用提取公因式分解因式 (最新)
- 格式:ppt
- 大小:248.00 KB
- 文档页数:10
专题4.1 因式分解(提公因式法与运用公式法)1.了解整式乘法与因式分解之间的互逆关系;2.会用提公因式法分解因式;3.会用运用公式法分解因式。
知识点01 因式分解的概念【知识点】因式分解的定义:把一个多项式化成了几个整式的积的形式,这样的式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式。
【知识拓展1】辨别因式分解与整式乘法例1.(2024·江苏常州·期中)下列等式由左边到右边的变形中,属于因式分解的是( ) A .2(1)(1)1a a a +-=- B .43222186?3x y x y x y -=- C .221(2)1x x x x ++=++ D .2269(3)a a a -+=-【即学即练】1.(2024·广东禅城·期末)下列各式从左到右的变形中,是因式分解的为( ). A .()x a b ax bx -=- B .()()222111x y x x y -+=-++C .()()2111x x x -=+-D .()ax bx c x a b c ++=+【知识拓展2】应用因式分解的概念求参数例2.(2024·山东中区·初二期中)已知多项式x 2+ax ﹣6因式分解的结果为(x +2)(x +b ),则a +b 的值为( ) A .﹣4 B .﹣2C .2D .4【即学即练】1.(2024·贵州铜仁·初二期末)多项式26x mx ++可因式分解为()()23x x --,则m 的值为 ( ) A .6B .5±C .5D .5-2.(2024·江西昌江·景德镇一中初一期末)已知,,m n p 为实数,若1,4x x -+均为多项式32x mx nx p+++的因式,则2286m n p --+=__________.【知识拓展3】错题正解例3.(2024·上海市八年级期中)甲乙两个同学分解因式x 2+ax +b 时,甲看错了b ,分解结果为(x +2)(x +4),乙看错了a ,分解结果为(x +1)(x +9),则2a +b =_____. 【即学即练】1.(2024·张家界市初二期中)甲、乙两个同学分解因式x 2+ax+b 时,甲看错了b ,分解结果为(x+2)(x+4);乙看错了a ,分解结果为(x+1)(x+9),则a -b 的值是__________.知识点02 因式分解的方法(一)提公因式法【知识点】①提公因式法:pa +pb +pc =p (a +b +c );注意:挖掘隐含公因式;有时,公因式有显性完全相同类型,也有隐性互为相反数的类型。
《提公因式法》教学目标:1、了解因式分解的意义,了解因式分解和整式乘法是整式的两种相反方向的变形.2、会确定多项式中各项的公因式,会用提取公因式法分解多项式的因式.教学重难点教学重点:因式分解的概念及提取公因式法.教学难点:多项式中公因式确实定和当公因式是多项式时的因式分解.教学设计:〔一〕新课引入:回忆:运用所学知识填空〔1〕x 〔x +1〕= 〔2〕〔x +1〕〔x -1〕=〔3〕2ab 〔a 2+b +1〕=反之:〔1〕x 2+x = 〔2〕x 2-1=〔3〕2a ³b +2ab ²+2ab =观察以下式子的特点:〔1〕15=3×5〔2〕18=2×32 〔3〕x 2+x=x 〔x+1〕〔4〕x ²-1=〔x+1〕〔x-1〕〔5〕2a ³b +2ab ²+2ab =2ab 〔a ²+b +1〕由分解质因数类比到分解因式.〔二〕新知学习:1、分解因式的概念,与整式乘法的关系.稳固概念:判断以下各式从左到右哪些是因式分解?〔1〕m 〔a +b 〕=ma +mb〔2〕2a +4=2〔a +2〕〔3〕4a ²-6ab ²+2a =2a 〔2a -3b ²+1〕〔4〕a ²-2a +1=a 〔a -2〕+1〔5〕)10)(10(100)(2-+=-xy x y x y 2、确定公因式.问题:ma +mb +mc 这个多项式有什么特征? 引入公因式概念.例1:找出6x ³y 5-3x ²y 4的公因式,归纳找公因式的方法.课堂练习一:找出以下各多项式中的公因式填在后面括号内.〔1〕3mx-6nx2〔〕〔2〕x4y3+x3y4 〔〕〔3〕12x2yz-9x2y2 〔〕〔4〕5a2-15a3+25a〔〕3、用提公因式法分解因式.m〔a+b+c〕=ma+mb+mc可得ma+mb+mc=m〔a+b+c〕,观察构成乘积的两个因式分别是怎样形成的?m是这个多项式的公因式,而另一个因式是原多项式除以公因式所得的商式.像这种分解因式的方法叫做提公因式法.想一想:提公因式法的理论依据是什么?4、知识运用:例2:把8a²b²+12ab²c分解因式例3:把-24x³-12x²+28x分解因式.判断以下各式分解因式是否正确?如果不对,请加以改正.〔1〕2a2+4a+2=2〔a2+2a〕〔2〕3x2y3-6xy2z=3xy〔xy2-2yz〕把以下各式分解因式.〔1〕x2+x6〔2〕12xyz-9x2y2〔3〕-6x2-18xy+3x〔4〕2a n+2-4a n+1-6a n-1例4:把3a〔b+c〕-3〔b+c〕分解因式将以下各式分解因式.〔1〕p〔a2+b2〕-q〔a2+b2〕〔2〕 2a² 〔y-z〕2-4a〔z-y〕2例5:先分解因式,再求值.4a2〔x+7〕-3〔x+7〕,其中a=-5,x=3.5、拓展与提高:〔1〕20212+2021能被2021整除吗?〔2〕利用因式分解进行计算:23.1×24-46.2×7〔3〕将2a〔a+b-c〕-3b〔a+b-c〕+5c〔c-a-b〕分解因式.〔三〕课堂小结:〔1〕什么叫因式分解?〔2〕确定公因式的方法.〔3〕提公因式法分解因式的步骤.〔4〕提公因式法分解因式的步骤.有理数的乘法和除法教学目标:1、了解有理数除法的意义,理解有理数的除法法那么,会进行有理数的除法运算,会求有理数的倒数。
因式分解分类分成习题总汇(附加测试卷及答案)一、提取公因式1.确定下列各多项式的公因式。
a.单项式类型1、ay ax +2、36mx my -3、2410a ab +4、2155a a +5、22x y xy -6、22129xyz x y - b.多项式类型7、()()m x y n x y -+- 8、()()2x m n y m n +++9、3()()abc m n ab m n --- 10、2312()9()x a b m b a ---2.把下列各式分解因式。
单项式类型 1、nx ny - 2、2a ab + 3、3246x x - 4、282m n mn +5、23222515x y x y -6、22129xyz x y -7、2336a y ay y -+8、259a b ab b -+9、2x xy xz -+- 10、223241228x y xy y --+11、323612ma ma ma -+- 12、32222561421x yz x y z xy z +-13、3222315520x y x y x y +- 14、432163256x x x --+3.乘法分配律的逆运算填空。
(实际应用)1、22____()R r R r ππ+=+2、222(______)R r πππ+=3、2222121211___()22gt gt t t +=+ 4、2215255(_______)a ab a +=4.填写适当的符号。
(符号辨析)1、__()x y x y +=+2、__()b a a b -=-3、__()z y y z -+=-4、()22___()y x x y -=- 5、33()__()y x x y -=- 6、44()__()x y y x --=-7、22()___()()n n a b b a n -=-为自然数 8、2121()___()()n n a b b a n ++-=-为自然数 9、()1(2)___(1)(2)x y x y --=-- 10、()1(2)___(1)(2)x y x y --=-- 11、23()()___()a b b a a b --=- 12、246()()___()a b b a a b --=-5.把下列各式分解因式。
提取公因式和公式法4种压轴题型全攻略【考点导航】目录【典型例题】 (1)【考点一因式分解的概念辨析】 (1)【考点二提取公因式法的应用】 (2)【考点三公式法因式分解的应用】 (2)【考点四提取公因式法和公式法的综合应用】 (3)【过关检测】 (4)【典型例题】【考点一因式分解的概念辨析】【例题1】下列等式中,从左到右的变形是因式分解的是()【答案】A【分析】根据因式分解的定义逐个判断即可.【详解】解:A. 从左至右的变形属于因式分解,故本选项符合题意;B.从左至右的变形不属于因式分解且计算错误,故本选项不符合题意;C. 从左至右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;D.从左至右的变形不属于因式分解,故本选项不符合题意;故选:A.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义(把一个多项式化成几个整式的积的形式,叫因式分解)是解此题的关键.【变式1】下列各式由左边到右边的变形中,属于因式分解的是()【答案】A【分析】根据因式分解是把一个多项式转化成几个整式的积的形式,可得答案. 【详解】解:A 、把一个多项式转化成几个整式的积的形式,是因式分解,故符合题意;B 、没有把一个多项式转化成几个整式的积的形式,不是因式分解,故不符合题意;C 、是整式的乘法,不是因式分解,故不符合题意;D 、没有把一个多项式转化成几个整式的积的形式,不是因式分解,故不符合题意;故选:A .【点睛】本题考查了因式分解的意义,掌握因式分解是把一个多项式转化成几个整式的积的形式是解题关键.A .2a b +B .2a b −+C .a b --D .2a b -【答案】A 【分析】将2212a b ab −−提取公因式12ab æö÷ç-÷ç÷çèø,据此即可求解.【详解】解:()2211222a b ab ab a b −−=−+故选:A【点睛】本题考查提公因式法分解因式.用每一项除以公因式即可得到剩下的因式组成.【考点二 提取公式法的应用】【例题2】 把多项式2(2)(2)m a m a −+−分解因式等于( )A . 2(2)()a m m −+B . 2(2)()a m m −−C . (2)(1)m a m −−D . (2)(1)m a m −+【答案】C【分析】用提取公因式法即可进行因式分解.【详解】2(2)(2)m a m a −+−, 22)(2)(m a m a =−−−,(2)(1)m a m =−−.故选:C .【点睛】本题主要考查了用提取公因式法进行因式分解,熟练掌握提取公因式的方法和因式分解的定义是解题的关键.【变式1】已知3ab =−,2a b +=,则22a b ab +的值是( )A .6−B .6C .1−D .1【答案】A【分析】先将22a b ab +因式分解,再把3ab =−,2a b +=代入计算即可. 【详解】解:∵3ab =−,2a b +=,∴()22326ab a a b ab b ==++−⨯=−,故选:A .【点睛】本题主要考查了因式分解,求代数式的值,解题的关键是正确找出各项的公因式进行因式分解.【变式2】计算()()2022202322−+−所得结果是( ) A .20222B .20222−C .20232D .40452 【答案】B【分析】先逆用同底数幂的乘法,再根据有理数的乘方运算和乘法分配律进行计算即可. 【详解】解:()()2022202322−+− ()()()20222022222=−+−⨯−()()2022212=−+−⎡⎤⎣⎦20222=−故选:B【点睛】本题考查了同底数幂乘法的逆用、有理数的乘方的意义以及乘法分配律的运用,熟练掌握乘相关运算法则是解题的关键.【变式3】若()23A a m n a m an ⋅+=+,则代数式A 的值为( ) A .aB .nC .2aD .mn【答案】A 【分析】提出公因式,可得()32a m an a a m n +=+,即可求解.【详解】解:∵()32a m an a a m n +=+,()23A a m n a m an ⋅+=+,∴代数式A 的值为a .故选:A【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.【考点三 公式法因式分解的应用】【例题3】把()22214a a +−因式分解得( ) A .()2214a a +−B .()2214a a +−C .()()2211+−a aD .()221a − 【答案】C 【分析】利用平方差公式和完全平方公式解答即可.【详解】解:()()()()()222222214121112a a a a a a a a ==−+−++−++;故选:C. 【点睛】本题考查了多项式的因式分解,熟练掌握平方差公式和完全平方公式是解题的关键.A .()()5a b a b ++B .()()5a b a b −+C .()()5a b a b +−D .()()5a b a b −− 【答案】D【分析】依照例题,根据完全平方公式、平方差公式解答.【详解】a2-6ab+5b2=a2-6ab+9b2-4b2=(a -3b)2-(2b)2=(a -3b+2b)(a -3b -2b)=(a -b)(a -5b);故选:D .【点睛】本题考查了综合运用公式法分解因式,掌握完全平方公式、平方差公式是解题的关键.【变式2】小李在计算2023202120232023−时,发现其计算结果能被三个连续整数整除,则这三个整数是( )A .2023,2024,2025B .2022,2023,2024C .2021,2022,2023D .2020,2021,2022 【答案】B【分析】先提取公因式,然后利用平方差公式因式分解,即可得到答案.【详解】解:2023202120232023−20212=2023(20231)⨯−2021=2023(20231)(2023+1)⨯−⨯2021=202320222024⨯⨯∴能被2022,2023,2024整除,故选B .【点睛】本题考查因式分解,掌握因式分解的方法是解题的关键.【考点四 提取公因式法和公式法的综合应用】A .我爱学B .爱思考C .思数学D .我爱数学 【答案】D【分析】先将()()225151a x b x −−−因式分解,结合所对应汉字即可求解. 【详解】解:()()225151a x b x −−− =()()251x a b =−−()()()511x x a b =+−− ∵5,a b −,1x +,1x −,21x −,a ,分别对应下列六个字;我,爱,数,学,思,考,∴结果中一定有“我”,“爱”,“数”,“学”,∵根据代数式的书写规则,“5”一定在最前面,∴“我”在最前面,对照四个选项可知,只有D 选项正确.故选:D .【点睛】本题考查因式分解,且与现实生活联系创新,正确分解确定每个因式所对应的汉字为解题关键.【答案】C【分析】原式各括号利用平方差公式变形,约分即可得到结果.【详解】原式111111111111111111112233445566⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=−⨯+⨯−⨯+⨯−⨯+⨯−⨯+⨯−⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,13243546572233445566=⨯⨯⨯⨯⨯⨯⨯⨯⨯,1726=⨯, 712=,故选:C .【点睛】本题考查的是平方差公式,掌握运算法则和平方差公式是解题关键.【变式2】若a +b =1,则222a b b −+的值为( )【答案】D【分析】把222a b b −+进行变形,代入a+b=1,计算,再次代入即可求解. 【详解】解:222a b b −+()()2a b a b b=+−+2a b b =−+a b =+ 1=故选:D【点睛】本题考查了对式子变形求解,熟练掌握平方差公式是解题关键,本题也可以把a+b=1变形为a=1-b ,代入求值.【变式3】计算:2222222212345699100−+−+−++−...【答案】5050−【分析】根据平方差公式因式分解即可求解.【详解】解:原式=()()()()()()()() 1212343456569910099100−++−++−++⋅⋅⋅+−+()123499100=−++++⋅⋅⋅++10150=−⨯5050=−.【点睛】本题考查了平方差公式因式分解,掌握因式分解的方法是解题的关键.【过关检测】一.选择题1.下列因式分解正确的是()【答案】A【分析】利用提公因式法,公式法对各项进行因式分解,即可求解.【详解】解:A、()()22224222121a a a a a−+=−+=−,故本选项正确,符合题意;B、()21a ab a a a b++=++,故本选项错误,不符合题意;C、()()22422a b a b a b−=+−,故本选项错误,不符合题意;D、()()()3322a b ab ab a b ab a b a b−=−=+−,故本选项错误,不符合题意;故选:A【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.2.下列因式分解错误的是()【答案】B【分析】分别把各选项分解因式得到结果,逐一判断即可.【详解】解:A 、()241644x x x x −+=−−,因式分解正确,故本选项不符合题意; B 、()222222221n n x y x y x y x −−=−,故B 因式分解不正确,故本选项符合题意;C 、422161(41)(41)x x x −=+−()()2(41)2121x x x =++−,因式分解正确,故本选项不符合题意;D 、2211()44ax ax a a x x −+−=−−+,212a x ⎛⎫=−− ⎪⎝⎭,因式分解正确正确,故本选项不符合题意; 故选B .【点睛】此题考查了因式分解,主要应用了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.3.计算()()2022202122−+−所得的结果是( )A .-2B .2C .-20212D .20212 【答案】D【分析】直接找出公因式进而提取公因式再计算即可.【详解】解:(-2)2022+(-2)2021=(-2)2021×(-2+1)()20212=−−20212=,故D 正确.故选:D .【点睛】本题主要考查了因式分解的应用,正确找出公因式、提取公因式是解题关键.4.计算(﹣2)2005+3×(﹣2)2004的值为( )A .﹣22004B .22004C .(﹣2)2005D .5×22004【答案】B【分析】根据因式分解的提公因式法进行求解即可.【详解】解:()()()()20042004020052042233222=−⨯−+=−+⨯−;故选B . 【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.【答案】B【分析】先根据平方差公式把每个括号内的式子分解因式,进一步计算乘法即得答案.【详解】解:原式=111111111111111111115566779999100100⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫−⨯+⨯−⨯+⨯−⨯+⨯⨯−⨯+⨯−⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=46576898100991015566779999100100⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ =41015100⨯ =101125. 故选:B .【点睛】本题考查了多项式的因式分解和有理数的简便运算,属于常考题型,熟练掌握分解因式的方法是解题关键.6.多项式316a a −因式分解的结果是( )A .()24a a −B .()24a a +C .()()44a a +−D .()()44a a a +− 【答案】D【分析】先提取公因式,然后按照平方差公式因式分解即可得到答案.【详解】解:()()()32161644a a a a a a a −=−=+−,故选:D .【点睛】本题考查了提公因式法和平方差公式法进行因式分解,掌握提取公因式法、平方差公式是解题的关键.二. 填空题【答案】()(21)x y a −−【分析】运用提取公因式法进行因式分解即可.【详解】解:()()2()(21)a x y x y x y a −−−=−−,故答案为:()(21)x y a −−.【点睛】本题主要考查提公因式法因式分解,掌握提公因式法分解因式的方法是解题的关键.【答案】30【分析】将所求式子提取公因式ab ,再整体代入求值即可.【详解】解:∵3a b +=−,10ab =−,∴()()2210330a b a a b a b b =+=⨯+−−=.故答案为:30. 【点睛】本题考查代数式求值,因式分解.利用整体代入的思想是解题关键.【答案】()()16x y x y −−−【分析】提公因式分解因式即可.【详解】解:()()216x y y x −+− ()()216x y x y =−−− ()()16x y x y =−−−故答案为:()()16x y x y −−−. 【点睛】本题考查利用提公因式分解因式等知识,是重要考点,难度较易,掌握相关知识是解题关键.【答案】()21ax x −【分析】先提取公因式,再利用完全平方公式,即可解答.【详解】解:322ax ax ax −+,()221ax x x =−+,()21ax x =−,故答案为:()21ax x −.【点睛】本题考查了因式分解,熟练掌握因式分解的几种方法是解题的关键. 11.如图,点B 在线段AC 上()BC AB >,在线段AC 同侧作正方形ABMN 及正方形BCEF ,连接AM 、ME 、EA 得到AME △.当1AB =时,AME △的面积记为1S ;当2AB =时,AME △的面积记为2S ;当3AB =时,AME △的面积记为3S ;则20202019S S −= .【答案】40392【分析】连接BE 发现,无论正方形BCEF 怎样变,△AME 面积都与△AMB 相等,因为都是以AM 为底,以AM 到BE 之间的距离为高.【详解】连接BE ,∵在线段AC 同侧作正方形ABMN 及正方形BCEF ,∴BE ∥AM .∴△AME 与△AMB 同底等高.∴△AME 的面积=△AMB 的面积.∴当AB=n 时,△AME 的面积为2n 1S n 2=,当AB=2019时,△AME 的面积为220191S 20192=⨯. 当AB=2020时,△AME 的面积为220201S 20202=⨯. ∴()22202020191202020192S S −=⨯−()()1=2020-2019202020192+ 4039=2 故答案为:40392【点睛】本题考查等面积法在几何题中的应用,善于发现BE 始终平行AM 是本题关键.【答案】20212【分析】利用提公因式法提公因式2021(2)−,即可得结果. 【详解】解:2021202220212021(2)(2)(2)(12)2−+−=−⨯−=. 故答案为:20212.【点睛】本题考查了因式分解-提公因式法的应用;找出公因式是解题的关键,注意符号.【答案】4000 【分析】先利用平方差公式把每一个因数化为两个因数的积,约分后可得余下的因数,再计算乘法,从而可得答案.【详解】解:2222111111......112319992000⎛⎫⎛⎫⎛⎫⎛⎫−−−− ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ =111111111111......111122331999199920002000⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫−+−+−+−+ ⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =1341998200019992001...223319991999200022000⨯⨯⨯⨯⨯⨯⨯⨯ =1200122000⨯=20014000故答案为:20014000.【点睛】本题考查的是有理数的乘法运算,运用平方差公式对有理数进行简便运算,掌握以上知识是解题的关键.【答案】2【分析】把22020分成()2200119+,利用完全平方公式展开,计算即可.【详解】2222020200119200119−−⨯222(200119)200119200119+−−=⨯22222001220011919200119200119+⨯⨯+−−=⨯2200119200119⨯⨯=⨯2=.故答案为:2.【点睛】本题主要考查了利用因式分解对有理数进行简便运算,熟练应用完全平方公式是解题关键.【分析】所求式子提取公因式变形,再利用完全平方公式化简,将a+b 与ab 的值代入计算即可求出值.【详解】3223a a b ab b +++=22()()a a b b a b +++ =22()()a b a b ++ =2()()2a b a b ab ⎡⎤++−⎣⎦=3×(9+2×2)=39,故答案是:39.【点睛】此题考查了因式分解的应用,将所求式子进行适当的变形是解本题的关键.【答案】-2021055【分析】运用平方差公式对原式进行分解因式,通过提取公因式对原式进行计算即可解答.【详解】解:12-22+32-42+52-62+…+20092-20102=(1-2)(1+2)+(3-4)(3+4)+(5-6)(5+6)+…+(2009-2010)(2009+2010)=-(1+2+3+4+5+6+…+2009+2010)= -(2011×1005)= -2021055.故答案为-2021055.【点睛】本题考查了用平方差公式和提取公因式进行因式分解,将原式进行化简是解题的关键.【答案】1【分析】根据完全平方公式和平方差公式可以解答本题.【详解】40352﹣4×2017×2018=(2017+2018)2﹣4×2017×2018=20172+2×2017×2018+20182﹣4×2017×2018=(2017﹣2018)2=(﹣1)2=1,故答案为1.【点睛】本题考查因式分解在有理数的运算中的应用,熟练掌握完全平方公式以及平方差公式的结构特征是解题的关键.三、解答题 18.先阅读下列因式分解的过程,再回答所提出的问题:例11(1)(1)(1)(1)(1)ax ax ax ax ax ax ax ax +++=+++=++2(1)ax =+;例2221(1)(1)(1)(1)(1)ax ax ax ax ax ax x ax ax α+++++=++++22(1)(1)ax ax ax =+++2(1)(1)ax ax =++3(1)ax =+.(1)例2分解因式的方法是________,共应用了________次.(2)若分解因式:220201(1)(1)...(1)ax ax ax ax ax ax ax ++++++++,则需应用上述方法________次,结果是________.(3)分解因式:23200320041(1)(1)(1)...(1)(1)x x x x x x x x x x x −−−+−−−+−−+−.【答案】(1)提取公因式,2(2)2020,2021(1)ax +(3)()20051x −【分析】(1)根据分解过程即可填空;(2)将多项式提公因式即可进行因式分解;(3)按照上面规律分解,注意符号的变化规律.【详解】(1)解:根据分解过程,可知例2分解因式的方法是提取公因式,共应用了2次;(2)220201(1)(1)...(1)ax ax ax ax ax ax ax ++++++++()()2202011(1)...(1)ax ax ax ax ax ax =+++++++ ()220201(1)...(1)ax ax ax ax =+++++... 2021(1)ax =+∴应用了2020次,结果是2021(1)ax +;(3)23200320041(1)(1)(1)...(1)(1)x x x x x x x x x x x −−−+−−−+−−+−()223200320041(1)(1)...(1)(1)x x x x x x x x x =−−+−−−+−−+−3320032004(1)(1)...(1)(1)x x x x x x x =−−−+−−+−420032004(1)...(1)(1)x x x x x =−−+−−+−...()20051x =−【点睛】本题考查了因式分解的应用,熟练掌握因式分解的方法是解题的关键. 19.(1)若100799611A =⨯⨯,119951008B =⨯⨯,求A B −;(2)证明5799449999⨯+⨯−能被100整除.【答案】(1)132;(2)证明见解析【分析】(1)先提取公因数11,再把1007996⨯化成()()1001.5 5.51001.5 5.5+⨯−,把9951008⨯化成()()1001.5 6.51001.5 6.5+⨯−,进而利用平方差公式进行求解即可;(2)把原式提取公因式99,进而得579944999999100⨯+⨯−=⨯,由此即可证明结论.【详解】解:(1)∵100799611A =⨯⨯,119951008B =⨯⨯,∴A B −100799611119951008=⨯⨯−⨯⨯()()()()111001.5 5.51001.5 5.51001.5 6.51001.5 6.5=⨯+⨯−−+⨯−⎡⎤⎣⎦()()2222111001.5 5.51001.5 6.5⎡⎤=⨯−−+⎣⎦()()11 6.5 5.5 6.5 5.5=⨯+⨯−11121=⨯⨯132=; (2)5799449999⨯+⨯−()9957441=⨯+−99100=⨯, ∵99100⨯能被100整除,∴5799449999⨯+⨯−能被100整除.【点睛】本题主要考查了因式分解在有理数简便计算中的应用,熟知因式分解的方法是解题的关键.【答案】(1)214(2)2(3)1120(4)40000【分析】(1)根据提公因式法进行计算即可求解;(2)根据平方差公式将分母化简即可求解;(3)根据平方差公式化简括号内的,然后根据有理数的乘法进行计算即可求解;(4)根据完全平方公式进行计算即可求解.【详解】(1)原式21.4 2.321.4 2.721.45=⨯+⨯+⨯()21.4 2.3 2.75=⨯++21.410=⨯214=; (2)原式=()()1000075257525+−=1000010050⨯2=;(3)原式11111111(1)(1)(1)(1)(1)(1)(1)(1)2233441010=+⨯−⨯+⨯−⨯+⨯−⨯⋯⨯+⨯− =3142531192233441010⨯⨯⨯⨯⨯⨯⨯⨯=111210⨯=1120;(4)原式22195219555=+⨯⨯+2195()5=+2200=40000=.【点睛】本题考查了利用提公因式法、完全平方公式与平方差公式进行简便计算,熟练掌握乘法公式是解题的关键.。
八年级数学上册《因式分解》计算题专项练习提取公因式是因式分解的基础,掌握了提取公因式的方法,就能够更好地解决因式分解问题。
下面是一些提取公因式的练题,供大家练:1、提取公因式:c(x-y+z),得到结果:c(x-y+z)2、提取公因式:p(x-qx-rx^2),得到结果:p(x-q-rx)3、提取公因式:5a^2(3a-2),得到结果:15a^3-10a^24、提取公因式:3bc(4a-25),得到结果:12abc-75bc5、提取公因式:xy(4x-y^2),得到结果:4x^2y-xy^36、提取公因式:7pq(9-2q),得到结果:63pq-14pq^27、提取公因式:6a^2m(4m-3n+7),得到结果:24a^3m-18a^2m^2+42a^2mn8、提取公因式:(a+b)(x-y),得到结果:(a+b)(x-y)9、提取公因式:x-y(5x+2y),得到结果:(x-y)(5x+2y)10、提取公因式:-2ab(a^2-3ab+b^2),得到结果:-4a^3b+6a^2b^2-2ab^311、提取公因式:-8x^3+56x^2-32x^3,得到结果:-8x^2(x-7)+56x(x-7)12、提取公因式:3mn(2m-5n+10),得到结果:6m^2n-15mn^2+30m^2n13、提取公因式:(a+b)(x-y),得到结果:(a+b)(x-y)14、提取公因式:(x-y)(5x+2y),得到结果:(x-y)(5x+2y)15、提取公因式:2q(p+q)-4p(p+q),得到结果:-2p(p+q)16、提取公因式:(m+n)(p+q)-(m+n)(p-q),得到结果:2(m+n)q17、提取公因式:a(a-b)+(a-b)2,得到结果:(a-b)(a+b)18、提取公因式:x(x-y)^2-y(x+y)2,得到结果:(x-y)(x^2+xy+y^2)-y(x+y)^219、提取公因式:(2a+b)(2a-3b)-3a(2a+b),得到结果:(2a-b)(2a-3b)20、提取公因式:x(x+y)(x-y)-x(x+y),得到结果:x(x-y)(x+y-1)21、提取公因式:p(x-y)-q(y-x),得到结果:2p(x-y)22、提取公因式:m(a-3)+2(3-a),得到结果:-m(a-3)-2(a-3)23、提取公因式:(a+b)(a-b)-(b+a),得到结果:-(a-b)^224、提取公因式:a(x-a)+b(a-x)-c(x-a),得到结果:(a-c)(a-x)-(a-c)(x-a)25、提取公因式:10a(x-y)^2-5b(y-x),得到结果:10a(x-y)^2+5b(x-y)26、提取公因式:3(x-1)^3y-(1-x)^3z,得到结果:3(x-1)^3(y+z-x)27、提取公因式:x(a-x)(a-y)-y(x-a)(y-a),得到结果:(x-y)(a-x)(a-y)28、提取公因式:-ab(a-b)^2+a(b-a)^2,得到结果:-2ab(a-b)^229、提取公因式:2x(x+y)^2-(x+y)^3,得到结果:(x+y)^2(x-2)30、提取公因式:21×3.14+62×3.14+17×3.14,得到结果:100×3.1431、提取公因式:2.186×1.237-1.237×1.186,得到结果:0掌握了提取公因式的方法,就能够更好地解决因式分解问题。
分解因式方法在代数学中,分解因式是一个非常重要的概念,它在解方程、简化表达式和求解多项式等方面都有着广泛的应用。
因此,掌握好分解因式的方法对于学习代数学是至关重要的。
在本文中,我将为大家介绍几种常见的分解因式方法,并且通过具体的例题来加深大家对这些方法的理解。
首先,我们来讨论一下分解因式的基本原理。
分解因式就是将一个多项式表示成若干个一次或者二次因式的乘积的形式。
在分解因式的过程中,我们需要根据多项式的特点,运用不同的方法来进行分解。
接下来,我将为大家介绍几种常见的分解因式方法。
第一种方法是提取公因式。
当一个多项式中的各项都有一个公因式时,我们就可以利用提取公因式的方法进行分解。
例如,对于多项式3x+6xy,我们可以提取公因式3x,得到3x(1+2y)。
这样,我们就将原来的多项式分解成了两个因式的乘积的形式。
第二种方法是利用分组法。
当一个多项式的项数较多时,我们可以利用分组法来进行分解因式。
具体来说,我们可以将多项式中的各项进行分组,然后对每组进行因式分解,最终将多项式表示成若干个因式的乘积的形式。
例如,对于多项式x^2+2xy+2x+4y,我们可以将其分组为(x^2+2xy)+(2x+4y),然后对每组进行因式分解,得到x(x+2y)+2(1+2y),最终将其表示成了两个因式的乘积的形式。
第三种方法是利用公式进行分解。
在代数学中,有一些常见的公式可以帮助我们进行因式分解。
例如,完全平方公式、差几何公式、立方差公式等。
当我们遇到这些特殊的多项式时,我们可以利用这些公式来进行因式分解,从而简化计算。
例如,对于多项式x^2+2xy+y^2,我们可以利用完全平方公式进行因式分解,得到(x+y)^2。
通过以上介绍,我们可以看到,分解因式的方法是多种多样的,我们需要根据具体的多项式来选择合适的方法进行分解。
在进行因式分解时,我们需要注意多项式的特点,灵活运用不同的方法,从而达到简化计算、解方程等目的。
最后,我将通过一些例题来加深大家对分解因式方法的理解。