WEB日志挖掘技术的研究
- 格式:pdf
- 大小:174.74 KB
- 文档页数:2
Web日志挖掘的相关技术研究的开题报告一、选题背景随着互联网的不断发展,日志数据越来越庞大,尤其是Web日志数据。
Web日志是Web服务器记录的一份详细记录,包括访问时间、来源IP地址、访问页面、使用设备等信息。
这些日志数据不仅对于网站运营和管理有着重要的价值,而且对于企业决策也非常关键。
因此,对Web日志数据的分析和挖掘成为了一个热门的研究方向。
二、选题意义Web日志挖掘技术的研究和应用可以为企业提供更深入的业务洞察和数据支持,可以为用户提供更好的网站访问和使用体验。
同时,Web日志挖掘技术还可以应用于网站性能和安全监测、网站流量分析、用户行为分析等领域,为网站运营提供有力的支持。
三、研究目标本研究的目标是探究基于Web日志的挖掘技术,包括但不限于信息提取、趋势分析、模式挖掘、异常检测等方面,以实现对于Web日志中隐藏的有价值信息的发现和分析。
四、研究内容本研究将针对Web日志挖掘技术的相关问题进行分析和实验,包括但不限于以下内容:1. Web日志数据的采集和处理:- 采集数据:使用网络爬虫和Web服务器记录日志等方式采集数据。
- 数据清洗和预处理:对采集到的数据进行过滤、清洗和格式化处理。
2. Web日志挖掘技术:- 网站性能分析:分析网站的访问量、速度等指标,找出可能导致网站性能下降的因素。
- 流量分析:分析访客来源、流量变化等动态趋势,以及访客点击次数、访问路径等指标。
- 用户行为分析:对用户行为进行分析,了解用户的兴趣、喜好以及消费行为等方面。
- 异常检测:检测到网站遭受黑客攻击或病毒感染等异常行为,提前预防或防范可能的风险。
五、研究方法本研究将采用的研究方法包括文献调研、实验探究、数据分析等方式。
具体来说,将结合机器学习、数据挖掘、智能算法等方面的技术,以实现对日志数据的分析和挖掘。
六、预期成果研究成果将包括学术论文和相关技术实现。
在学术论文方面,将对Web日志数据的挖掘技术等方面进行深入探究和研究,形成一定的理论贡献;而在技术实现方面,将通过实验和实践,研发相关的Web日志挖掘算法和应用系统。
WEB日志挖掘及其应用研究【摘要】:WEB是一个非常巨大的信息来源地,不过提供这些信息的网站结构是否合理,唯一的评估者是访问浏览它的用户。
每次用户的访问都会在WEB服务器上记录一条访问日志,根据这条日志可知用户访问此站点的URL,用户的IP地址以及访问时间等信息。
我们通过对这些日志信息的分析和处理,可提取出访问者的WLP(WebLogPath)。
分析这些WLP并挖掘出用户的通用行为模式,可以调整网站结构,优化系统性能,进一步提高对WEB终端用户的服务质量。
本文意在通过对WEB日志的挖掘和用户访问模式的研究,开发出一套基于WEB日志挖掘的智能网站知识提取系统。
该系统通过对WEB访问日志的分析,提出了真实路径获取算法,前向访问路径截取算法,可发掘出多用户的通用访问模式,单用户的个人喜好访问模式;提出了目标页面确定算法,页面关联规则发现算法,用于找出互联网目标页面间的隐链接;发现了回溯过多的不合理页面节点,从而调整和优化了现有的网站结构;提出了用户访问路径会话集发现算法,加权网站结构图生成算法,用于发掘WEB站点的频繁遍历主干子网,可以为生成3G手机应用的W AP子网提供参考;提出了单用户搜索关键字关联规则发现算法,可以为单个用户提供量身定做的个性化搜索引擎服务;提出了一种新的数据随机干扰处理方法,实现了隐私保护关联规则挖掘模型;以及采用数据仓库和OLAP技术,实现了挖掘信息的统计决策及图形化表示。
本文研究的网站日志挖掘算法及应用模型是当前互联网海量信息处理研究较为活跃的一个领域,模型本身体现了较先进的思想。
通过有针对性的各种网站日志挖掘算法,可以发现用户通用访问模式,找到网站页面间隐藏的关联规则,从而实现网站结构的改进策略,以及在电子商务网站中实现最大的商机撮合。
【关键词】:WEB 日志挖掘智能网站知识提取系统真实路径获取算法页面关联规则发现算法站点结构调整个性化搜索引擎数据随机干扰处理方法【学位授予单位】:华东师范大学【学位级别】:博士【学位授予年份】:2010【分类号】:TP311.13【目录】:论文摘要6-7ABSTRACT7-11第一章引言11-221.1数据挖掘的起源111.2数据挖掘的概况11-131.2.1数据挖掘的定义111.2.2数据挖掘过程简介11-121.2.3关联规则12-131.3Web数据挖掘13-191.3.1Web数据挖掘的由来14-151.3.2Web数据挖掘的特点151.3.3Web数据挖掘的目标15-161.3.4Web挖掘任务分类16-181.3.5Web数据挖掘的难点18-191.4本文工作与章节组织19-22第二章Web使用信息挖掘研究背景22-352.1国内外WEB日志挖掘的研究动态22-232.2数据预处理23-312.2.1WEB日志数据源24-252.2.2数据净化和字段扩充25-272.2.3用户识别27-282.2.4会话识别28-292.2.5基于XML的网站结构29-302.2.6路径填充30-312.3模式发现及应用31-352.3.1关于Web个性化322.3.2关于网站结构优化32-332.3.3商业智能的实现332.3.4关于隐私问题33-35第三章通用访问路径发现模型35-443.1访问模式分析35-363.2真实路径获取算法36-383.3前向访问路径截取算法TEAP38-393.4UPD上通用访问路径模式的挖掘39-433.5本章小结43-44第四章隐式页面关联规则发现模型44-564.1数据净化464.2用户识别与会话识别46-474.3访问过程中目标页的确定47-494.4页面关联规则发现算法TPARD49-554.4.1关联规则理论原理49-514.4.2目标页面关联规则发现算法51-554.5本章小结55-56第五章站点结构调整模型56-645.1引言56-575.2访问模式分析57-585.3真实路径获取及回溯点的确定58-595.4网站物理结构的调整和再组织59-625.5本章小结62-64第六章频繁遍历主干子网发现模型64-716.1会话识别64-656.2用户访问路径会话集发现算法65-676.3加权网站结构图生成算法67-696.4频繁遍历主干子网的发现696.5实验分析69-71第七章个性化搜素引擎模型的发现71-807.1引言71-727.2个性化Web搜索727.3会话识别与单用户搜索关键字会话集发现算法72-747.4单用户搜索关键字关联规则发现算法74-787.5本章小结78-80第八章隐私保护关联规则挖掘方法80-918.1引言818.2会话识别81-838.3事务数据库的布尔矩阵表示83-848.4结合列置换的伪列随机化回答方法84-868.5基于位逻辑与操作的高效频繁项集生成算法86-888.6实验结果分析88-898.7本章小结89-91第九章上海社区服务网数据仓库的设计与实现91-1059.1基本概念概述929.2关于数据仓库92-939.3“维表-事实表”构成的关系型数据仓库模式93-959.4关于OLAP95-979.5上海社区服务网后台数据仓库的实现97-1049.6本章小结104-105第十章.结论与展望105-10810.1本文主要贡献与创新105-10610.2进一步的研究工作106-108附录一数据仓库维表字段说明108-110附录二数据仓库事实表字段说明110-111参考文献111-118博士学位期间参加的科研项目和发表的学术论文118-119致谢119 本论文购买请联系页眉网站。
M oder n sci ence6今日科苑科苑论坛K E Y U A N LU N TA N摘要:互联网发展到今天已经成为了人们生活中不可缺少的一部分了,而互联网从某种意义上讲也可以看作是一个庞大的数据库,并且涉及到各个领域。
那么在这个庞大的数据库中,数据挖掘技术有什么用武之地呢?本文通过对互联网上数据挖掘的简单论述,说明现在互联网上数据挖掘的一些趋势和相关技术,并且着重分析一下其中一种互联网上数据挖掘的应用方向相关的技术——W eb 使用记录的挖掘。
关键词:w eb 数据挖掘;W eb 日志;数据预处理一、引言目前,互联网已经和我们的生活密不可分,它可以说是一个巨大的、分布广泛和全球性的信息服务中心。
它涉及新闻、广告、消息信息、金融信息、教育、政府、电子商务和许多其他信息服务。
根据有关机构统计,目前互联网的数据以几百兆字节来计算,而且增长速度很快,如果将这个庞大的数据库用一般的统计分析来处理的话,显然是有心无力的。
自从数据挖掘技术成功地应用于传统数据库领域之后,人们对于数据挖掘在像互联网数据这样的一些特殊数据源的应用也寄予了厚望,并且做了许多相应的研究和发展了相应的技术。
将数据挖掘技术应用到互联网数据上,理论上可行,但是由于互联网自身的特点,也使它面临一些需要克服的技术难点。
可以说,在互联网上应用数据挖掘技术的前途是光明的,但道路也是曲折的。
目前互联网上的数据挖掘技术主要根据挖掘的方向一般分为三类:W eb 内容挖掘,W eb 结构挖掘和W eb 使用记录的挖掘。
而结构本来就蕴藏在内容中,是内容的骨,因此有些分类方法又分为W eb 内容挖掘和W eb 使用记录挖掘。
这里按照后一种分类方法来看一下目前的相关技术和应用。
二、技术(一)W eb 日志目前市面上比较流行的W eb 服务器,例如I I S 通常都保存了对W eb 页面的每一次访问的日志项。
它忠实地记录了访问该W eb 服务器的数据流的信息。
Web日志挖掘技术在电子商务网站优化中的应用【摘要】本文主要探讨了Web日志挖掘技术在电子商务网站优化中的应用。
首先分析了日志数据,研究用户行为,为精准营销策略的制定提供支持。
其次通过日志数据进行网站性能优化,改进用户体验。
接着讨论了个性化推荐系统的构建,提升用户满意度。
也探讨了安全防护和异常检测技术在电商网站中的重要性。
结论指出了Web日志挖掘技术对电商网站优化的重要性,并展望了未来的发展趋势。
通过本文的研究,可以更好地了解如何利用Web日志挖掘技术来优化电子商务网站,提升用户体验和商业价值。
【关键词】Web日志挖掘技术, 电子商务网站, 优化, 日志数据分析, 用户行为, 精准营销策略, 网站性能优化, 用户体验改进, 个性化推荐系统, 安全防护, 异常检测技术, 重要性, 发展趋势, 结语.1. 引言1.1 Web日志挖掘技术在电子商务网站优化中的应用Web日志挖掘技术是指通过对网站服务器记录的访问日志数据进行分析和挖掘,来发现潜在的商业机会和优化方向。
在电子商务领域,Web日志挖掘技术的应用已经成为优化网站运营效果和提升用户体验的重要手段之一。
通过对日志数据的分析,可以深入了解用户的行为习惯、偏好和需求,从而制定更精准的营销策略、优化网站性能、改进用户体验,构建个性化推荐系统,提升安全防护和异常检测能力。
Web日志挖掘技术在电子商务网站优化中发挥着重要作用,为网站运营提供了更多可能性。
未来,随着技术的不断发展,Web日志挖掘技术在电子商务领域的应用将会越来越深入,为电子商务行业带来更多创新和发展机会。
2. 正文2.1 日志数据分析与用户行为研究日志数据分析与用户行为研究是电子商务网站优化中非常重要的一环。
通过分析用户在网站上的点击、浏览、购买等行为,可以深入了解用户的偏好、习惯和需求,从而为网站提供个性化、精准的服务。
通过对大量日志数据的分析,可以发现用户的行为模式和趋势。
哪些页面被访问频率最高,哪些产品被购买最多,用户在网站上停留的时间长短等等。
Web日志分析技术研究Web日志分析技术是指对Web服务器产生的日志进行分析、统计和利用,从中获取有价值的信息和指导,是Web管理和网络营销中不可或缺的一项技术。
在网络营销、电子商务、信息采集及用户行为研究等领域,Web日志分析技术都有着重要的应用价值,因此,对该技术的研究和应用也越来越受到人们的关注。
一、Web日志介绍Web日志是Web服务器上记录用户请求信息的文件,记录了用户访问web服务器的所有活动信息,包括用户请求的IP地址,访问的页面,访问时间,所使用的浏览器、操作系统等。
每个网站都会生成日志记录文件,而每个记录表示了一个请求。
Web日志是Web分析的基础,只有通过对Web日志的分析,才能得到有关Web访问者的行为、分布、兴趣、需求等方面的信息。
二、Web日志分析的重要性通过Web日志分析技术可以更加深入地了解用户访问网站的行为方式,分析用户的心理需求,从而指导网站的运营和推广工作。
对于一个网站而言,Web日志分析技术是非常重要的,可以用来判断:1.网站访问量及来源情况2.用户的浏览习惯3.用户使用的搜索引擎4.搜索关键词5.网站页面回流率6.不同时间下的网站流量变化情况通过对Web日志的分析,可以对网站的运营和推广起到有益的作用,能够判断当前的推广策略是否有效。
三、Web日志分析方法Web日志分析方法主要分为两种:基于日志文件的统计分析和基于机器学习的关联分析。
基于日志文件的统计分析主要是数据的统计,利用柱状图、饼状图等直观的图表形式来表示,例如,在同一时间段内,哪些搜索关键词访问量较大。
这种分析方法的优点在于处理速度快,需要使用的工具较少,但是对于某些复杂的分析,比如关联分析,这种方法就力有不逮。
基于机器学习的关联分析是利用机器学习算法来挖掘数据之间的关联性,发现数据背后的规律和模式。
这种方法复杂性较高,需要使用大量的计算机资源和相关的算法,但是能够更加深入地挖掘数据之间的关联性,发现更加有价值的信息。
面对巨大而复杂的网络系统以及浩如烟海的信息资 源,研究人员将传统的数据挖掘技术和相结合,进行Web 挖掘,从半结构或无结构的页面中,以及使用者的Web Web 活动中,抽取感兴趣的、潜在的模式,分析、研究,并加以利用。
挖掘可分为类:内容挖掘、结构挖掘和Web 3Web Web 日志挖掘。
而日志挖掘作为挖掘的一个重要组Web Web Web 成部分,有其独特的理论和实践意义。
所谓日志,是指在服务器上有关访问的各种日Web Web 志文件,包括访问日志、引用日志、代理日志、错误日志等文件。
这些文件里包含了大量的用户访问信息,如用户的IP 地址、所访问的、访问日期和时间、访问方法或URL (GET 、访问结果功、失败、错误、访问的信息大小等。
POST)()而日志挖掘,就是通过对日志记录的挖掘,发Web Web 现用户访问页面的模式,从而进一步分析和研究日Web Web 志记录中的规律,以期改进站点的性能和组织结构,提Web 高用户查找信息的质量和效率,并通过统计和关联的分析找出特定用户与特定地域、特定时间、特定页面等要素之间的内在联系,这在电子商务等领域是大有作为的。
日志挖掘技术1 Web 目前,日志挖掘技术主要分为两大类:基于事Web Web 务的方法和基于数据立方体的方法。
基于事务的日志挖掘技术1.1 Web Web 基于事务的日志挖掘技术最早是由等人Web Web ,Chen [1]提出的图。
他将数据挖掘技术应用于服务器日志文(1)Web 件,提出最大向前引用算法的概念。
他将用户会话分割MF 成一系列的事务,然后采用与关联规则相类似的方法挖掘频繁访问序列,从而取得用户访问模式。
基于事务的日志挖掘技术的基本流程是:Web 预处理过程服务器日志中的内容非常丰富,(1) Web 但是由于本地缓存、代理服务器、防火墙的存在,使得直接在数据上进行挖掘变得十分困难和不准确。
因此,Web log 在实施数据挖掘之前,首先必须对文件进行数据净Web Log 化、用户识别、会话识别、页面过滤、路径补充等一系列的工作[9]。