重组蛋白的表达系统详细版
- 格式:ppt
- 大小:1.75 MB
- 文档页数:10
第五章重组蛋白质的表达、复性与纯化为什么要重组基因表达?1.蛋白质功能研究2.生物制药和疫苗生产3.疾病的基因治疗4.食品、化工用酶制剂5.抗虫、抗逆植物改良6.细胞代谢产物的富集•基因表达体系及优劣势•大肠杆菌表达体系•蛋白质的复性•工作中经常碰到的问题基因表达体系1.原核体系2.真核体系大肠杆菌(Escherichia coli)•遗传背景清楚,基因工程操作方便,商品化表达载体种类齐全,表达效率高;•基本不分泌,易形成包含体(无正确折叠的立体结构),无加糖等修饰枯草杆菌(Bacillus subtilis)•分泌蛋白质能力强,一般有天然立体结构;•无加糖修饰功能,培养液中蛋白酶活性高,重组蛋白易受蛋白酶的水解;•质粒不稳定,已有商品化的表达载体(枯草芽孢杆菌,巨大芽孢杆菌)。
其他•乳酸菌(Lactic acid bacteria)•沙门氏菌(Salmonella typhimurium)•苏云金杆菌(Bacillus thuringiensis)真核细胞表达体系酵母细胞昆虫细胞植物细胞/组织哺乳动物细胞/组织酵母细胞•可生产分泌型蛋白;有天然立体结构,有糖基化修饰功能;可进行染色体整合型基因表达;•糖链与哺乳动物加工的不一致,培养上清多糖浓度高;•商品化表达体系:酿酒酵母(Saccharomyce cerevisiae);毕氏酵母(Pichia pastoris);裂殖酵母(Schizosaccharomyce pombe)蛋白质糖基化的分类1.O-糖基化:糖链通过GalNAc连接在蛋白质的Ser 或Thr等侧链的羟基处2.N-糖基化:糖链连接在Asn-X-Ser或Asn-X-Thr (X是除Pro以外的任何氨基酸)中Asn的氨基侧链处3.GPI-Anchor糖基化:蛋白质通过肽链的C端共价连接的糖基磷脂酸肌醇锚定在膜脂上。
昆虫细胞•可以病毒感染的形式在成虫中生产,也可在体外培养细胞生产蛋白;•适合分泌型和膜蛋白的表达,有加糖修饰;•糖链有所区别,表达量有限;•作为药物宿主细胞未被FDA认可CHO细胞•可进行分泌表达,有天然立体结构,加糖方式与人体蛋白质完全一致;•表达量不够高,培养成本较高植物组织•植物可大面积种植,可以廉价大规模生产;•转基因植物制作费时,表达的组织特异性较难控制;•表达量较难提高,分离纯化不方便动物乳腺组织•分泌生产有天然立体结构和活性的蛋白质至乳汁,产量高,分离纯化方便,特别适合药用蛋白的生产;•转基因动物制作花费巨大,实验周期长鸟类输卵管组织•分泌生产有天然立体结构的蛋白质到蛋清,产量高,容易贮存和运输,分离纯化方便;•实验成本低,饲养费用低;•加糖方式可能与人有所不同体系选择研究基因功能:大肠杆菌,裂殖酵母,昆虫细胞,CHO细胞多肽药物生产:大肠杆菌,毕氏酵母,CHO细胞,乳腺组织疫苗:大肠杆菌,酵母,大多数沿用细胞培养产物进行灭毒单抗生产:杂交瘤细胞工业酶生产:各种微生物有可能以后能做到的事∙在大肠杆菌中直接生产有活性的胰岛素∙在大肠杆菌中生产人凝血IX因子∙在大肠杆菌生产Calcitonin类C端酰胺化短肽∙在大肠杆菌中进行蛋白质的糖基化修饰∙在酵母中进行与哺乳动物细胞一致的糖基化∙在鸡输卵管中进行与哺乳动物细胞一致的糖基化∙提高乳腺分泌表达的Factor IX类因子的活性∙在植物中得到与哺乳动物细胞一致的糖基化在大肠杆菌中表达重组蛋白质•如果目的蛋白质有二硫键并需要正确的立体结构, 尽可能进行可溶性表达;•如果目的蛋白质没有二硫键或只用来制备抗血清, 采用包含体表达比较好;•如果目的多肽的分子量小于10 kDa, 一定要进行融合表达大肠杆菌表达载体分类按蛋白质类型分•单纯表达: pJLA系列, 用NcoI/NdeI导入AUG的载体•融合表达: 融合各种tag, GST, CBD, MAL, GFP, etc •分泌表达: pel/ompT分泌肽按启动子分•lac及衍生的tac , trc, pac, rac等启动子IPTG诱导•lamda phage P L和P R启动子热诱导•T7 启动子IPTG诱导•T5 启动子IPTG诱导•ara启动子阿拉伯糖诱导常用表达载体•pJLA50X 系列; pcDNAII; etc •pET 系列(T7 promoter, Novagen 公司)•pQE系列(T5 promoter, Qiagen公司)•pMAL系列(周质表达, BioLabs公司)•pGEX系列(GST融合表达, Pharmacia公司)•pBAD系列(Arabinose诱导型)•pTYB系列(CBD融合, 可以自我切割, BioLabs)各种融合蛋白表达载体•Protein A•GST(glutathione S-transferase)•CBD (chitin-binding domain, BioLabs;cellulose-binding domain, Novagen)calmodulin-binding domain, Stratagene)•MBP (maltose-binding protein)•GFP (green fluorescence protein)•Thioredoxin **帮助二硫键形成•Dsb (periplasmic enzyme DsbA, DsbC) ** 二硫键的形成与•SUMO (small ubiquitin-related modifier) •KSI (ketosteroid isomerase) 基本上全部沉淀可用亲和层析纯化帮助可溶化帮助分泌到周质让表达产物可溶化•采用MBP融合•采用GST融合•采用CBD融合•采用thioredoxin融合•采用Origami等宿主菌•降低菌体培养的速度温度(15-30℃), 降低转速让蛋白质分泌到间质去•采用CBD 融合(pET36/37)•采用Dsb融合(pET39/40)•采用带pelB/ompT引导肽的载体(pET12/20/22)•采用带MBP融合(pMAL载体, Biolabs)•采用带SUMO融合(pET SUMO, Invitrogen)纯化方便: 先用EDTA/蔗糖溶液处理, 然后5 mM MgSO4 洗出•His-tag (6-8 Histidine )•T7-tag (MASMTGGQQMG )•HSV-tag (QPELAPEDPED )•S-tag (KETAAKFERQHMDS )•VSV-G-tag (TTDIEMNRLGK )•HA-tag (YPYDVPDYA )•Flag-tag (DYKDDDDK ) •Myc-tag (EQKLISEEDL )各种用于抗体识别的标记为什么要加tag ?有前景的特殊用途的tag •Biotinylation-tag100多AA的结构域,在大肠杆菌中被识别为生物素化的位点. Promega的PinPoint TM Xa-1; Invitrogen的pET104-DEST.•未命名DVEAWLGAR, 被用来和streptoavidin结合(个人通讯)•未命名一些病毒外壳蛋白的片段, 破坏细胞膜的结构导致容易进入细胞融合蛋白的专一性切割•DTT: intein的↓Cys •溴化氰: Met↓•Thrombin: LVPR↓GS •Factor Xa: IEGR↓•Enterokinase: DDDDK↓•PreScission TM protease:LEVLFQ↓GP •Genenase I TM PGAAHY↓•TEV protease:ENLYFQ↓G特殊的表达用菌株•BL21(DE3)/pLysS : 自身表达T7 RNA polymerase 适用pET系列等带T7启动子的载体•M15/SG13009 : 自身表达T5 RNA polymerase 适用pQE系列等带T5启动子的载体•BL21TrxB(DE3) : thioredoxin reductase 突变•Origami(DE3): thioredoxin reductase/ glutathione reductase 双突变适合带thioredoxin reductase的融合表达载体, 帮助形成更多的二硫键•BR21CodonPlusRIL: 富含AT的真核生物基因的表达•BR21CodonPlusRP: 富含GC的真核生物基因的表达重要的原核表达质粒提供商•Novagen•Stratagene•Invitrogen•BioLabs•Qiagen•Pharmacia•Promega•Clontech•Roche•Gibco/BRLThe protein folding Problem How to get to the bottom of the funnel? And,what is at the bottom?包含体蛋白质的复性方法•透析法: 简单; 但费时, 费缓冲液, 蛋白质量少,浓度不能过高(容易产生沉淀) •快速稀释法:最常用的小规模复性方法; 但比较费时,费缓冲液, 蛋白质的浓度不能高(容易产生沉淀)•超滤透析法: 比较省缓冲液, 处理量大; 但费时, 要控制好蛋白质浓度•凝胶过滤法:快速, 可重复性高, 不会产生沉淀, 操作复杂一点•亲和层析复性法, 水相二相法, etc工作中经常碰到的问题•表达量不够高;•包含体在8M尿素中不能溶解;•重组蛋白在大肠杆菌中表达的分子量偏小;•带His-tag重组蛋白不吸附到Ni-chelating树脂上;•Ni-chelating分离纯化的效果不好;•GST融合蛋白不吸附到glutathione-Sepharose上;•包含体来源的采用透析法或稀释法复性时全部沉淀;•Ni-chelating错用DTT后发生黑色沉淀该怎么办?•贵重的亲和层析树脂经常发生结块该怎么办?•某些表达载体的表达效率在放大培养时无法提高尝试不同表达载体,特别是N端有融合蛋白的载体•是不是忘了加还原剂(DTT 或巯基乙醇)?•是不是在-20℃冻存过?•用4M盐酸胍试试•是不是酸性蛋白质?•是不是蛋白质的合成提前中止了?(富含Arg, Ile, Leu, Pro这几种氨基酸)•可以尝试用BL21 CodonPlus RIL 或RP 作宿主菌(Stratagen);•使用C端带His-tag的融合表达载体(如pET21, Novagen)以便纯化全长的融合蛋白•His-tag被操作过程混入的重金属离子所饱和,可以通过添加0.5 mM EDTA来去除重金属离子的干扰;•His-tag被包裹在不易和树脂发生结合的位置(比较罕见);•其他不明原因导致弱结合•样品没有很好细心去除不溶性物质•重复使用前树脂没有洗干净•蛋白质之间存在相互作用•可以提高盐浓度, 改变pH, 添加2-6 M尿素等方法来洗去杂蛋白质是不是在进行复性时用了Redox buffer尝试用Urea gradient /Gel filtration来解决尽快用0.1 N HCl冲洗用0.1 N NaOH / 0.1% SDS洗主要是溶氧量的问题, 可以通过在摇瓶中加入不同量的培养基的方式来确定最佳体积。
在大肠杆菌中表达重组蛋白的流程
在大肠杆菌中表达重组蛋白的流程通常包括以下步骤:
1. 克隆:首先需要将目标基因克隆到适当的表达载体中。
这可以通过PCR扩增目标基因,然后将其与表达载体连接,形成重组质粒。
2. 转化:将重组质粒转化到大肠杆菌细胞中。
可以使用化学方法(如热冲击法)或电穿孔法将质粒导入细胞。
3. 选择:转化后,将细胞分散在含有适当抗生素的琼脂平板上培养。
只有带有重组质粒的细胞能够存活并形成菌落。
4. 培养:将含有重组细胞的培养液转移到适当的培养基中,并在适当的条件下培养。
这可能包括调节温度、pH值和搅拌速度等。
5. 表达:在培养期间,目标基因会被大肠杆菌细胞转录和翻译为蛋白质。
使用适当的启动子和调控序列,可实现目标蛋白的高效表达。
6. 细胞破碎:一旦细胞达到最佳表达水平,就需要破碎细胞以释放目标蛋白。
这可以通过多种方法实现,如超声波、高压破碎或化学方法。
7. 纯化:通过使用各种分离和纯化技术(如亲和层析、凝胶过滤、离子交换层析等),从细胞裂解液中纯化目标蛋白。
以上是在大肠杆菌中表达重组蛋白的一般流程。
具体的步骤和条件可能因实验设计和目标蛋白的特性而有所不同。
关于重组人血白蛋白的系统性表述人血白蛋白(HSA)作为一种重要的临床急救药物及重要的药物辅料,在医药,科研及化妆品生产等领域应用广泛。
随着国内医疗水平及居民收入水平的提升和对血液制品认知度的提高,血液制品的临床使用量不断增加,市场容量不断增长,行业快速发展。
根据国家医药管理局的报告,2010年全国16城市医院血液系统用药金额约62亿元,其中白蛋白类药物占据了血液制品的主要份额(大于50%)。
但作为一种血液制品,HSA同时也面临原料短缺及病毒污染等缺陷的影响。
用基因工程重组人血清白蛋白(rHSA)替代HSA是国际上公认的最有前途的高新技术途径。
一.什么是重组人血白蛋白1.定义通过基因重组的技术将目的蛋白的基因克隆后,将该基因插入到某种生物(如细菌、酵母、植物,哺乳动物细胞等)中进行复制,然后收集的白蛋白称为重组人血白蛋白。
2.rHSA的等级分类按不同的质量标准分为了培养基级、药用辅料级和药用注射级(药用级)三类,三类级别的重组人血白蛋白生产工艺相同,但最终控制参数不同,药用级白蛋白质量标准最高。
3.rHSA的表达系统分类白蛋白(Human Serum Albumin,HSA)是一组复杂的大分子蛋白质,必须经过正确的折叠、组装和翻译后修饰,才能赋予其特定的结构和功能,表达系统是重组人血白蛋白生产过程中极其重要的环节。
(1)原核表达系统HSA基因最早就是在原核生物大肠杆菌(E.coli)中表达成功的,Lawn等于1981年首次报道了rHSA的cDNA序列并首次构建了第一个表达rHSA的表达载体pHSA,然后在E.coli中表达成功,表达量为细胞总蛋白的7%,但E.coli表达系统体外很难正确折叠和组装结构复杂的HAS,缺乏翻译后的修饰和加工,表达的蛋白多形成包涵体,且纯化较难,所以未能得到有生物功能的蛋白,细菌细胞壁脂多糖还会造成热反应。
因为HSA在原核生物中表达量不高且分泌效果不够理想,所以研究的重点转向其在真核生物细胞中的表达。
关于重组人血白蛋白的系统性表述人血白蛋白(HSA)作为一种重要的临床急救药物及重要的药物辅料,在医药,科研及化妆品生产等领域应用广泛。
随着国内医疗水平及居民收入水平的提升和对血液制品认知度的提高,血液制品的临床使用量不断增加,市场容量不断增长,行业快速发展。
根据国家医药管理局的报告,2010年全国16城市医院血液系统用药金额约62亿元,其中白蛋白类药物占据了血液制品的主要份额(大于50%)。
但作为一种血液制品,HSA同时也面临原料短缺及病毒污染等缺陷的影响。
用基因工程重组人血清白蛋白(rHSA)替代HSA是国际上公认的最有前途的高新技术途径。
一.什么是重组人血白蛋白1.定义通过基因重组的技术将目的蛋白的基因克隆后,将该基因插入到某种生物(如细菌、酵母、植物,哺乳动物细胞等)中进行复制,然后收集的白蛋白称为重组人血白蛋白。
2.rHSA的等级分类按不同的质量标准分为了培养基级、药用辅料级和药用注射级(药用级)三类,三类级别的重组人血白蛋白生产工艺相同,但最终控制参数不同,药用级白蛋白质量标准最高。
3.rHSA的表达系统分类白蛋白(Human Serum Albumin,HSA)是一组复杂的大分子蛋白质,必须经过正确的折叠、组装和翻译后修饰,才能赋予其特定的结构和功能,表达系统是重组人血白蛋白生产过程中极其重要的环节。
(1)原核表达系统HSA基因最早就是在原核生物大肠杆菌(E.coli)中表达成功的,Lawn等于1981年首次报道了rHSA的cDNA序列并首次构建了第一个表达rHSA的表达载体pHSA,然后在E.coli中表达成功,表达量为细胞总蛋白的7%,但E.coli表达系统体外很难正确折叠和组装结构复杂的HAS,缺乏翻译后的修饰和加工,表达的蛋白多形成包涵体,且纯化较难,所以未能得到有生物功能的蛋白,细菌细胞壁脂多糖还会造成热反应。
因为HSA在原核生物中表达量不高且分泌效果不够理想,所以研究的重点转向其在真核生物细胞中的表达。
重组蛋白质的表达与纯化技术蛋白质是生命体活动的重要组成部分,对于生命体的生长、繁殖和免疫功能起着至关重要的作用。
而重组蛋白质则是利用基因工程技术,将人工合成的外源基因导入到特定的宿主细胞中,通过细胞表达和纯化技术得到的转录翻译产物。
这种技术不仅可以生产天然蛋白质,还可以生产人工合成的新型蛋白质,对于疾病的治疗和新药的研发有着重要的意义。
一、蛋白质表达技术蛋白质表达是获得大量重组蛋白质的重要方法。
选择适当的宿主细胞和表达载体是获得高水平表达的关键。
常用的宿主细胞包括大肠杆菌、酵母菌、昆虫细胞、哺乳动物细胞等。
1.大肠杆菌表达系统大肠杆菌表达系统具有生长快、表达量高等优点,广泛应用于重组蛋白质的表达和纯化。
其表达载体主要有pET和pBAD两种,pET系统一般用于产生可以形成包涵体的重组蛋白,pBAD系统用于在分泌表达中产生滞留蛋白。
2.昆虫细胞表达系统昆虫细胞表达系统包括SF9、Sf21、HighFive等细胞系,常用的表达载体为pIB/V5-His、pFastBac等。
昆虫细胞表达系统通常用于表达大分子蛋白质,如糖蛋白、膜蛋白等。
3.哺乳动物细胞表达系统哺乳动物细胞表达系统是目前表达规模最大、表达产物最接近人体蛋白质的一种表达系统。
其表达载体主要有pCDNA3.1、pCI 等,常用于表达与人体有关的蛋白质,如抗体、生长因子等。
二、蛋白质纯化技术蛋白纯化是重组蛋白质生产的重要环节,其目的是得到高质量的、纯度较高的蛋白质样品。
常见的纯化方法包括亲和层析法、离子交换层析法、凝胶过滤层析法、逆流式层析法等。
1.亲和层析法亲和层析法是指因与载体中固定的亲和剂相互结合而纯化目标蛋白质的一种方法。
亲和剂通常是与目标蛋白质有特异性结合作用的化合物,如亲和标签、酶底物、抗体等。
常见的亲和层析方法有亲和柱层析、亲和膜层析等。
2.离子交换层析法离子交换层析法是根据蛋白质带有正或负电荷的差异性进行分离的一种方法。
离子交换层析的柱填充物常为离子交换树脂,其一般分为阴离子交换树脂和阳离子交换树脂两种。
一、原理
1、E . coli 表达系统
E . coli 是重要的原核表达体系。
在重组基因转化入E . coli 菌株以后,通过温度的控制,诱导其在宿主菌内表达目的蛋白质,将表达样品进行SDS-PAGE 以检测表达蛋白质。
2、外源基因的诱导表达
提高外源基因表达水平的基本手段之一,就是将宿主菌的生长与外源基因的表达分成两个阶段,以减轻宿主菌的负荷。
常用的有温度诱导和药物诱导。
本实验采用异丙基硫代-β-D-半乳糖昔(IPTG)诱导外源基因表达。
不同的表达质粒表达方法并不完全相同,因启动子不同,诱导表达要根据具体情况而定。
二、步骤
1、一活:从-80℃取菌株,50 mL LB+50 uL抗生素(pet32:AMP,pet28:Kana)+50uL菌种(根据菌活性可多加),置于恒温振荡器中(37℃,150 rpm)培养过夜(约12 小时)。
2、二活:1 L LB+1 mL抗生素+50mL菌种,于恒温振荡器上(37℃,200 rpm)培养2小时。
3、取1.5 mL诱导前菌种,标记,加1 mL IPTG至二活后的LB培养基中根据相应条件诱导表达(低温(125rpm),高温(150rpm),8h,12h,20h)
4、诱导后取1.5mL菌,12000rpm离心2min,弃上清,加100uL PBS(可根据情况加50uL),吹打均匀(诱导前保留的菌也同样处理),煮样,跑电泳。
重组蛋白的表达1.概述分离纯化组成了基因工程的下游处理(downstream processing)时期,这一过程又和上游过程紧密相联系,上游过程的诸方面阻碍到下游的分离纯化,因此在进行目标蛋白质表达纯化时要统一考虑和整体设计,并充分考虑上游因素对下游的阻碍,如是否带有亲和标签,是否进行分泌表达。
目前应用最广泛的表达系统有三大类,分别是大肠杆菌表达系统、酵母表达系统和CHO细胞表达系统,不同的表达系统和培养方法显著阻碍下游的处理过程,目标蛋白表达是否形成包涵体,目标蛋白表达的定位(胞内、细胞内膜、周质空间和胞外),蛋白表达的量都依靠于所选择的表达系统。
选择将所表达的蛋白分泌到细胞外或周质空间能够幸免破裂细胞的步骤,同时由于蛋白质种类少,目标蛋白容易纯化;而在细胞质内表达蛋白,可能是可溶性表达,可能形成包涵体,可溶性的蛋白往往需要复杂的纯化步骤,而包涵体易于分离,纯度较高,但回收具有生物活性的蛋白却变的相当困难,需要对集合的蛋白进行变复性,通常活性蛋白的得率比较低,表1列出了不同策略对表达、纯化的阻碍,关于其中的有些缺点能够通过一定的方法进行克服和幸免,如利用DNA重组技术给外源蛋白加上一个亲和纯化的标签,有助于可溶性外源蛋白的选择性纯化,并能爱护目标蛋白不被降解(96)。
表 1 重组蛋白不同表达策略的优点和缺点表达策略优点缺点分泌表达至细胞外增强正确二硫键的形成降低蛋白酶对表达蛋白的降解可获得确定的N末端显著减少杂蛋白水平,简化纯化不需要细胞破裂表达水平低多数蛋白不能进行分泌表达表达蛋白需要进行浓缩细胞周质空间表达增强正确二硫键的形成可获得确定的N末端显著减少杂蛋白水平,简化纯化好些蛋白不能分泌进入周质空间没有大规模选择性的开释周质空间蛋白的技术周质蛋白酶可引起重组蛋白酶解胞内包涵体表达包涵体易于分离爱护蛋白质不被降解蛋白质不具有活性对宿主细胞生长没有大的阻碍,通常可获得高的表达水平需要体外的折叠和溶解,得率较低具有不确定N末端胞内可溶性蛋白表达不需要体外溶解和折叠一样具有正确的结构和功能高水平的表达常难以得到需要复杂的纯化可发生蛋白质的酶解具有不确定的N末端在细胞的提取物中,除了目标蛋白外,还含有其它各种性质的蛋白、核酸、多糖等。
详述重组蛋白表达系统一、重组蛋白表达系统概述蛋白表达系统是指由宿主、外源基因、载体和辅助成分组成的体系。
通过这个体系可以实现外源基因在宿主中表达的目的。
一般由以下几个部分组成:1、宿主。
表达蛋白的生物体。
可以为细菌、酵母、动物细胞,植物反应器、动物反应器等。
由于各种生物的特性不同,适合表达蛋白的种类也不相同。
2、载体。
载体的种类与宿主相匹配。
根据宿主不同,分为原核(细菌)表达载体、酵母表达载体、植物表达载体、哺乳动物表达载体、昆虫表达载体等。
载体中含有外源基因片段。
通过载体介导,外源基因可以在宿主中表达。
3、辅助成分。
有的表达系统中还包括了协助载体进入宿主的辅助成分。
比如昆虫-杆状病毒表达体系中的杆状病毒。
二、大肠杆菌表达系统在各种表达系统中,最早被采用进行研究的是大肠杆菌表达系统,也是目前掌握最为成熟的表达系统,大肠杆菌表达系统以其细胞繁殖快速产量高、IPTG诱导表达相对简便等优点成为生产重组蛋白的最常用的系统。
优点:表达水平高,低成本,易培养和大规模工业生产,生产迅速培养周期短,转化操作简单,蛋白表达量高且可以通过多个参数进行优化,容易形成二硫键。
缺点:蛋白折叠性较差(包括细菌蛋白),易形成包涵体,与真核生物不同密码子体系,真核蛋白表达后很少的翻译后修饰,分泌大量内毒素。
三、酿酒酵母不产生毒素,已被美国FDA确认为安全性生物,但酿酒酵母难于高密度培养,分泌效率低,几乎不分泌分子量大于30 kD的外源蛋白质,也不能使所表达的外源蛋白质正确糖基化,而且表达蛋白质的C端往往被截短。
因此,酿酒酵母一般不用做重组蛋白质表达的宿主菌。
优点:表达水平较高,分泌蛋白或细胞表达的良好选择,易培养且培养低成本。
拥有大多数真核生物的翻译后修饰,蛋白表达后有效折叠,无内毒素分泌。
缺点:比毕赤酵母的表达水平低,分泌能力可能低于毕赤酵母,糖基化与哺乳动物细胞不同。
过糖基化,N-端糖基链结构具有致敏性四、甲醇酵母表达系统(毕赤酵母)甲醇酵母的表达载体为整合型质粒,载体中含有与酵母染色体中同源的序列,因而比较容易整合入酵母染色体中,大部分甲醇酵母的表达载体中都含有甲醇酵母醇氧化酶基因—1(AOX1),在该基因的启动子(PAOX1)作用下,外源基因得以表达。
重组蛋白的高效表达及纯化技术研究随着生物技术的发展,蛋白表达与纯化技术在医疗、工业以及科学研究等领域中扮演着越来越重要的角色。
其中,重组蛋白的高效表达及纯化技术是蛋白质学研究的关键环节之一。
本文旨在探讨目前被广泛应用的几种重组蛋白表达及纯化技术,以及它们的新进展与应用前景。
一、背景介绍重组蛋白指的是通过基因重组技术将人工合成的DNA片段引导到细胞中,使其在受到特定刺激后大量表达特定功能蛋白的一种新型蛋白质。
由于其具有高度专一性、易制备性以及更高的效力和安全性,越来越多的药物被开发为基于重组蛋白的生物制剂。
二、重组蛋白表达技术1. 原核表达系统原核表达系统是将DNA片段导入大肠杆菌等细菌中,在其形成菌落的过程中进行表达。
该系统的优点在于表达速度快、操作简便、表达产量高。
但同时,由于原核表达与真核细胞中的表达相比,它对于蛋白翻译辅助因子和蛋白修饰等生物特征的模拟程度较差,不利于蛋白的正确折叠,因此该系统表达的蛋白质通常需要经过重新折叠处理。
2. 原核表达系统与原核表达系统相比,真核表达系统更接近真实情况中的表达方式,对于全长的蛋白大多数时候能够实现正确的折叠。
在真核表达系统中,常用的系统包括昆虫细胞、哺乳动物细胞以及酵母菌表达系统等。
其中,哺乳动物细胞表达系统能够实现高产量、高质量的蛋白质表达,因此被广泛应用于蛋白质制备。
三、重组蛋白纯化技术1. 亲和层析法亲和层析法是一种将目标蛋白质从混合物中分离出来的技术。
该技术的依据是一种特定的与目标蛋白质具有相互作用的配体分离柱。
在该技术中,目标蛋白质与配体分离柱上的特定功能团结合,非特异性的蛋白质能够在洗脱过程中被去除。
2. 总体分离法总体分离法是将目标蛋白从混合物中分离出来,采用离心、可溶性和非可溶性的分离方法。
其中,在采用可溶性分离的方式时,常用的方法有两相法、分配层析等。
四、新兴技术及应用前景近年来,3D打印技术的应用逐渐渗透到生物医疗领域,并开始用于制备组织工程器官和人造蛋白质等领域。