电子教材-布尔代数和逻辑化简基础
- 格式:pdf
- 大小:2.96 MB
- 文档页数:64
讲稿03第1章 逻辑代数基础(逻辑函数的公式法、卡诺图化简法)1.4 逻辑函数的公式化简法 1 . 4 . 1 化简的意义与标准 一、化简逻辑函数的意义二、逻辑函数式的几种常见形式和变换 三、逻辑函数的最简与-或式 1 . 4 . 2 逻辑函数的代数化简法一、并项法 二、吸收法 三、消去法 四、配项法 1 . 4 . 3 代数化简法举例1.4 逻辑涵数的公式化简法 1 . 4 . 1 化简的意义与标准 一、化简逻辑函数的意义根据逻辑问题归纳出来的逻辑函数式往往不是最简逻辑函数式,对逻辑函数进行化简和变换,可以得到最简的逻辑函数式和所需要的形式,设计出最简洁的逻辑电路。
这对于节省元器件,优化生产工艺,降低成本和提高系统的可靠性,提高产品在市场的竞争力是非常重要的。
湖南省高校数字教学资源中心NE </t i t l e ></h e a d ><b o d y ><b r ><b二、逻辑函数式的几种常见形式和变换常见的逻辑式主要有5种形式,如逻辑式可表示为三、逻辑函数的最简与-或式1 . 4 .2 逻辑函数的代数化简法一、并项法湖南省高校数字教学资源中心N E </t it le></h ea d><b od y><b r><b1 . 4 . 3 代数化简法举例在实际化简逻辑函数时,需要灵活运用上述几种方法,才能得到最简与-或式.湖南省高校数字教学资源中心NE </t i t l e ></h e a d ><b o d y ><b r ><b1.5 逻辑函数的卡诺图化简法 1. 5. 1 最小项与卡诺图 一、最小项的定义和性质 1.最小项的定义 2.最小项的基本性质 二、表示最小项的卡诺图 1.相邻最小项2.最小项的卡诺图表示 1. 5. 2 用卡诺图表示逻辑函数 一、逻辑函数的标准与-或式 二、用卡诺图表示逻辑函数1.已知逻辑函数式为标准与-或式,画逻辑函数卡诺图。
数字电子技术基础第五版习题解答本文档为《数字电子技术基础第五版》习题解答,共计五个习题的解答内容。
习题一:布尔代数问题描述:将以下布尔代数表达式化简。
(A + B) · (A + C) · (B + C)解答:按照展开公式,并根据布尔运算规则简化表达式,可以得到以下计算步骤:(A + B) · (A + C) · (B + C)= (A·A + A·C + B·A + B·C) · (B + C)= (A + A·C + B·A + B·C) · (B + C)然后使用分配律的规则继续化简:= A·(1 + C) + B·(A + C) · (B + C)= A + AC + AB + BC= A + AB + BC + AC所以,原始表达式(A + B) · (A + C) · (B + C)可以化简为A + AB + BC + AC。
习题二:逻辑门问题描述:给定逻辑电路图如下,请确定其逻辑功能,并列出该电路的真值表。
____ ____A -----| |---| || | | |--- YB -----|and | |or ||____| |____|解答:根据逻辑电路图,可以判断该电路为两个输入 A 和 B 的AND 门和 OR 门的组合,输出为 Y。
该电路的真值表如下:A B Y000010101111习题三:数字编码问题描述:将以下十进制数转换为二进制数。
45解答:对于十进制数转换为二进制数,可以采用除以2取余法,将余数逆序排列即可。
使用该方法将数字 45 转换为二进制数的计算步骤如下:45 ÷ 2 = 22 余 122 ÷ 2 = 11 余 011 ÷ 2 = 5 余 15 ÷ 2 = 2 余 12 ÷ 2 = 1 余 01 ÷2 = 0 余 1将余数倒序排列得到的二进制数为101101。
《数字电子技术(第三版)》3布尔代数与逻辑函数化简数字电子技术第3章布而代数与逻辑函数化简学习要点:学习要点:三种基本运算,基本公式、定理和规则。
逻辑函数及其表示方法。
逻辑函数的公式化简法与卡诺图化简法。
无关项及其在逻辑函数化简中的应用。
3.1基本公式和规则3.1.1逻辑代数的公式和定理(1)常量之间的关系与运算:00=001=010=011=1或运算:0+0=0非运算:1=00+1=10=11+0=11+1=1(2)基本公式A+0=A0-1律:A1=A互补律:A+A=1A+1=1A0=0AA=0双重否定律:A=A等幂律:A+A=A(3)基本定理AB=BA交换律:A+B=B+A(AB)C=A(BC)结合律:(A+B)+C=A+(B+C)A00A(B+C)=AB+AC1分配律:A+BC=(A+B)(A+C)1BA.BB.A000100000111A.B=A+B反演律(摩根定律):A+B=AB证明分配率:A+BC=(A+B)(A+C)证明:证明:(A+B)(A+C)=AA+AB+AC+BC=A+AB+AC+BC=A(1+B+C)+BC=A+BC分配率A(B+C)=AB+AC等幂率AA=A等幂率AA=A分配率A(B+C)=AB+AC0-1率A+1=1(4)常用公式AB+AB=A还原律:(A+B)(A+B)=AA+AB=A吸收率:A(A+B)=AA(A+B)=ABA+AB=A+B证:A+AB=(A+A)(A+B)明分配率A+BC=(A+B)(A+C)互补率A+A=1互补率A+A=10-1率A·1=11=1 =1(A+B)=A+B冗余律:AB+AC+BC=AB+AC证明:AB+AC+BC=AB+AC+(A+A)BC=AB+AC+ABC+ABC互补率A+A=1互补率A+A=1分配率A(B+C)=AB+AC0-1率A+1=1=AB(1+C)+AC(1+B)3.1.2逻辑代数运算的基本法则(1)代入法则:任何一个含有变量A的等式,如果将所有出现A的位置都用同一个逻辑函数代替,则等式仍然成立。
第4章布尔代数和逻辑简化本章大纲4.1 布尔运算和表达式4.2 布尔代数的定律和法则4.3 狄摩根定理4.4 逻辑电路的布尔分析4.5 用布尔代数进行简化4.6 布尔表达式的标准形式4.7 布尔表达式和真值表4.8 卡诺图4.9 卡诺图SOP最小化4.10 卡诺图POS最小化4.11 5变量卡诺图本章学习目标■应用布尔代数的基本定律和法则■应用狄摩根定理到布尔表达式■用布尔表达式描述逻辑门网络■计算布尔表达式■使用布尔代数的定理和法则简化表达式■变换任意的布尔表达式为乘积加和(SOP)形式■变换任意的布尔表达式为加和乘积(POS)形式■使用卡诺图简化布尔表达式■使用卡诺图简化真值表函数■使用“无关紧要”条件简化逻辑功能■在系统应用中使用布尔代数和卡诺图方法重要术语■变量■反码■加和项■乘积项■乘积的加和(SOP)■加和的乘积(POS)■卡诺图■最小化■“无关紧要”■ PAL简介1854年,乔治·布尔(George Boole)出版了一本著作,题目为《思想定律的调查研究并基于此建立了逻辑和概率的数学理论》。
这篇著作中公式化的“逻辑代数”,今天被称为布尔代数。
布尔代数是表示以及分析逻辑电路运算的一种方便而系统的方法。
克劳德·香农(Claude Shannon)第一次应用布尔的工作来分析和设计逻辑电路。
1938年,香农在MIT 写了一篇论文,题目是《延迟和转换电路的符号分析》。
本章介绍了布尔代数的定律、法则和定理,以及它们在数字电路上的应用。
你将学习怎样用布尔表达式来定义一个给定的电路,然后计算它的运算。
你还会学习怎样使用布尔代数和卡诺图来简化逻辑电路。
4.1 布尔运算和表达式布尔代数是关于数字系统的数学。
布尔代数的基本知识对于学习和分析逻辑电路是必不可少的。
在上一章中,对于非、与、或、与非以及或非门相关的布尔运算和表达式已经得到了介绍。
本节复习了上述内容并提供了附加的定义和信息。