∵ AE ∥CF ,∴ ∠A=∠1.∴ ∠C=∠A .∵∠A = 39º,∴∠C = 39º.方法二解:∵AB ∥CD ,∴ ∠C=∠2.∵ AE ∥CF ,∴ ∠A=∠2.∴ ∠C=∠A .∵∠A = 39º,∴∠C = 39º.练习1:如图,已知直线a 、b 被直线c 所截,在括号内为下面各小题的推理填上适当的根据: (1)∵a ∥b ,∴∠1=∠3(___________________);(2)∵∠1=∠3,∴a ∥b (_________________).(3)∵a ∥b ,∴∠1=∠2(__________________);(4)∴a ∥b ,∴∠1+∠4=180º(_____________________________________)(5)∵∠1=∠2,∴a ∥b (___________________);(6)∵∠1+∠4=180º,∴a ∥b (_______________).练习2:教材第51页 随堂练习四、盘点收获,布置作业1、(1)平行线的性质是什么?(2)你能用自己的语言叙述研究平行线性质的过程吗?(3)性质2和性质3是通过简单推理得到的,在推理论证中需要注意哪些问题?2、作业G FED C B Aa b12 3 c 49《2.4用尺规作角》教案教学目的:1、经历尺规作角的过程,进一步培养学生的动手操作能力,增强学生的数学应用和研究意识.2、能按作图语言来完成作图动作,能用尺规作一个角等于已知角.教学重点:能按作图语言来完成作图动作,能用尺规作一个角等于已知角.教学难点:作图步骤和作图语言的叙述,及作角的综合应用.教学过程:一、问题的提出如图,要在长方形木板上截一个平行四边形,使它的一组对边在长方形木板的边缘上,另一组对边中的一条边为AB .(1)请过点C 画出与AB 平行的另一条边.(2)如果你只有一个圆规和一把没有刻度的直尺,你能解决这个问题吗?二 、新课内容一:(请按作图步骤和要求操作,别忘了留下作图痕迹)(一) 用尺规作一个角等于已知角.(1)已知:∠AOB求作:∠A′O′B′,使∠A′O′B′=∠AOB(2)已知:∠10求作:∠AOB ,使∠AOB=∠(二)用尺规作一个角等于已知角的倍数:(3)已知:∠1求作:∠MON ,使∠MON=2∠1∠COD ,使∠COD=3∠1(三)用尺规作一个角等于已知角的和:(4) 已知:∠1、∠2、∠3求作:①∠AOB ,使∠AOB=∠1+∠2②∠POQ ,使∠POQ=∠1+∠2+∠3③∠MON ,使∠MON=2∠1+∠2(四)用尺规作一个角等于已知角的差:已知:∠、∠、∠求作:①∠AOB ,使∠AOB=∠-∠②∠POQ ,使∠POQ=∠-∠-∠③求作一个角,使它等于2∠-∠(五) 综合练习:(通过以下练习,意味着你掌握了作角的真本领,多动一下脑筋,你一定会完成得很出色的)1、已知:线段AB 、 ∠、∠αα1αβγαβγαβαβγβγαβ13211求作:分别过点A 、点B 作∠CAB=∠、∠CBA=∠2、如图,点P 为∠ABC 的边AB 上的一点,过点P 作直线EF//BC .3、已知:直线L 和L 外一点P ,求作:一条直线,使它经过点P ,并与已知直线L 平行.4、已知:△ABC ,求作:直线MN ,使MN 经过点A ,且MN//BC .5、如图,以点B 为顶点,射线BA 为一边,在∠ABC 外再作一个角,使其等于∠ABC .(六)小结(七)作业αβLA αβ。
数学初一下北师大版第二章平行线与相交线学案2.1余角与补角学习目标:1、经历观看、操作、推理、交流等过程,进一步进展空间观念、推理能力和有条理表达的能力。
2、在具体情景中了解补角、余角、对顶角,明白等角的余角相等、等角的补角相等、对顶角相等,并能解决一些实际问题。
学习过程:【一】知识回忆1、在同一平面内,两条直线有_______和_______两种位置关系.2、角的概念,我们学过角的表示方法有N【二】学习新课AB1、在课本P59页图2-1中,是锐角,12是直角,是钝角D34E相加等于90°的两个角有,相加等于180°的两个角O有。
在那个图形中∠1=∠2,结合上面的结论,说说各角与∠3的关系:2、〔1〕余角的概念:假如两个角,那么称这两个角互为余角、图2-1中,互为余角的有〔2〕互为余角的有关性质:①假设∠1,∠2互余、那么,反过来,假设∠1+∠2=90°,那么∠1与∠2、②假如∠1+∠2=90°,∠1+∠3=90°,那么有∠2∠3、通过那个推理,我们能够得出:同角的余角。
假如∠1=∠2,那么∠1的余角等于,∠2的余角等于那么∠1的余角∠2的余角通过那个推理,我们能够得出:等角的余角。
3、〔1〕补角的概念:假如两个角,那么称这两个角互为补角、图2-1中,互为余角的有〔2〕互为补角的有关性质:①假设∠1,∠2互补,那么∠1+∠2=反过来,假设∠1+∠2=180°那么∠1,∠2、②假如∠1+∠2=180°,∠1+∠3=180°,那么有∠2∠3、通过那个推理,我们能够得出:同角的补角假如∠1=∠2,那么∠1的补角等于,∠2的补角等于那么∠1的补角∠2的补角通过那个推理,我们能够得出:等角的补角、★注意:余角或补角基本上相关于两个角而言,而且只与这两个角的有关,与它们的无关、C4、观看P60图2-3A2〔1〕1∠+=180°O∠+=180°,2依照同角的补角,得出1∠D1B∠2〔2〕对顶角的概念:直线AB与CD______于点O,1∠有__________O,它∠与2们的两边互为反向延长线,如此的_________叫做对顶角;对顶角一定___________〔3〕请举出生活中包含对顶角的例子【三】巩固新知1、∠α=48°21′那么∠α的余角等于________,补角等于__________2、一个角的补角是它的余角的3倍,那么那个角为()A、22.5°B、50°C、45°D、135°3、判断(1)两直线相交,有公共顶点的角是对顶角、()(2)一个钝角的补角比它的余角大90º、()(3)假如一个角等于它的补角,那么那个角一定是直角、()(4)相等的角一定是对顶角()(5)一个角的余角必为锐角,一个角的补角必为钝角〔〕4、如图,EF⊥CD,垂足为点O,AB是通过点O的一条直线。
新版北师大版七年级数学下册第二章相交线与平行线导学案一、概念理解在学习本章内容之前,我们首先需要了解一些基本概念。
1.直线定义:没有弯曲的线叫做直线。
直线可以用两个点来确定,在平面直角坐标系中,直线还可以用解析式表示。
2.相交线定义:两条直线在一点相交,这个点叫做它们的交点;如果两条线有交点,就称这两条线是相交的。
相交线的性质:1.相交线只有一个交点。
2.相交线的交点与交点两侧的各一条线垂直。
3.相交线将平面分成了不同的四个部分。
3.平行线定义:在同一个平面内,若两条直线在无穷远处也不相交,则这两条直线互相平行。
平行线的性质:1.平行线永远不会相交。
2.平行线的斜率相等。
3.平行线的夹角(以交线为准)为180度。
4.平行线将平面分成了三个部分。
二、学习任务1.掌握相交线的性质现在让我们尝试用笔来练习一下相交线的性质。
任务1:画出两条不同的直线,它们在图中有一个交点。
通过这个交点再画两条直线。
你发现了什么?任务2:已知两条相交的直线,分别为AB和CD,它们在E处相交,角AEC=60度,角BED=120度,求角AED的度数。
任务3:已知两条相交的线m和n,A、B、C三点在线m上,D和E在线n 上。
如果有AD=DB,BE=EC,试证明:DE∥BC。
2.掌握平行线的性质现在让我们尝试用笔来练习一下平行线的性质。
任务1:画出一条直线和一条平行于该直线的线段。
再画出一条与这条直线相交的第三条直线。
交点分别为A、B、C。
如果线段的长度为5cm,求出直线AC的长度。
任务2:已知如图,AB∥CD,AB和CD的交点为E,角BCE=70度,求角ADE的度数。
任务3:已知如图,AB∥CD,EF∥CD,EF和AB的交点为G,求角DEG的度数。
三、思考与拓展1.思考题1.如图,AB∥DE,AD∥BC,CE=1cm,DE=3.5cm,求BA的长度(单位:cm,保留一位小数)。
2.如图,ABCD是一个平行四边形,AE∥BC,CF∥BD,AG=10cm,CG=5cm,求BF的长度(单位:cm,保留一位小数)。
第二章相交线与平行线2.1 两条直线的位置关系一、学习目标:1、知识目标:在具体情景中了解对顶角、补角、余角,知道对顶角相等、等角的余角相等、等角的补角相等,并能解决一些实际问题。
2、能力目标:(1)经历观察、操作、推理、交流等过程,发展空间观念、推理能力和有条理地表达的能力。
(2)能运用互为余角、互为补角、对顶角等相关的知识解决一些实际问题。
3、情感目标:在活动中培养学生乐于探究、合作的习惯,体验探索成功、感受创新的乐趣,从而培养学习数学的主动性;进一步体会“数学就在我们身边”,增强学生用数学解决实际问题的意识。
二、学习重点:了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等。
三、学习难点:学生探索等角的余角相等、等角的补角相等、对顶角相等的过程以及对其意义的理解,并能解决一些实际问题。
初步的“说理”也是难点之一。
四、学习设计:(一)预习准备(1)预习书38、39页(2)回顾:①什么是直角?②什么是平角?(3)预习作业:①在一副三角板中,每块都有一个角是90°,那么其余两个角的和是多少?②已知∠1=36°,∠2=54°,那么∠1+∠2=_________③已知∠1=144°,∠2=36°,那么∠1+∠2=_________(二)学习过程:1、创设情境,引入课题⑴请同学们拿出事先准备好的直角纸板,用剪刀把直角从顶点剪开,问:这两个角有什么关系?⑵再拿出平角纸板并用剪刀把平角从顶点剪开,问:这两个角有什么关系?⑶请同学们分别给这两个角命名——引入课题2、展示新知:⑴在一副三角尺中,每块都有一个角是90o,而其他两个角的和是90o。
一般情况下,如果两个角的和等于90o(直角),我们就说这两个角互为余角,即其中一个角是另一个角的余角.例如,∠1与∠2互为余角,∠1是∠2的余角,∠2也是∠1的余角.同样,如果两个角的和等于180o (平角),就说这两个角互为补角,即其中一个角是另一个角的补角.⑵符号语言:若∠1+∠2= 90o,那么∠1与∠2互余。
若∠3+∠4=180o3、注:(1)“互为”这个词语,与“互为相反数”、“互为倒数”等词语中的含义有联系,均表示成对出现;(2)互为余角以及互为补角的角,主要反映了角的数量关系,而不是角的位置关系,可以把剪下的∠1、∠2 、∠3、∠4摆放出各种不同位置。
(3)区分互为补角和互为余角,区别在于两角的和是180°还是90°。
4、应用新知体验成功⑴若∠1与∠2互余,则∠1+∠2=__________ ⑵若∠1= 90o —∠2,则∠1+∠2=__________ ⑶60O 32’的补角是_______,余角是_______ (一个角的余角一定比这个角的补角小吗?) ⑷30O 角的余角的补角是__________ ⑸填表:⑹若一个角是它余角的4倍,求这个角。
变式训练:(1)一个角的补角是它的3倍,求这个角。
(1) 一个角的补角是这个角的余角的4倍,求这个角。
5、探讨余角与补角的性质例1 如图:∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与∠4相等吗?为什么?已知∠1与∠2互余,∠3与∠4互余,如果∠1=∠3,那么∠2与∠4相等吗?为什么? 余角与补角的性质:______________________________________________________。
巩固练习 (7)如图,∠EDC=∠CDF=90°,∠1=∠2.图中哪些角互为余角?哪些角互为补角? ∠ADC 与∠BDC 有什么关系?为什么? ∠ADF 与∠BDE 有什么关系?为什么?(8)如图,C 是AB 上的一点,CD 是∠ACB的平分线,则① 图中互余的角是______________ 互补的角是__________,相等的角是_____________②在图中再添一条射线CF ,使∠FCE=Rt ∠,则图中∠FCD 余角是____________ ∠ACF 的余角是__________,∠FCB 的补角是__________,理由是____________________________________(9)已知:如图∠AOB =∠COD= Rt ∠,问:图中有几对相等的角,并说明理由对顶角的概念对顶角相等的性质______________________________________________________。
2 13 4D六、课堂练习:1.已知∠A=40°,则∠A 的余角等于______.2.已知:如图所示,AB ⊥CD ,垂足为点O ,EF 为过点O•的一条直线,则∠1与∠2的关系一定成立的是( )A .相等B .互余C .互补D .互为对顶角3.如图所示,直线AB ,CD 相交于点O ,∠BOE=90°,若∠COE=55°,•求∠BOD 的度数.4.如图所示,直线AB 与CD 相交于点O ,OE 平分∠AOD ,∠AOC=•120°。
求∠BOD ,∠AOE 的度数.拓展训练:1.(一题多解题)如图所示,三条直线AB ,CD ,EF 相交于点O ,∠AOF=3∠FOB ,∠AOC=90°,求∠EOC 的度数.2.(科内交叉题)一个角的补角与这个角的余角的和比平角少10°,求这个角.COE D BA3.(课外交叉题)如图所示,当光线从空气射入水中时,光线的传播方向发生了改变,这就是光的折射现象.若∠1=42°,∠2=28°,则光的传播方向改变了______度.4.(实际应用题)如图所示是一个经过改造的台球桌面的示意图,图中4个角上的阴影部分分别表示4个入球袋.如果一个球按图中所示的方向被击出(•假设用足够的力气击出,使球可以经过多次反射),那么该球最后落入哪个球袋?在图上画出被击的球所走路程.七、小结:2.2 探索直线平行的条件(1)一、学习目标:1、经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达的能力。
2、会认由三线八角所成的同位角。
3、掌握平行线公理及平行线的传递性。
4、掌握直线平行的条件并能解决一些问题二、学习重点:会认各种图形下的同位角,并掌握直线平行的条件是“同位角相等,两直线平行”三、学习难点:判断两直线平行的说理过程四、学习设计:(一)课前准备(1)预习书44-48页 (2) 思考①什么叫同位角、内错角、同旁内角?②同位角、内错角、同旁内角有什么特征? (3)预习作业如图所示,①12∠∠与是 角;它们是由直线 和直线 ,被直线 所截得的;②14∠∠与是 角;它们是由直线 和直线 ,被直线 所截得的;③34∠∠与是 角;它们是由直线 和直线 ,被直线 所截得的。
(二)学习过程1、两直线被第三直线所截,可形成的角有 , , 。
H G FED CBA4321例1如图是同位角关系的两角是 ,是互补关系的两角是 ,是对顶角的是 。
2、平行判定1:两条直线被第三条直线所截,如果同位角 ,那么这两直线 。
简称: (公理) 如图,可表述为:∵ ( )∴ ( )例2 如图 (1),()a b c a ⊥⊥ 已知12∴∠=∠= (垂直的定义)∴ ∥ (同位角相等,两直线平行)(2)用一句精炼的话总结(1)所包含的规律变式训练:如图所示 1、12∠=∠ (已知)∴ ∥ ( ) 2、23∠=∠ (已知) ∴ ∥ ( )例3、如图,已知00165,2115∠=∠=,直线BC 与DF 平行吗?为什么?4321FED C B A 21cba 21d cba 321FEDC B A21变式训练:如图,已知00170,2110∠=∠=,试问a 与b 平行吗?说说你的理由。
1、平行线公理:过直线外一点有 条直线与这条直线平行。
2、平行线的传递性: 几何语言:拓展:如图,已知12∠=∠,问再添加什么条件可使AB ∥CD ?试说明理由。
NMFE DCBA21cb a 3212.2 探索直线平行的条件(2)一、学习目标:1、经历观察、操作、想象、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。
2、经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些问题。
3、会用三角尺过已知直线外一点画这条直线的平行线。
二、学习重点:弄清内错角和同旁内角的意义,会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。
三、学习难点:会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。
四、学习设计 (一)预习准备(1)预习书47-48页 (2)回顾:①什么是同位角?什么是内错角?什么是同旁内角?②同位角相等,两直线平行。
(3)预习作业:如图所示:(1)如果1D ∠=∠,那么 ∥ 理由是(2)如果1B ∠=∠,那么 ∥理由是(3)如果0180A B ∠+∠=,那么 ∥ 理由是(4)如果0180A D ∠+∠=,那么 ∥ 理由是 (二)新课学习:平行判定2:两条直线被第三条直线所截,如果内错角 ,那么这两直线 。
简称:如图,可表述为:∵ ( )∴ ( )平行判定3:两条直线被第三条直线所截,如果同旁内角 ,那么这两直线 。
简称: 如图,可表述为: ∵ ( )∴ ( ) 例1、如右图,∵∠1=∠2∴ ∥ , ∵∠2=∴ ∥ ,(同位角相等,两直线平行) ∵∠3+∠4=180°E DC B A1C2B DC A 112BD C A∴∥,∴AC∥FG,变式训练:如图所示,AB⊥BC于点B,BC⊥CD于点C,∠1=∠2,那么EB∥CF吗?•为什么?例2、如图,已知0040,1140B∠=∠=,那么AB∥CD成立吗?请说明理由。
变式训练:如图所示,若∠1+∠2=180°,∠1=∠3,EF与GH平行吗?解:为∠1+∠2=180°()所以AB∥_______()又因为∠1=∠3()所以∠2+∠________=180°()所以EF∥GH()拓展:1、如图所示,BE是∠ABD的平分线,DE是∠BDC的平分线,•且∠1+∠2=90°,那么直线AB,CD的位置关系如何?并说明理由.解:AB∥CD 理由如下:∵BE是∠ABD的平分线,DE是∠BDC的平分线()∴∠1= ,∠2=()∵∠1+∠2=90º( )∴∠ABD+∠CDB===180º。
∴CD∥AB()2.如图所示,根据下列条件可推得哪两条直线平行,并说明理由。
(1)∠ABD=∠CDB;(2)∠CBA+∠BAD=180º;(3)∠CAD=∠ACB。
DCB A1。