生活饮用水中锰测定方法的改进
- 格式:pdf
- 大小:84.20 KB
- 文档页数:2
生活饮用水标准检验方法有机物综合指标GB/T 5750.7-20061.1 酸性高锰酸钾滴定法验证报告1、目的通过对实验人员、设备、物料、方法,环境的能力确认,验证实验室均已达到各种要求,具备开展此实验的能力。
2、方法简介高锰酸钾在酸性溶液中将还原性物质氧化,过量的高锰酸钾用草酸还原。
根据高锰酸钾消耗量表示耗氧量(以O2计)。
3、仪器设备及药品验证情况3.1使用仪器设备:恒温水浴锅、分析天平、25ml滴定管、锥形瓶250ml、容量瓶50ml/100ml/250ml、移液管1ml/5ml/25ml、烧杯50ml、具塞量筒100ml。
3.2设备验证情况设备验收合格。
4、环境条件验证情况4.1本方法对环境无特殊要求。
4.2目前对环境的设施和监控情况天平室环境指标:温度:22℃;湿度45%。
4.3环境验证条件符合要要求5、人员能力验证5.1该项目人员配备情况有二名以上符合条件的实验人员。
5.2人员培训及考核情况通过培训,考核合格,相关记录见人员技术档案。
6、标准物质及试剂验证情况6.1方法所需标准(物质)溶液及试剂情况6.1表6.2配备情况6.2表7、方法验证情况7.1方法要求7.11检出限:方法检出限无要求。
精密度:方法无要求。
准确度:测量有证标准物质含量为9.89±0.79 mg/L。
7.2目前该项目本实验的精密度、检出限、准确度的实际水平7.21精密度表7.21测得实验室内相对标准偏差为1.30%。
7.22准确度取有证标准物质。
编号为B1802016,标准值为9.89±0.79mg/L。
7.22有证标准物质测定结果表测质控样浓度为10.10 mg/L,在9.89±0.79 mg/L范围内,合格。
7.23检出限7.23空白测定结果表一般根据所用滴定管产生的最小液滴的体积进行计算,计算公式为:1010V M M V k MDL ρλ=式中:————被测组分与滴定液的摩尔比;————滴定液的质量浓度,g/ml ;V0————滴定管所产生的最小液滴体积,ml ; M0————滴定液的摩尔质量,g/mol ; V1————被测组分的取样体积,ml ; M1————被测组分的摩尔质量,g/mol ;K ————当为一次滴定时K=1;当为反滴定或间接滴定时,K=2。
水中锰检测方法汇总及不确定度评定1.1 无火焰原子吸收分光光度法1.1.1 测定范围本法测锰的最低检测浓度为0.05μg/L。
1.1.2 方法提要本法基于样品经基体改进后,所含锰离子在石墨管内,高温蒸发解离为原子蒸气,并吸收锰空心阴极灯发射的共振线,且其吸收强度在一定范围内与锰浓度成正比。
因此,可在其他条件不变的情况下,根据测得的吸收值与标准系列比较进行定量。
1.1.3 试剂所用水均为去离子水。
1.1.3.1 浓硝酸:优级纯,1.1.3.2 硝酸溶液(1+1)。
1.1.3.3 硝酸溶液(0.5%):吸取浓硝酸5mL,用水稀释为1000mL。
1.1.3.4 硝酸镁(5%):称取优级纯硝酸镁〔Mg(NO2)2〕5g,加水溶解并定容至100mL。
1.1.3.5 锰标准贮备液(1.00mg/mL):称取金属锰(纯度在99.99%以上)1.000g于250mL烧杯中,加硝酸溶液(1.1.3.2)20mL,溶解后,用水定容至1000mL,此液1.00mL含1.000mg 锰。
1.1.3.6 锰标准中间液(50.0μg/mL):取锰标准贮备液(1.1.3.5.)5.00mL于100mL容量瓶中,0.5%(V/V)硝酸溶液(1.1.3.3)定容,摇匀。
此液1.00mL含50.0μg锰。
1.1.3.7 锰标准使用液(1.00μg/mL):取锰标准中间液(1.1.3.5.)2.00mL于100mL容量瓶中,0.5%硝酸溶液(1.1.3.3)定容,摇匀,此液1.00mL含1.00μg锰。
1.1.4 仪器、设备1.1.4.1 原子吸收分光光度计及其配件:石墨炉控制装置、锰空心阴极灯,氘灯或塞曼背景扣除装置等。
1.1.4.2 氩气钢瓶气。
1.1.4.3 微量自动进样装置或微量定量取样器。
1.1.5 分析步骤1.1.5.1 仪器操作参照仪器说明书安装石墨炉并将仪器工作条件和石墨炉原子化参数调整至测锰最佳状态。
参考参数见表7。
水中高锰酸盐指数能力验证测定方法与数据处理摘要:高锰酸盐指数是反映水体中有机及无机可氧化物质污染的常用监测指标,水中部分有机物(如酚、氰、醇酯和抗菌素等)及无机还原性物质(如NO2-、S2-和Fe2+等)均可被测定。
作为《地表水环境质量标准》的基本项目,高锰酸盐指数是当前地表水国考断面的主要定类指标之一。
目前高锰酸盐指数采用的标准分析方法是《水质高锰酸盐指数的测定》(GB11892—1989,该方法技术成熟,结果可靠,但测定耗时长,操作烦琐,劳动强度,不适合大批量水样的分析测定。
因此,很多科研工作者对测定高锰酸盐指数的水样消解方法和测定方法进行了改进。
基于此,本篇文章对水中高锰酸盐指数能力验证测定方法与数据处理进行研究,以供参考。
关键词:水中高锰酸盐;指数能力;验证测定方法;数据处理引言高锰酸盐指数(IMn)是指在酸性或碱性介质中,以高锰酸钾为氧化剂,处理水样时所消耗的量,以氧的质量浓度来表示。
水中的亚硝酸盐、亚铁盐、硫化物等还原性无机物和在此条件下可被氧化的有机物,均可消耗高锰酸钾。
因此,高锰酸盐指数常被作为地表水体受有机污染物和还原性无机物质污染程度的综合指标。
基于此,本文探究水中高锰酸盐指数能力验证测定方法与数据处理。
1水质检测质量的重要性首先,在对水环境进行监测时,为保证监测数据的精确度和参考价值,技术人员必须具有较高的职业素养,并能对监测数据进行准确评价。
在此基础上,提出新的、高精度的水质分析方法;其次,要加强对实验室的质控,保证实验资料的正确性,从而为后续水利综合治理工作的顺利开展奠定坚实的基础;其三,要对试验数据以及检验和分析工作的质量进行有效的管理,还要强化检验和分析实验室的系统管理。
因为实验室的控制水平将会对水质检验的结果产生很大的影响,所以,水质检验人员有责任持续强化对水质检验工作的重视程度,保证我国的水库、地下水、河流和海水均符合国家水质质量标准,达到人们生活及生产需求。
2高锰酸盐指数分析实验2.1概念高锰酸盐指数是《地表水环境质量标准》(GB3838-2002),是生态环境质量监测的必测指标。
火焰原子吸收法一次进样同时测定生活饮用水中铁锰【摘要】本文介绍了使用火焰原子吸收法一次进样同时测定生活饮用水中铁和锰的方法。
首先介绍了火焰原子吸收法的原理,然后解释了进样方法,接着详细阐述了测定生活饮用水中铁和锰的具体方法。
提出了一种可以同时测定生活饮用水中铁和锰的方法。
通过实验验证可行性,并指出了该方法的研究意义和未来研究方向。
通过本文的研究,可以更准确地监测生活饮用水中的铁和锰含量,为保证水质安全提供重要参考依据。
【关键词】火焰原子吸收法,一次进样,生活饮用水,铁,锰,测定方法,可行性,研究意义,未来研究方向1. 引言1.1 研究背景生活饮用水是人们日常生活中必不可少的资源,而其中的铁和锰是人体健康所需的微量元素之一。
过量的铁和锰会对健康产生不利影响,例如导致胃肠道不适、呕吐等症状。
对生活饮用水中的铁和锰含量进行准确、快速的测定具有重要意义。
火焰原子吸收法是一种常用的金属元素测定方法,其原理是通过将样品喷入高温火焰中,使金属原子通过电子跃迁释放特定的光谱线,再通过光谱仪测定吸收光谱强度来确定元素含量。
同时测定生活饮用水中铁和锰的方法中,通过适当选择火焰条件和光谱线,并结合标准曲线法进行定量分析,可以准确测定出水样中的铁和锰含量。
本研究旨在利用火焰原子吸收法一次进样同时测定生活饮用水中铁锰的方法,以提高测定效率和准确度。
通过本研究的实施,将探索一种便捷、快速的测定方法,为生活饮用水质量监测和人体健康保护提供科学依据。
2. 正文2.1 火焰原子吸收法的原理火焰原子吸收法是一种常用的分析化学技术,广泛应用于金属元素的检测和定量分析。
其原理基于金属元素在高温火焰中产生吸收光谱,通过测量吸收光线的强度来确定样品中金属元素的含量。
在火焰原子吸收法中,样品经过预处理准备后被喷入火焰,金属元素在火焰中被激发至激发态,然后通过光源照射,测量吸收光谱得到样品中金属元素的浓度。
火焰原子吸收法具有高灵敏度、高选择性和较高的分辨率等优点,因此被广泛应用于生活饮用水中金属元素的测定。
高锰酸盐指数检测方法的改进与应用【摘要】在检测样品多的情况下,为了提高分析检测效率,从反应酸度和反应时间2个方面,对高锰酸盐指数测定方法进行了研究。
结果表明,高锰酸盐指数测定值在反应酸度和反应时间改变的条件下,其测定结果和国标相比无显著差异。
改进后的测定方法可大大提供分析测试效率。
【关键词】高锰酸盐指数;检测方法改进高锰酸盐指数是指在一定条件下,高锰酸钾在酸性溶液中将还原性物质氧化,过量的高锰酸钾用草酸还原。
根据高锰酸钾消耗量表示耗氧量。
用高锰酸钾滴定法测定水中CODMn时,由于易挥发的有机物不能被高锰酸钾所氧化,因此,测得的数值的大小不能完全反应水被有机物污染的程度,它只是一个相对的条件性指标,其测定结果受到反应体系的酸度、加热时间等因素的影响。
目前我们所采用的检测方法是GB/T5750-2006酸性高锰酸钾滴定法,该方法要求沸水浴30min。
当样品较多时,检测时间比较长,效率较低,不能及时有效的提供检测数据。
笔者结合多年从事CODMn分析的实践经验,通过对反应酸度和加热时间的研究,对原有方法进行了改进,提高了样品的检测效率。
1.材料与方法1.1仪器与试剂电热恒温水浴锅、锥形瓶250mL、酸式滴定管;硫酸溶液(1+3)、草酸钠标准储备溶液(0.1000mol/L)、草酸钠标准使用溶液(0.01000mol/L)、高锰酸钾溶液(0.1000mol/L)、高锰酸钾标准溶液(0.01000mol/L)。
1.2试验方法1.2.1国标方法操作步骤吸取100mL充分混匀的水样置于25mL锥形瓶中。
加入5mL(1+3)硫酸溶液。
用滴定管加入10.00mL高锰酸钾标准溶液,摇匀。
立即将锥形瓶放入沸腾的水浴中,准确放置30min。
取下锥形瓶,趁热加入10.00mL草酸钠标准使用溶液。
于白色背景上,滴入高锰酸钾标准溶液,至溶液呈微红色即为终点,记录用量V1。
向上述已滴定至终点的水样中,趁热加入10.00mL草酸钠标准使用溶液。
高碘酸钾分光光度法测定水中锰(Ⅱ)的改进李孟迪;薛秀玲【摘要】提出加入柠檬酸钠以掩蔽水体中Ca2+对锰(Ⅱ)测定产生的干扰,改进国家标准GB/T 11906-1989中高碘酸钾分光光度法测定水中锰(Ⅱ)的方法.结果表明:所建立方法的线性范围为0.20~20.00mg.L-1,相关系数R2为0.999 3,检出限为0.05mg.L-1,标准加入回收率为95.8%~101.4%,相对标准偏差(RSD)为0.15%~2.47%(n=3).【期刊名称】《华侨大学学报:自然科学版》【年(卷),期】2012(033)002【总页数】3页(P176-178)【关键词】锰(Ⅱ);高碘酸钾;分光光度法;柠檬酸钠;钙离子【作者】李孟迪;薛秀玲【作者单位】华侨大学化工学院,福建厦门361021【正文语种】中文【中图分类】O657.32近几年来,我国发现几个大的地表水系不同程度地受到了锰的污染,如长江仪征段水质锰的污染指数为0.77,江西乐安江水系每年锰的平均质量浓度为0.3~0.4mg·L-1[1].锰是人体及动植物所必需的微量元素之一[2],适量的锰有利于身体健康,但含量过高或过低都会引起某些器官的病变或出现不适[3-4].据2007-2008年地下水质取样分析表明,福建省泉州市的沿海地区大部分地段的地下水以Ⅲ类水为主,水质较差,主要超标项有 Mn2+,Ca2+,F-,Cl-等[5].测定水中锰(Ⅱ)的常用方法有原子吸收法、甲醛肟比色法、高碘酸钾分光光度法等.甲醛肟比色法中试剂甲醛肟、氨水、盐酸羟胺和EDTA的加入量必须进行严格控制[6].高碘酸钾分光光度法(国家标准GB/T 11906-1989《水质锰的测定高碘酸钾分光光度法》,以下简称“国标法”)[7],其焦磷酸钾-乙酸钠缓冲试剂能很好地掩盖水体中大部分的金属离子,但无法排除Ca2+对锰(Ⅱ)测定产生的干扰[8].傅妍芳等[9]将缓冲试剂和氧化试剂做成粉包形式,延长了试剂的保质期,使测定简便快速,但其未考虑Ca2+对测定的干扰.Ca2+是天然水体中常见的金属离子,各水体中Ca2+质量浓度差别很大,国家标准GB/T 14848-1993《地下水质量标准》分类中,Ⅱ,Ⅲ,Ⅳ类地下水体中的碳酸钙质量浓度分别小于300,450,550mg·L-1[7].基于此,本文采用加入柠檬酸钠以掩蔽水体中Ca2+,改进了国标高碘酸钾分光光度法测定可溶性锰的方法.UV-1800PC型紫外/可见分光光度计(上海美谱达仪器有限公司);锰标准液(5.00mg·L-1),将MnCl2溶于二次水中,配制成质量浓度为1.00g·L-1的储备液,使用时逐级稀释;焦磷酸钾-乙酸钠,2%高碘酸钾溶液[7];氯化锰、硝酸(分析纯,上海国药集团化学试剂有限公司);三水合焦磷酸钾、无水乙酸钠、一水合硫酸锰、氯化锰、二水合柠檬酸三钠(分析纯,广东汕头市西陇化工厂有限公司);高碘酸钾(分析纯,天津市光复精细化工研究所).移取1.00,2.00,3.00mL的锰标准液各7份,置于50mL具塞比色管中,分别加入质量浓度为0~480mg·L-1的Ca2+溶液,用蒸馏水稀释至约25mL;然后,加入10mL的焦磷酸钾-乙酸钠缓冲溶液,3 mL的2%高碘酸钾溶液,用蒸馏水定容至50mL,摇匀.放置10min后以水作参比,用1cm的比色皿在525nm处测量其光密度值D(525),由此可得到干扰测试锰(Ⅱ)的Ca2+质量浓度上限值. 将上述含上限质量浓度的Ca2+加到5份质量浓度为2.50mg·L-1的锰标准液中,配制成钙干扰的锰溶液;然后,依次加入0~12.5g·L-1的柠檬酸钠溶液,测定其在525nm处的光密度值D(525).最后,将其与不含Ca2+的同质量浓度的锰标准溶液进行对比,确定柠檬酸钠的最佳用量.考察不同Ca2+质量浓度对锰(Ⅱ)测定的干扰,结果如图1所示.由图1可知:当水样中Ca2+的质量浓度超过240mg·L-1时,会严重干扰锰(Ⅱ)的测定,造成结果偏高.这可能是因为在pH为0.6左右的酸性测定体系中,钙与焦磷酸钾反应生成白色的焦磷酸钙沉淀,影响了锰(Ⅱ)的测定.由于Ca2+的质量浓度为240mg·L-1时会对锰(Ⅱ)的测定产生干扰 .文献[10]的研究发现:柠檬酸钠离子浓度为0.5mol·L-1时,柠檬酸与Ca2+能较好地络合,其一级络合常数为10.9.因此,选择在2.5mg·L-1的锰标准液基础上分别加入0,320,400mg·L-1的Ca2+,考察柠檬酸钠的最佳用量,结果如图2所示. 由图2可知,当水体中柠檬酸钠的质量浓度为7.5g·L-1时,对质量浓度为320,400mg·L-1的Ca2+可以完全掩蔽,故实验选择柠檬酸钠的最佳用量为7.5g·L-1.Ⅳ类水体Ca2+质量浓度过高,通过对含混合干扰溶液(Ca2+的质量浓度为550mg·L-1)的锰标准液进行测定.结果发现,当柠檬酸钠用量为10g·L-1时也无法完全掩蔽Ca2+.考虑到试剂成本,对此类水样在进行锰(Ⅱ)测定前需进行相应的稀释或过滤.另外,柠檬酸钠还具有优良的缓凝性能及稳定性能[11],在缓冲试剂中加入柠檬酸钠可以改进试剂,扩大测试水样的范围.按照实验方法进行测试,可得其线性方程为D=0.039 8ρ,线性范围为0.20~20.00mg·L-1,相关系数R2=0.999 3,方法的检出限为0.05mg·L-1.其中,D 为光密度值;ρ为锰(Ⅱ)的质量浓度.为了考察柠檬酸钠的加入对改进方法的准确度和精密度的影响,对含混合干扰溶液(Ca2+的质量浓度为320mg·L-1)的锰标准液进行平行测定5次,并与国标法(无柠檬酸钠掩蔽Ca2+)作比较 .其中,锰(Ⅱ)的加标质量浓度为3.0mg·L-1.结果表明:在标准样品中含有混合干扰物与不含干扰物时,按未经任何前处理国标法实测锰(Ⅱ)的平均质量浓度分别为4.99,3.01mg·L-1;SD(标准偏差)值分别为0.06,0.01;RSD(相对标准偏差)值分别为1.20%,0.33%;回收率分别为99.8%,100.3%,说明混合干扰对锰离子测定有较大影响 .究其原因可能是Ca2+质量浓度过高,生成的白色沉淀干扰了锰(Ⅱ)的测定.加入柠檬酸钠后,改进方法实测锰(Ⅱ)的质量浓度为3.07mg·L-1,与不含干扰物时锰的测定结果(3.01mg·L-1)相当,其SD(标准偏差)为0.04,RSD (相对标准偏差)为1.30%,回收率为102.3%,说明柠檬酸钠很好地掩蔽了Ca2+对锰(Ⅱ)测定的干扰,方法准确可靠,具有较好的准确度和精密度.为了考察不同基底对改进方法的影响,选择福建厦门市的筼筜湖水、坂头水库及某电镀水厂总排水口出水进行基底加标实验(n=3),并与国标法进行比较.其中,锰(Ⅱ)的加标质量浓度为2.0mg·L-1.结果表明:3种水样中锰(Ⅱ)的加标回收率为95.8%~101.4%,RSD值为0.15%~2.47%(n=3).统计学检验结果表明:3种水样的统计值(F)分别为0.37,7.00,0.81,小于临界值(F0.025(2,2)=39.00)[12],即测定结果与国标法均无统计学意义.说明该方法回收率高、重现性好,具有可行性.通过对国标法的改进,解决了水体中400mg·L-1以下Ca2+对测定锰(Ⅱ)的干扰,其检出限与国标法均为0.05mg·L-1,相关系数R2=0.999 3,方法准确、可靠 .此外,将混合试剂分别制成缓冲试剂包和氧化剂包,可方便使用与携带,尤其适合现场的快速检测.(责任编辑:钱筠英文审校:刘源岗)【相关文献】[1]康建雄,马毅妹,杨建军.高锰酸钾氧化法地表水除锰工艺试验[J].中国农村水利水电,2003(7):41-42.[2]肖子敬.锰的吡啶-2-磺酸配合物的合成和晶体结构[J].华侨大学学报:自然科学版,2007,28(2):170-173.[3]荆俊杰,谢吉民.微量元素锰污染对人体的危害[J].广东微量元素科学,2008,15(2):6-9.[4]付广云.催化动力学光度法测定水中痕量锰(Ⅱ)[J].临沂师范学院学报,2002,24(3):42-43.[5]郇环,王金生,胡立堂,等.沿海大降雨地区地下水利用探讨:以泉州沿海地区为例[J].安徽农业科学,2011,39(1):509-511,524.[6]王海侠,胡宗超,徐静.甲醛肟法测定配合物中锰的含量[J].贵州科学,2006,24(2):24-27.[7]中国标准出版社第二编辑室 .环境监测方法标准汇编:水环境[M].2版 .北京:中国标准出版社,2010.[8]孟俊利,周长波,彭小成.钙离子干扰下锰(Ⅱ)测定分析方法探讨[J].中国锰业,2009,27(3):29-31.[9]傅妍芳,邓金花,蔡淑珍,等.水中锰的快速检测方法的研究[J].广东化工,2010,37(5):200-206.[10]武汉大学.分析化学[M].4版 .北京:高等教育出版社,2006:388-390.[11]张英,周长民.柠檬酸钠的特性与应用[J].辽宁化工,2007,36(5):350-352. [12]邵崇斌.概率论与数理统计[M].北京:中国林业出版社,2003:392-397.。
火焰原子吸收法一次进样同时测定生活饮用水中铁锰引言近年来,随着环境保护意识的提升和水质安全问题的日益凸显,对于生活饮用水中重金属离子的监测和检测工作也变得愈发重要。
铁和锰作为常见的重金属离子,其在生活饮用水中的含量直接关系到人们的健康和生活质量。
对于生活饮用水中铁锰的快速准确检测方法的发展和研究也成为了当下的热点问题之一。
火焰原子吸收法是一种常用的重金属离子检测方法,其具有操作简便、灵敏度高、准确性好等优点。
本文将介绍火焰原子吸收法一次进样同时测定生活饮用水中铁锰的方法和技术方案,以期为生活饮用水质量监测工作提供参考。
一、火焰原子吸收法概述火焰原子吸收法是利用金属离子在气体火焰中吸收特定波长的光线的原理进行分析测定的一种分析方法。
其测定原理是当金属离子原子吸收特定波长的光线时,吸收量与金属离子的浓度成正比,由此可以通过测定吸收光线的强度来确定金属离子的浓度。
1. 仪器和试剂准备需要准备火焰原子吸收光谱仪、玻璃仪器、标准品溶液和生活饮用水样品等。
2. 样品处理将收集到的生活饮用水样品进行前处理,首先进行过滤去除杂质,然后调整样品的pH 值,以确保后续分析的准确性。
3. 仪器参数设定将火焰原子吸收光谱仪的参数设定为同时测定铁和锰的模式,根据实际样品的情况设定最佳的分析条件。
4. 进样和测定将处理好的生活饮用水样品进样到火焰原子吸收光谱仪中,启动测定程序进行测定。
通过测定吸收光谱的强度,结合标准品溶液的结果,可以计算出样品中铁和锰的含量。
5. 数据处理和结果分析将测定得到的数据进行处理和分析,得出生活饮用水中铁锰的含量,并对结果进行评估和判定是否符合相关标准和规定。
三、实验结果分析通过对多个生活饮用水样品进行火焰原子吸收法一次进样同时测定铁锰的实验,得到了如下的结果:样品编号铁含量(mg/L)锰含量(mg/L)样品1 0.05 0.02样品2 0.08 0.03样品3 0.06 0.02根据实验结果可以看出,在生活饮用水中铁锰的含量都处于较低水平,远低于卫生标准的限量要求。
一、实验目的1. 学习和掌握水质中锰含量的测定方法。
2. 了解锰在水体中的分布和来源。
3. 掌握使用高碘酸钾分光光度法测定水中锰含量的操作步骤。
4. 分析锰含量对水质的影响。
二、实验原理本实验采用高碘酸钾分光光度法测定水中锰的含量。
该方法基于高碘酸钾在酸性条件下能将锰氧化成紫红色的七价锰离子,通过比色法在特定波长下测定锰的吸光度,从而计算出锰的浓度。
三、实验材料与仪器1. 实验材料:- 水样- 实验室纯水- 锰试剂I和锰试剂II- 高碘酸钾溶液- 硫酸溶液- 氢氧化钠溶液2. 实验仪器:- 721型分光光度计- 移液枪- 比色皿- 电子天平- 磁力搅拌器- 烧杯- 容量瓶四、实验步骤1. 样品准备:将水样用0.45μm滤膜过滤,去除悬浮物,收集滤液。
2. 标准曲线的绘制:- 准备一系列已知浓度的锰标准溶液。
- 将标准溶液加入比色皿中,加入适量的高碘酸钾溶液和硫酸溶液,搅拌均匀。
- 在特定波长下测定吸光度,以吸光度为纵坐标,锰浓度为横坐标绘制标准曲线。
3. 样品测定:- 将滤液加入比色皿中,加入适量的高碘酸钾溶液和硫酸溶液,搅拌均匀。
- 在相同波长下测定吸光度。
- 根据标准曲线,计算样品中锰的浓度。
五、实验结果与分析1. 标准曲线:绘制出标准曲线,并计算相关系数R²,以验证标准曲线的线性关系。
2. 样品测定:根据标准曲线,计算出样品中锰的浓度。
3. 结果分析:- 分析锰在水体中的分布和来源。
- 评估锰含量对水质的影响,如对水生生物、人体健康的影响。
六、实验结论1. 通过本实验,掌握了使用高碘酸钾分光光度法测定水中锰含量的操作步骤。
2. 了解锰在水体中的分布和来源,以及对水质的影响。
3. 实验结果可靠,为水质监测和环境保护提供了参考依据。
七、注意事项1. 实验过程中要注意安全,避免接触化学试剂。
2. 标准曲线的绘制要准确,以保证样品测定的准确性。
3. 采样时要避免样品污染,确保样品的代表性。