原核表达系统三大要素的选择及优化
- 格式:docx
- 大小:168.60 KB
- 文档页数:5
蛋白质表达系统介绍不同的蛋白质表达系统及其优缺点蛋白质表达是生物学研究中一项重要的技术,它可以通过合成蛋白质来研究其结构和功能。
蛋白质表达系统是实现这一过程的关键工具,主要包括原核表达系统和真核表达系统两种。
本文将对这两种蛋白质表达系统进行介绍,并分析它们的优缺点。
一、原核表达系统原核表达系统是利用原核生物(如大肠杆菌)来表达外源蛋白质的系统。
该系统具有以下特点:1. 高表达水平:大肠杆菌是常用的原核表达宿主,具有高表达水平的优势。
通过利用原核细胞的强大蛋白质合成机器,可以获得高产量的外源蛋白质。
2. 易操作性:原核表达系统相对简单,操作步骤少,易于操作和控制。
不需要复杂的细胞培养条件,可以在常见培养基中进行表达。
3. 快速表达:从启动表达到获得蛋白质通常只需要数小时至数天,速度较快。
这使得原核表达系统在高通量表达和快速实验中具有优势。
然而,原核表达系统也存在一些缺点:1. 外源蛋白质折叠问题:由于原核细胞的机器无法正确折叠某些复杂蛋白质,这可能导致外源蛋白质的不正确折叠和失活。
2. 原核特异性翻译后修饰:原核细胞缺乏一些真核细胞所具有的翻译后修饰机制,这可能影响蛋白质的功能和稳定性。
3. 复杂蛋白质表达困难:对于复杂蛋白质(如膜蛋白),原核表达系统通常无法达到理想的表达水平和正确的折叠结构。
二、真核表达系统真核表达系统主要利用真核生物(如酵母、昆虫细胞和哺乳动物细胞)来表达外源蛋白质。
真核表达系统具有以下特点:1. 正确的折叠和修饰:真核细胞具有复杂的蛋白质折叠和修饰机制,能够产生正确折叠和修饰的蛋白质。
2. 适用于复杂蛋白质:真核表达系统适用于复杂蛋白质(如膜蛋白)的表达。
真核细胞提供了正确的环境和细胞器,能够较好地表达这类蛋白质。
3. 适用于大规模表达:真核细胞通常可以进行大规模培养和表达,适用于工业化生产。
然而,真核表达系统也存在一些缺点:1. 低表达水平:相对于原核表达系统,真核表达系统的表达水平较低,可能无法满足高产量蛋白质的需求。
一、原理1、E . coli表达系统E . coli是重要的原核表达体系。
在重组基因转化入E . coli 菌株以后,通过温度的控制,诱导其在宿主菌内表达目的蛋白质,将表达样品进行SDS-PAGE 以检测表达蛋白质。
2、外源基因的诱导表达提高外源基因表达水平的基本手段之一,就是将宿主菌的生长与外源基因的表达分成两个阶段,以减轻宿主菌的负荷。
常用的有温度诱导和药物诱导。
本实验采用异丙基硫代-β-D-半乳糖昔(IPTG)诱导外源基因表达。
不同的表达质粒表达方法并不完全相同,因启动子不同,诱导表达要根据具体情况而定。
二、材料1、诱导表达材料( 1 ) LB (Luria—Bertani))培养基酵母膏(Yeast extract) 5g 蛋白胨(Peptone) 10gNaCl 10g 琼脂(Agar) 1-2%蒸馏水(Distilled water) 1000ml pH 7.0适用范围:大肠杆菌( 2 ) IPTG 贮备液:2 g IPTG溶于10 mL 蒸馏水中,0 . 22 μm 滤膜过滤除菌,分装成1 mL /份,-20 ℃保存。
( 3 ) l×凝胶电泳加样缓冲液:50 mmol / L Tris -CI ( pH 6 . 8 )50 mmol / L DTT2 % SDS (电泳级)0.1 %溴酚蓝10 %甘油2、大肠杆菌包涵体的分离与蛋白纯化材料1 )酶溶法(1)裂解缓冲液:50 mmol / L Tris-CI ( pH 8 . 0 )1 mmol / L EDTA100 mmol / LNaCI(2)50 mmol / L 苯甲基磺酰氟(PMSF )。
(3)10 mg / mL 溶菌酶。
(4)脱氧胆酸。
(5)1 mg / mL DNase I。
2 )超声破碎法( 1 ) TE 缓冲液。
( 2 ) 2×SDS -PAGE 凝胶电泳加样缓冲液:100 mmol / L Tris-HCI ( pH 8 . 0 )100 mmol / L DTT4 %SDS0.2 %溴酚蓝20 %甘油三、实验方案1、外源基因的诱导表达( 1 )用适当的限制性内切核酸酶消化载体DNA 和目的基因。
原核表达操作步骤及注意事项时间:2010-03-03 14:05:01 来源:作者:点击:1046次将克隆化基因插入合适载体后导入大肠杆菌用于表达大量蛋白质的方法一般称为原核表达。
这种方法在蛋白纯化、定位及功能分析等方面都有应用。
大肠杆菌用于表达重组蛋白有以下特点:易于生长和控制;用于细菌培养的材料不及哺乳动物细胞系统的材料昂贵;有各种各样的大肠杆菌菌株及与之匹配的具各种特性的质粒可供选择。
但是,在大肠杆菌中表达的蛋白由于缺少修饰和糖基化、磷酸化等翻译后加工,常形成包涵体而影响表达蛋白的生物学活性及构象。
表达载体在基因工程中具有十分重要的作用,原核表达载体通常为质粒,典型的表达载体应具有以下几种元件:(1)选择标志的编码序列;(2)可控转录的启动子;(3)转录调控序列(转录终止子,核糖体结合位点);(4)一个多限制酶切位点接头;(5)宿主体内自主复制的序列。
原核表达一般程序如下:获得目的基因-准备表达载体-将目的基因插入表达载体中(测序验证)-转化表达宿主菌-诱导靶蛋白的表达-表达蛋白的分析-扩增、纯化、进一步检测一、试剂准备1、LB培养基。
2、100mM IPTG(异丙基硫代-β-D-半乳糖苷):2.38g IPTG溶于100ml ddH2O中,0.22μm滤膜抽滤,-20℃保存。
二、操作步骤(一)获得目的基因1、通过PCR方法:以含目的基因的克隆质粒为模板,按基因序列设计一对引物(在上游和下游引物分别引入不同的酶切位点),PCR循环获得所需基因片段。
2、通过RT-PCR方法:用TRIzol法从细胞或组织中提取总RNA,以mRNA为模板,逆转录形成cDNA 第一链,以逆转录产物为模板进行PCR循环获得产物。
(二)构建重组表达载体1、载体酶切:将表达质粒用限制性内切酶(同引物的酶切位点)进行双酶切,酶切产物行琼脂糖电泳后,用胶回收Kit或冻融法回收载体大片段。
2、PCR产物双酶切后回收,在T4DNA连接酶作用下连接入载体。
原核表达系统的工作原理原核表达系统是指利用原核生物(如大肠杆菌等)来表达外源蛋白质的工具,在生物技术和基因工程领域应用十分广泛。
原核表达系统通过重组DNA技术将目标基因插入原核细胞的表达载体中,并利用细胞自身的代谢机制,将目标蛋白质大量表达出来。
本文将详细介绍原核表达系统的工作原理。
1. 原核表达系统的基本构成原核表达系统的基本构成包括表达载体和宿主细胞两部分。
表达载体是一种重组DNA分子,通常包括以下基本组成成分:(1)起始位点(起始密码子):在大肠杆菌中通常为AUG。
(2)表达基因:包括编码目标蛋白质的DNA序列和转录启动子、转录终止子等序列。
(3)选择标记:旨在筛选出带有目标基因的细胞,并提高表达效率。
常用的选择标记有抗生素抵抗基因和荧光标记基因等。
(4)复制起点:能够使表达载体在宿主细胞内进行自我复制,提高表达效率。
宿主细胞则是一种能够实现表达载体遗传信号转录、翻译和合成目标蛋白质的生命体。
2. 原核表达系统的工作流程原核表达系统通过以下几个步骤来实现目标蛋白质的表达:(1)制备表达载体将目标基因插入表达载体中,构建成重组DNA分子。
(2)转化宿主细胞将制备好的表达载体转化(transform)到宿主细胞内。
转化过程中,表达载体通过电击、热激或溶菌酶处理等方法,被宿主细胞吞噬并与其细胞质融合。
(3)表达基因转录和翻译转录因子识别插入表达载体的启动子序列,调节基因在宿主细胞内能够合成被表达的mRNA。
转录后的mRNA与核糖体结合,开始翻译,合成蛋白质。
(4)目标蛋白质的后处理和纯化将宿主细胞内表达的蛋白质从培养基或细胞酶中提取出来。
通常采用离心、过滤或柱层析等方法,对蛋白质进行分离和纯化。
3. 原核表达系统的优缺点原核表达系统在生物技术和基因工程领域应用广泛,主要因为其有以下的优缺点。
(1)优点①高效:能够表达大量的目标蛋白质,通常能够达到10%以上的蛋白质总产量。
②简便:操作简便,不需要昂贵的设备,很容易进行规模化操作。
我认为,进行原核表达条件优化主要应注意以下几方面:1.密码子最优化(codon of optimization):大肠杆菌某些核糖体蛋白质中的使用频率不同,有最佳密码子(optimal codons)或偏爱密码子(preferred codons),稀有或利用率低的密码子(rare or low-usage codons)。
大肠杆菌稀有密码子主要有ATA,CTA,CCC,ACG,CGA,CGG,AGG,GGA,GGG等。
另外,大肠杆菌偏爱的终止密码子为UAA,而哺乳动物偏爱的终止密码子为UGA。
同时,终止密码子的下游碱基对翻译有效终止有影响,大肠杆菌中UAAN,N的影响力次序为:U>G>A,C;哺乳动物中UAGN,N的影响力次序为:A,G>>C,U。
我用的pET-43.1,先用宿主菌BL21(DE3),没有目的带出现,后改用RosettaBlueTM(DE3),目的蛋白表达效率达50%以上,并且是可溶的。
2.启动子是DNA链上RNA聚合酶的识别位点和结合位点,外源基因表达的理想启动子是可以指导高效转录,保证目的基因高效表达的启动子。
乳糖启动子是最常用的启动子,但容易引起外源基因的渗漏表达,对细胞的生长产生毒害作用;其他从乳糖启动子构建而来的启动子,多用IPTG诱导,IPTG对菌体也有毒害作用。
若IPTG对宿主菌有毒,可以同时加入IPTG和乳糖诱导表达,这样可减少IPTG的浓度。
若目的蛋白有毒,可用Invitrogen公司的pLEX系统等。
3.培养基的成分:用M9ZB和NZCYM培养基培养细菌,增加细菌质粒拷贝数;用LB培养基表达外源蛋白,提高蛋白表达量。
【毒性较大蛋白表达条件优化】:1)一般发酵时高温、高浓度诱导剂(IPTG)有利于表达表达包涵体形成,减少毒性。
2)加大氨苄的浓度(可达400mg/ml)并提高培养基中葡萄糖浓度(可达0.5%)有利于稳定表达,并要及时补充葡萄糖使其浓度维持在0.5%。
pET原核表达金标准(转)pET, 原核, 表达转自网络pET,原核表达金标准(转)pET 载体中,目标基因克隆到T7 噬菌体强转录和翻译信号控制之下,并通过在宿主细胞提供T7 RNA 聚合酶来诱导表达。
Novagen 的pET 系统不断扩大,提供了用于表达的新技术和选择,目前共包括36 种载体类型、15 种不同宿主菌和设计用于有效检测和纯化目标蛋白的许多其它相关产品。
优点•是原核蛋白表达引用最多的系统•在任何大肠杆菌表达系统中,基础表达水平最低•真正的调节表达水平的“变阻器”控制•提供各种不同融合标签和表达系统配置•可溶性蛋白生产、二硫键形成、蛋白外运和多肽生产等专用载体和宿主菌•许多载体以LIC 载体试剂盒提供,用于迅速定向克隆PCR 产物•许多宿主菌株以感受态细胞形式提供,可立即用于转化阳性pFORCE TM 克隆系统具有高效克隆PCR 产物、阳性选择重组体和高水平表达目标蛋白等特点。
pET 系统概述pET 系统是在大肠杆菌中克隆和表达重组蛋白的最强大系统。
根据最初由Studier 等开发的T7 启动子驱动系统,Novagen 的pET 系统已用于表达成千上万种不同蛋白。
控制基础表达水平pET 系统提供6 种载体- 宿主菌组合,能够调节基础表达水平以优化目标基因的表达。
没有单一策略或条件适用于所有目标蛋白,所以进行优化选择是必要的。
宿主菌株质粒在非表达宿主菌中构建完成后,通常转化到一个带有T7 RNA 聚合酶基因的宿主菌(λDE3 溶原菌)中表达目标蛋白。
在λDE3 溶原菌中,T7 RNA 聚合酶基因由lacUV5 启动子控制。
未诱导时便有一定程度转录,因此适合于表达其产物对宿主细胞生长无毒害作用的一些基因。
而宿主菌带有pLysS 和pLyE 时调控会更严紧。
pLys 质粒编码T7 溶菌酶,它是T7 RNA 聚合酶的天然抑制物,因此可降低其在未诱导细胞中转录目标基因的能力。
pLysS 宿主菌产生低量T7 溶菌酶,而pLysE 宿主菌产生更多酶,因此是最严紧控制的λDE3 溶原菌。
【专题讨论】原核表达条件优化!会不会是蛋白质的表达量低,电泳并不能反映出来,典型的例子是干扰素,虽然电泳没有新生条带,但是裂解上清的活性却很高。
“疑为降解条带”会不会是宿主菌蛋白,42度发酵,可抑制宿主菌蛋白表达疑为降解条带”会不会是宿主菌蛋白?那条带也挂在亲合柱子上的,发酵的细菌蛋白却没有。
挂在亲合柱子上,也有可能是非特异性条带,如用HIS TAG亲合柱,加大米错量试一下。
胞内表达有生物活性蛋白的一些策略包涵体的形成仍然是胞内基因表达巨大障碍,考虑到易聚合蛋白质复性的艰辛以及收得率的问题,胞内直接表达有生物活性的蛋白质仍然有一定的意义,到现在为止,形成包涵体的理化因素仍然不清楚,统计分析的出的结论是六个因素与包涵体的形成有关:电荷的分布、转型氨基酸残基的含量、半胱氨酸的含量、脯氨酸的含量、亲水性和总氨基酸数量(1)。
有多种手段用于减少包涵体的形成以及促进蛋白质的折叠,如低温培养(3、4、11)、宿主菌的选择(12)、某些氨基酸残基的取代(14)、共表达分子伴侣(17)、硫氧还蛋白的融合表达或与目标蛋白共表达(18)和利用硫氧还蛋白还原酶缺陷菌株作为宿主菌(2、16)等。
胞内的氧化还原势是另外的问题,细菌的胞内蛋白质半胱氨酸残基和二硫键较少,含有大量二硫键的蛋白质则被输送到胞浆以外。
这样那些依靠二硫键来稳定蛋白质四级结构的蛋白质在细菌的胞浆内因为缺乏形成二硫键的系统如DsbA/DsbB难以正确折叠。
有人分离到允许胞内二硫键形成的突变株,这些突变株使编码硫氧还蛋白还原酶的TrxB基因失活以及造成一定的还原势。
硫氧还蛋白本身对于二硫键的形成不是必需的(16),该作者认为胞内有其他的类似于硫氧蛋白的蛋白能被硫氧还蛋白还原酶还原,在硫氧还蛋白还原酶缺陷的情况下,处于氧化状态的这类蛋白质能促进二硫键的形成。
这些硫氧还蛋白还原酶缺陷菌被证实为在大肠杆菌中生产复杂蛋白质的很有价值的工具。
Novagen公司pET宿主菌系列中的AD494(DE3)和Origami B(DE3)都是TrxB基因突变菌株。
原核表达条件优化E.coli中蛋白表达量的因素除载体启动子结构以外,还有质粒拷贝数、质粒稳定性、mRNA结构、密码子的偏爱性和宿主菌的生长状态等因素[58]。
由于V ector NTI suitor7.0软件模拟表达,可知mRNA结构和密码子的偏爱性两个影响因素不会造成表达困难,所以本实验的工作主要针对载体拷贝数、载体稳定和宿主菌的生长状态。
本实验中重组表达质粒PrP-pET-32a(+)不稳定的原因可能是PrP对E.coli BL21(DE3)具有细胞毒性。
pET-32a(+)来源于pBR-322,pBR-322源于ColE1。
ColE1、pBR-322 、pET-32a(+)都失去了分配功能区par。
而天然质粒具有功能区par,可以保证质粒在每次细胞周期中准确的进行分离,并均等的分配到子代细胞中去。
功能区par对质粒PrP-pET-32a(+)的稳定性是不可缺少的[4]。
缺少功能区par的pET-32a (+)质粒在每次细胞周期中随机分配到子代细胞中去,无细胞毒性时约98% E.coli BL21(DE3)会带有质粒(见《pET System Manual》34页)。
表达有细胞毒性蛋白的E.coli BL21(DE3)不具有生长优势,而且随细菌培养时间的增加β-内酰氨酶将逐渐释放到溶液中去,破坏溶液中的AMP。
【β-内酰氨酶功能强大,细菌培养稀释1000倍以后还能破坏几乎所有的AMP(见《pET System Manual》33页)】。
这样本不具有生长优势的表达菌又失去了选择压力,造成大部分新生细菌无质粒,表现为表达困难。
本实验证实约60%以上的细菌无质粒。
鉴于以上原因,本实验将融合蛋白Trx-PrP C27-30表达分成两个阶段,前一个阶段为质粒生长阶段,主要保证质粒的稳定性和提高质粒的拷贝数;后一个阶段为融合蛋白表达阶段,待细菌生长达饱和以后,诱导融合蛋白Trx-PrP C27-30的表达。
原核表达系统三大要素的选择及优化(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--原核表达系统是目前使用最广泛、最完善的重组蛋白表达系统,具有遗传背景清晰、表达周期快、表达量高、成本低等优势,缺点是无法进行蛋白的翻译后修饰,得到具有生物活性蛋白的几率较小。
原核表达系统适用于表达原核来源的蛋白或不需要翻译后修饰的真核来源蛋白。
在原核蛋白表达过程中,需要综合考虑表达菌株、质粒载体、表达条件三大因素,以获得最满意的表达效果。
下面为大家一一介绍这三大因素的选择和优化。
1. 表达菌株菌株的选择往往是大家最容易忽视的,大多数人会选择使用自己实验室有的或用过的表达菌株。
当蛋白表达效果不佳时,大多会在质粒载体或表达条件上找原因,而不会考虑菌株的选择是否合适。
但作为表达宿主,菌株一定会对外源基因表达蛋白产生影响。
图1 大肠杆菌原核表达系统常用的菌株包括大肠杆菌、芽孢杆菌和链霉菌。
其中运用最为广泛的就是大肠杆菌表达系统。
以下为大家列出了一些常用的大肠杆菌表达菌株,可根据不同的需求进行选择。
2. 质粒载体质粒表达载体上的重要元件包括启动子,多克隆位点,终止子,复制子,信号肽,融合标签,筛选标记等。
根据载体上这些元件的特性,有多种质粒可供选择。
图2 大肠杆菌表达质粒pET-22b(+)图谱启动子:根据启动子的强弱考虑,强启动子可以提高蛋白表达量;弱启动子可以降低本底表达、增加可溶表达、表达小量伴侣蛋白等。
根据启动子的作用方式考虑,组成型启动子使宿主不停的表达重组蛋白;诱导型启动子使宿主在特定诱导条件下表达重组蛋白。
终止子:终止子的作用在于保护mRNA在核外不被降解,延长mRNA的寿命,以提高重组蛋白表达量。
对于T7系统来说,由于T7 RNA聚合酶效率非常高,保证一直有充足的mRNA提供翻译,所以终止子对其影响不大,只有一些自身带有起始密码子的外源基因需要终止子。
复制子:复制子决定质粒载体拷贝数,拷贝数越高,重组蛋白表达量就越高。
原核表达条件优化【专题讨论】原核表达条件优化!之所以首先介绍Novagen公司的产品是因为用过它的pET系列载体,感觉很好用。
Novagen的母公司是德国默克(Merck)公司,它是国际著名的化学及制药公司总部位于德国的Darmstadt,已有300多年的历史。
已在全世界55个主要国家设立了分公司,其中在28个国家建有62个生产基地。
Novagen公司出品的pET系列载体是目前应用最为广泛的原核表达系统,已经成功地在大肠杆菌中表达了各种各样的异源蛋白。
pET 系列载体是利用大肠杆菌T7噬菌体转录系统进行表达的载体,其表达原理见下图。
T7噬菌体具有一套专一性非常强的转录体系,利用这一体系中的元件为基础构建的表达系统称为T7表达系统。
T7噬菌体基因编码的T7RNA聚合酶选择性的激活T7噬菌体启动子的转录。
它是一种高活性的RNA聚合酶,其合成mRNA的速度比大肠杆菌RNA聚合酶快5倍左右。
并可以转录某些不能被大肠杆菌RNA聚合酶有效转录的序列。
在细胞中存在T7 RNA聚合酶和T7噬菌体启动子的情形下,大肠杆菌宿主本身基因的转录竞争不过T7噬菌体转录体系,最终受T7噬菌体启动子控制的基因的转录能达到很高的水平。
T7噬菌体启动子的转录完全依赖于T7 RNA聚合酶,因此T7 RNA 聚合酶的转录调控模式就决定了表达系统的调控方式。
噬菌体DE3是λ噬菌体的衍生株,一段含有lacⅠ,lacUV5启动子和T7 RNA聚合酶基因的 DNA片段倍插入其int基因中,用噬菌体DE3的溶源菌,如BL21(DE3)、 HMS174(DE3)等作为表达载体的宿主菌,调控方式为化学信号诱导型,类似于Lac表达系统。
从开始涉及表达的时候可以根据是否要用基因本身的起始密码子进行选择,Novagen公司仅提供三个载体:pET-21(+),pET-24(+)和pET-23(+)。
如果你打算利用载体的起始密码子,那么就有许多选择。
根据是否要可溶性表达,选择加有不同标记的载体。
基因工程中表达系统的构建与优化随着基因工程技术的发展,基因表达系统的构建与优化变得越来越重要。
基因表达系统是指将外源DNA序列导入宿主生物后,通过控制宿主生物的转录和翻译机制,将外源DNA序列转录成RNA,最终通过翻译机制合成目标蛋白质的过程。
为了提高表达效率和蛋白质产量,基因表达系统需要经过一系列的构建和优化。
1.选择合适的宿主生物在基因工程中,常用的宿主生物包括大肠杆菌,酵母菌,哺乳动物细胞等。
选择合适的宿主生物是基因表达系统构建的第一步。
大肠杆菌表达系统是目前最常用的表达系统之一,具有表达高效、文献丰富、操作简单等优点。
酵母菌表达系统是一种适用于各种复杂蛋白的表达系统,其表达效率和产量较高。
哺乳动物细胞表达系统可以实现真正的蛋白质修饰,可以产生与天然蛋白相同的大多数修饰,具有广泛的应用前景。
2.选择合适的载体载体是负责将外源DNA序列导入宿主生物的工具。
常用的载体包括质粒、病毒载体等。
质粒是一种小型、环状的DNA分子,可以轻易地转化到合适的宿主生物中。
其中,pET 质粒是最常用的质粒载体之一,具有广泛的应用范围和经验。
病毒载体可以将外源DNA序列高效地导入细胞,其表达效率比质粒高,但具有安全性的问题。
3.优化启动子启动子是基因表达的第一个必备因素,其可以控制外源DNA 序列在宿主细胞中的转录效率和特异性。
常用的启动子包括T7、IPTG诱导等。
其中,T7 启动子是一种快速高效的启动子,具有高特异性和高表达水平的优点。
IPTG诱导是一种常用的化学诱导方法,可以实现低成本、高产量的表达。
此外,还需要在合适的时机添加其它转录因子、转录激活因子等,以提高表达效率。
4.选择合适的标签标签是用于方便纯化和检测目标蛋白的工具。
常用的标签包括His标签、GST标签等。
其中,His标签是最常用的标签之一,因其与镍离子亲和性高,可以将目标蛋白快速和高效地纯化。
5.优化结构优化蛋白质的结构可以提高蛋白质的稳定性和生物活性。
[Merck推荐]原核表达秘笈之宿主菌株选择指南在原核蛋白表达过程中,选择构建一个合适原核表达体系需要综合考虑3大因素:表达载体、宿主菌株、表达诱导条件,以获得最满意的表达效果。
事实上,在平时的实验中,最容易被忽视的就是宿主菌的选择——多数人会直接选择自己实验室曾经用过的表达菌株,或者是载体配套的菌株,而不去追究原因——即使表达结果不佳,大多在表达条件和载体上找原因,也不会考究菌株的选择是否适合。
作为原核表达的宿主,对外源基因的表达会产生一定的影响,是勿庸置疑的。
每一个宿主细胞都像一个微观的小工厂,按照细胞固有的程序完成“你给它们安排的生产任务”——因为很难亲眼观察微观世界中表达是如何进行的,当出现问题时,我们需要经验判断问题所在。
宿主细胞对原核表达可能会产生哪些影响呢?知其然还要知其所以然。
比如,菌株内源的蛋白酶过多,可能会造成外源表达产物的不稳定,所以一些蛋白酶缺陷型菌株往往成为理想的起始表达菌株。
堪称经典的BL21系列就是lon和ompT蛋白酶缺陷型,也是我们非常熟悉的表达菌株。
大名鼎鼎的BL21(DE3)融源菌则是添加T7聚合酶基因,为T7表达系统而设计。
真核细胞偏爱的密码子和原核系统有不同,因此,在用原核系统表达真核基因的时候,真核基因中的一些密码子对于原核细胞来说可能是稀有密码子,从而导致表达效率和表达水平很低。
改造基因是比较麻烦的做法,Rosetta 2系列就是更好的选择——这种携带pRARE2质粒的BL21衍生菌,补充大肠杆菌缺乏的七种(AUA, AGG, AGA, CUA, CCC, GGA 及CGG)稀有密码子对应的 tRNA,提高外源基因、尤其是真核基因在原核系统中的表达水平。
(已经携带有氯霉素抗性质粒)当要表达的蛋白质需要形成二硫键以形成正确的折叠时,可以选择K–12衍生菌Origami 2系列,thioredoxin reductase (trxB) 和glutathionereductase (gor)两条主要还原途径双突变菌株,显著提高细胞质中二硫键形成几率,促进蛋白可溶性及活性表达。
原核表达系统是目前使用最广泛、最完善的重组蛋白表达系统,具有遗传背景清晰、表达周期快、表达量高、成本低等优势,缺点是无法进行蛋白的翻译后修饰,得到具有生物活性蛋白的几率较小。
原核表达系统适用于表达原核来源的蛋白或不需要翻译后修饰的真核来源蛋白。
在原核蛋白表达过程中,需要综合考虑表达菌株、质粒载体、表达条件三大因素,以获得最满意的表达效果。
下面为大家一一介绍这三大因素的选择和优化。
1. 表达菌株菌株的选择往往是大家最容易忽视的,大多数人会选择使用自己实验室有的或用过的表达菌株。
当蛋白表达效果不佳时,大多会在质粒载体或表达条件上找原因,而不会考虑菌株的选择是否合适。
但作为表达宿主,菌株一定会对外源基因表达蛋白产生影响。
图1 大肠杆菌原核表达系统常用的菌株包括大肠杆菌、芽孢杆菌和链霉菌。
其中运用最为广泛的就是大肠杆菌表达系统。
以下为大家列出了一些常用的大肠杆菌表达菌株,可根据不同的需求进行选择。
2. 质粒载体质粒表达载体上的重要元件包括启动子,多克隆位点,终止子,复制子,信号肽,融合标签,筛选标记等。
根据载体上这些元件的特性,有多种质粒可供选择。
图2 大肠杆菌表达质粒pET-22b(+)图谱启动子:根据启动子的强弱考虑,强启动子可以提高蛋白表达量;弱启动子可以降低本底表达、增加可溶表达、表达小量伴侣蛋白等。
根据启动子的作用方式考虑,组成型启动子使宿主不停的表达重组蛋白;诱导型启动子使宿主在特定诱导条件下表达重组蛋白。
终止子:终止子的作用在于保护mRNA在核外不被降解,延长mRNA的寿命,以提高重组蛋白表达量。
对于T7系统来说,由于T7 RNA聚合酶效率非常高,保证一直有充足的mRNA 提供翻译,所以终止子对其影响不大,只有一些自身带有起始密码子的外源基因需要终止子。
~复制子:复制子决定质粒载体拷贝数,拷贝数越高,重组蛋白表达量就越高。
表达载体通常会选用高拷贝的复制子,但过高的拷贝数会影响质粒稳定性和宿主生长。
原核表达系统是目前使用最广泛、最完善的重组蛋白表达系统,具有遗传背景清晰、表达周期快、表达量高、成本低等优势,缺点是无法进行蛋白的翻译后修饰,得到具有生物活性蛋白的几率较小。
原核表达系统适用于表达原核来源的蛋白或不需要翻译后修饰的真核来源蛋白。
在原核蛋白表达过程中,需要综合考虑表达菌株、质粒载体、表达条件三大因素,以获得最满意的表达效果。
下面为大家一一介绍这三大因素的选择和优化。
1. 表达菌株
菌株的选择往往是大家最容易忽视的,大多数人会选择使用自己实验室有的或用过的表达菌株。
当蛋白表达效果不佳时,大多会在质粒载体或表达条件上找原因,而不会考虑菌株的选择是否合适。
但作为表达宿主,菌株一定会对外源基因表达蛋白产生影响。
图1 大肠杆菌
原核表达系统常用的菌株包括大肠杆菌、芽孢杆菌和链霉菌。
其中运用最为广泛的就是大肠杆菌表达系统。
以下为大家列出了一些常用的大肠杆菌表达菌株,可根据不同的需求进行选择。
2. 质粒载体
质粒表达载体上的重要元件包括启动子,多克隆位点,终止子,复制子,信号肽,融合标签,筛选标记等。
根据载体上这些元件的特性,有多种质粒可供选择。
图2 大肠杆菌表达质粒pET-22b(+)图谱
启动子:根据启动子的强弱考虑,强启动子可以提高蛋白表达量;弱启动子可以降低本底表达、增加可溶表达、表达小量伴侣蛋白等。
根据启动子的作用方式考虑,组成型启动子使宿主不停的表达重组蛋白;诱导型启动子使宿主在特定诱导条件下表达重组蛋白。
终止子:终止子的作用在于保护mRNA在核外不被降解,延长mRNA的寿命,以提高重组蛋白表达量。
对于T7系统来说,由于T7 RNA聚合酶效率非常高,保证一直有充足的mRNA提供翻译,所以终止子对其影响不大,只有一些自身带有起始密码子的外源基因需要终止子。
复制子:复制子决定质粒载体拷贝数,拷贝数越高,重组蛋白表达量就越高。
表达载体通常会选用高拷贝的复制子,但过高的拷贝数会影响质粒稳定性和宿主生长。
常用的高拷贝复制子包括pCoE1,pMBI (pUC)等。
融合标签:融合标签是与目的蛋白共同表达的一段多肽。
较小的融合标签(如His-tag)一般不影响重组蛋白的结构和功能;较大的融合标签(如GST)可以帮助蛋白表达和折叠,提高蛋白溶解度。
N端标签自身带有启动子和宿主偏好密码子,可以提高蛋白表达量,但提前中止的蛋白片段也会一并被纯化;C端标签则可保证只有完整的蛋白得到纯化。
标签位置
还应该避免位于蛋白重要功能区末端。
筛选标记:在没有压力的培养环境下,宿主中的外源质粒常随着复制而丢失。
为了稳定质粒表达,需要在质粒载体中加入筛选标记,使宿主在压力环境下生长。
常用的抗生素筛选标记有:青霉素抗性、卡那霉素抗性、氯霉素抗性和四环素抗性等。
需要根据不同的菌株和培养环境,选择合适的筛选标记。
3. 优化表达条件
新建的重组蛋白表达系统常常会出现蛋白不表达、或表达量不理想等情况。
为了提高重组蛋白表达量、改善蛋白质量,一般都需要对表达条件进行优化。
原核表达条件的优化主要从以下几方面考虑:
蛋白不表达:如果重组蛋白不表达,首先检查cDNA和质粒是否正确,然后尝试更换菌株、质粒载体、标签等。
通常原核来源的蛋白不能表达的情况很少见,如果是真核蛋白不能表达,还可以更换表达系统,尝试酵母或昆虫细胞表达系统。
蛋白表达量低:宿主菌蛋白的密码子使用频率一般是不同的,有最佳密码子、偏好密码子、稀有密码子和利用率最低的密码子。
检查目的蛋白的密码子构成,使其适应宿主菌的密码子偏好。
如果重组蛋白N端存在大量集中稀有密码子,会降低mRNA的稳定性,显著降低翻译速度,引起翻译提前中止,将这些稀有密码子突变成宿主偏好的密码子,能够显著提高蛋白表达水平。
另一种方法,还可以将菌株更换为提供稀有密码子tRNAs的菌株(如Rosetta)。
此外,高GC含量、回文结构和相距较近的两个起始密码子都会阻碍转录启动。
可溶表达低:如果重组蛋白可溶表达低,可尝试降低诱导后培养温度,引导重组蛋白降低表达速度,提高正确折叠率,一般25-30℃就能明显改善蛋白折叠。
重组蛋白在所有细胞中表达水平相当时,减少诱导剂可明显增加蛋白可溶表达量。
使用M9ZB和NZCYM培养基,可增加细菌的拷贝数;使用LB培养基,可提高外源蛋白的表达量。
高毒性蛋白:宿主菌的生长会受到外源基因表达的影响。
经过改造的宿主在很大程度上能够容忍重组蛋白,重组蛋白可以占到细胞总蛋白量的50%以上。
但少数高毒性蛋白的本底表达会杀伤宿主,导致质粒丢失,所以需要降低重组蛋白的本底表达量。
采用的方法包括在培养基中加入1%的葡萄糖、使用严格启动和低拷贝数的载体、选择可表达T7溶菌酶的宿主等。
除此之外,还可以通过共表达重组蛋白抑制剂、提高抗生素浓度等方法提高重组蛋白表
达量。
包涵体表达:过量表达的重组蛋白会在大肠杆菌细胞内凝聚,形成无活性的包涵体沉淀。
包涵体蛋白的优势在于能够轻松获得超高表达量,不可溶蛋白不会被宿主蛋白酶降解,重组蛋白毒性被大大抑制,蛋白纯度高且易纯化;其缺点在于包涵体蛋白折叠混乱、二硫键配对混乱、没有生物活性、需要变复性。
提高培养温度、延长培养时间、加大菌密度都有利于诱导包涵体形成。