高炉优化配矿技术课件
- 格式:pptx
- 大小:445.26 KB
- 文档页数:22
摘要长期以来,生产单位和供应商对烧结用铁矿石的评价主要集中在化学成份、粒级组成等常温性能方面,而面对铁矿石市场越来越国家化,越来越多的进口矿进入中国市场,仅仅依赖铁矿石的常温性能,生产组织受到明显的局限,本文引入铁矿石基础特性的概念,对铁矿石本身的认识和优化配矿时需注意的问题起到了积极指导作用,同时利用铁矿石基础特性来对采购铁矿石也具有极强的针对性。
关键词进口矿;优化配矿;基础特性前言近年来烧结行业出现了快速发展,尤其是中国加入WTO后,与国际贸易的往来越发密切,就中国钢铁行业发展来讲,粗钢产量每年出现大幅度攀升,铁矿石资源越来越国际化。
从2000年开始,国内生铁产量逐年攀升,进口矿量越来越大,其中有进口矿生产的生铁的比例逐步上升至近一半以上。
表 1 2000年以来中国进口铁矿量及其影响[1]年份2000 2001 2002 2003 2004 2005 2006 2007生铁产量(Mt) 13049.4614540.9617074.5320231.1925185.0533040.4740755.4146944.63进口铁矿石量(Mt) 6997 9231 11149 14813 20808 27526 32630 38309 进口铁矿石产出的生铁量(Mt)4514 5955 7193 9557 13424 17758 21051 24715 在总量中的比例(%) 34.59 43.98 42.13 47.24 53.3 53.74 51.65 52.64 21世纪钢铁工业将继续发展和进步,钢铁材料仍是最主要的结构材料和用量最大的功能材料。
以高炉大型化及长寿化、高喷煤比、低渣量、高效益为目标的技术进步将进一步发展和提高,而高炉的这些技术,必须建立在精料的基础上。
因此,21世纪高炉精料方针的内涵将进一步提升,科学配矿是内涵的具体表现。
我国烧结矿占高炉入炉矿的80%左右,因此提高烧结矿的品位是提高综合入炉品位的重要措施。
M etallurgical smelting冶金冶炼烧结配矿优化及高炉生产应对实践张利波摘要:近些年,高炉炼铁一直是冶炼生铁过程中应用的最重要的技术,居于主导地位。
最近几年,全球的学者即使研究出许多高炉炼铁技术,不过在制作成本的经济性方面,依旧不能和以往的高炉制造技术进行比较。
国内,因为历史条件与制造成本的干预,非高炉炼铁技术的发展速度较慢,超过百分之九十五的生铁依旧借助高炉进行制作。
高炉生产期间,入炉原料重点是烧结矿、球团矿和块矿,而且烧结矿的比例高于百分之八十。
所以,烧结矿的品质高低在高炉生产过程中占据着主导作用,提升烧结矿品质对于缩减制作成本、保证高炉良好的运行具备着较高的作用。
关键词:烧结配矿优化;高炉生产;应对实践对策现如今使用的矿粉、矿石以及含铁工业物料等,使得烧结原料逐渐繁杂,如何通过原料的优化搭配实现品质最优、成本最优是钢铁生产重点关注的问题。
烧结矿是高炉的主要“口粮”,其质量的好坏直接影响高炉生产稳定和各项经济技术指标的完成。
为了确保烧结矿质量稳定,工作人员运用智能化手段,提升烧结配料精度,改善烧结矿质量,为高炉高效生产筑牢保障。
1 研究背景1.1 铁矿粉市场行情在我国环保政策高效实施的环境下,钢铁公司开始限制产量,铁矿石的需求数目逐渐下降。
不过在2017年~2018年鉴因为钢铁利润空间的变化,个别产能被释放,导致铁矿石的需求数目逐渐提升。
身为铁矿石的出产地澳大利亚与巴西境内铁矿石的出产量也随之增加,不过市场依然处于供需不平衡的状态,导致铁矿石的流通价格较高。
并且,因为持续的挖掘与应用优质资源,导致地球上的优质铁矿石数量逐步的减少,铁矿石供需框架的调节会是后期国际上需要一起面临与开展的工作。
我国铁矿石的存储数量位于世界前列,大约为整体存储量的百分之十二,整体的应用潜力较高。
由于铁矿的开采、加工工艺的提升,铁矿资源的整体应用会呈现出良好的经济性。
1.2 烧结配矿结构优化的理论基础低品矿粉为减少烧结资金投入最为重要的方式,不过品味下降可能导致非铁元素的高效提升,造成烧结矿品质降低,为后续高炉生产留下隐藏的危害,科学的应用铁矿粉高温特性展开烧结配矿,能够提升烧结配矿的效果。
2023年冶金科技发展指南—高炉炼铁一、背景二、发展现状目前,我国的高炉炼铁技术水平已经达到国际先进水平,在生产效率、能源消耗和环境污染控制等方面取得了显著成绩。
然而,仍存在一些问题亟待解决,如能源消耗高、废气排放多、原料质量不稳定等。
三、发展目标2023年,我国高炉炼铁工艺应朝着更高效、更节能、更环保的方向发展。
具体目标如下:1.降低能源消耗,提高炉渣质量:通过提高高炉技术装备和管理水平,降低单位产铁能耗,保证炉渣质量稳定。
2.减少废气排放,控制大气污染:采用先进的除尘装置,控制高炉废气中的有害物质排放,减少大气污染。
3.提高原料利用率,降低对矿石的依赖:通过研发新的冶金技术,提高高炉的原料利用率,降低对矿石的依赖程度。
4.优化高炉操作与管理,提高生产效率:引进自动化、智能化设备,提高高炉操作和管理的效率和准确性,提高生产效率。
5.加强高炉炼铁技术研发,推动行业创新:加大科研经费投入,鼓励高炉炼铁技术的创新研发,提高我国高炉炼铁技术的核心竞争力。
四、发展策略为了实现上述目标,需要采取以下发展策略:1.加强政府支持,提供政策指导:政府应加大对高炉炼铁技术发展的政策支持力度,制定相关政策、法规和标准,为企业提供良好的发展环境。
2.加强行业合作,推动技术创新:行业协会和企业应加强合作,共同推动高炉炼铁技术的创新与发展,共享资源、共同研发。
3.加大人才培养和引进力度:加强高炉炼铁领域的人才培养和引进,提高高炉炼铁工艺的技术水平和创新能力。
4.提高企业自主创新能力:鼓励企业加大科研投入,加强自主创新,推动高炉炼铁工艺的技术进步和应用创新。
5.加强监管和社会监督:加大对高炉炼铁企业的监管和执法力度,提高企业的环境保护意识和责任意识。
6.加强国际合作与交流:加强与国际高炉炼铁行业的合作与交流,学习先进技术和管理经验,推动我国高炉炼铁工艺的发展。
结语:高炉炼铁工艺在2023年将面临更大的挑战和机遇。
我们必须加强科研创新,推动技术进步,以更高效、节能、环保的方式进行炼铁生产。
高炉炼铁合理配矿探析摘要:为解决烧结矿质量问题,减少高炉炼铁燃耗,实现高炉炼铁合理配矿。
鉴于此,本文从合理配矿与优化参数两个方面进行分析,提出能有效改善烧结矿质量并降低高炉炼铁燃耗的具体方法,如配加澳矿、巴西矿和印度矿,低温烧结、选择适宜碱度和增强氧化性气氛等,以期为相关人员提供参考。
关键词:高炉炼铁;合理配矿前言:社会经济发展对钢铁需求量增加,在钢铁生产中,原料主要为烧结矿,配矿结构对烧结矿冶金性能会产生重要影响。
为了提高烧结矿的质量,就必须重视对高炉炼铁的合理配矿,除了要增加常温条件下烧结矿强度,还应对烧结矿在中温和高温条件下的强度予以改善,增强还原性,实现间接还原,保证煤气实际利用率,达到降低燃耗的目标。
1合理配矿进口矿包括巴西矿、澳矿与印度矿。
根据不同矿石的基本性能可知,采用不同进口矿时,不仅和氧化钙之间的反应温度有所不同,而且当碱度不同时,生成物数量也有很大不同。
在烧结性能方面,不同进口矿不仅烧结性能完全不同,而且烧结时贡献亦不相同。
近几年虽然主要采用磁铁精矿,但为了提高产品的品位,引入了部分巴西矿。
在引入巴西矿之后,因其成本较高且反应性并不强,所以还要搭配一些褐铁矿,采用褐铁矿的原因除了价格便宜,而且还能对由于引入巴西矿导致的成本增加问题予以弥补,降低整个生产过程的成本,虽然褐铁矿的品位不高,但在烧结完成后结晶水蒸发,对提高产品的品位十分有利;此外,褐铁矿还有良好反应性,能降低生成液相的难度,保证粘结性能,对烧结矿固结起到良好的改善作用,最终实现烧结矿强度的大幅提高。
基于此,在实际的生产过程中,必须对合理配矿引起足够的重视,在引入进口矿的同时根据其特点配以其它类型的矿,这是保证产品质量和减少能耗的基础。
2优化参数2.1低温烧结铁酸钙粘结相不断形成中,当温度为1210℃时,迅速形成SFCA,同时向针状铁酸钙过渡,在高温条件下,SFCA将转变成板状与柱状。
对于磁铁矿原料,其温度在1230℃~1250℃范围内;而对于赤铁矿原料,其温度在1250℃~1270℃范围内;如果温度超出上限,则SFCA将开始分解,生成Fe2O3与C2S。
高炉炼铁中原料配比的优化方法与实践概述高炉炼铁是钢铁行业的核心环节之一,其原料配比的优化是提高生产效率、降低能耗的关键。
本文将着重探讨高炉炼铁中常用的原料配比优化方法及其实践案例,旨在帮助读者了解如何最大程度地优化原料配比,在实际生产中取得更好的经济效益。
1. 高炉炼铁原料配比的意义高炉炼铁原料配比的合理调控直接影响了矿石的利用率、能源消耗和炉渣质量等关键指标。
优化原料配比可以最大限度地提高矿石利用率,减少原料的浪费和能源消耗。
同时,通过合理的配比可以降低炉渣的碱度和含铁量,提高炼铁的效果和产量。
2. 原料配比优化方法2.1. 根据矿石的品质进行相应配比调整矿石的品质会直接影响到配料的参数,因此根据不同品质的矿石进行相应的配比调整是非常重要的。
例如,当使用高品质的矿石时,可以适当降低焦炭的用量,提高铁矿石的利用率。
而当矿石品质较差时,可以通过增加焦炭的用量来提高矿石的还原性能。
2.2. 考虑原料的成本和可获得性在进行原料配比优化时,除了考虑矿石的品质外,还需要兼顾原料成本和可获得性。
通过合理配置廉价且易获取的原料,可以降低生产成本,提高经济效益。
同时,合理选择原料可以减少对外依赖,确保生产的可持续性。
2.3. 运用先进的技术手段和工艺高炉炼铁领域的先进技术手段和工艺也可以用于原料配比优化。
例如,通过使用先进的物料分析仪器,可以实时监测原料的品质和成分,以及反应过程中的温度、压力等参数,从而及时调整配比参数,提高生产效率和产品质量。
3. 原料配比优化实践案例3.1. 某钢铁企业的原料配比优化实践某钢铁企业在高炉炼铁过程中,采用了先进的物料分析仪器,实时监测原料的品质和成分。
通过建立起监测系统和数据分析模型,企业能够快速准确地获得原料配比参数和反应过程中的关键指标。
在实际生产中,该企业不断优化配比参数,降低了矿石的损耗率,提高了炼铁效率。
3.2. 国家级科研项目的原料配比优化实践某国家级科研项目团队通过数年的研究,开发了一套基于人工智能技术的高炉炼铁原料配比优化系统。
浅析高炉炼铁的合理配矿【摘要】作为国家的支柱产业,钢铁工业是一个评判国家工业化水平的重要指标。
钢铁企业要想在市场竞争中取得一席之地就必须降低生产成本,走低消耗、高品质的发展道路,这就要求企业不仅要积极的采用先进的技术还要注重高炉炼铁的合理配矿,优化配料。
【关键词】高炉炼铁;配料;球团矿;烧结矿一、高炉炉料的合理配置烧结矿、球团矿和天然富矿是高炉的基本炉料,合理的炉料搭配即充分有效的利用全球铁矿资源,从而使得高炉冶炼技术得到优化,最终达到节约资源,降低成本的效果。
优化高炉的炉料结构是实现高炉强化冶炼的根本保证。
合理的炉料结构可以提高炉料的还原性,使得高炉冶金性能的各项指标如软熔滴落、还原后粉化和膨胀性等得以改善。
优化高炉的炉料结构是有效降低钢铁生产成本的有效途径。
现阶段,我国高炉的炉料结构主要有三种结构形式:高碱度烧结矿配加部分酸性球团矿、高碱度烧结矿配加部分块矿和酸性球团矿、酸性球团矿配加少部分高碱度烧结矿。
除了依靠改进天然富矿、烧结矿和球团矿之间的成分配搭以达到优化炉料结构的目的外,作为炉料中重要组成部分的烧结矿、球团矿,其自身的配料优化也是改善高炉炉料结构、提高高炉经济效益的有效方法和途径。
二、高炉烧结矿的配料(1)烧结矿配料中溶剂的碱度要大于1.8,若其碱度低于1.8则会阻碍铁酸钙系形成固结相,从而影响到烧结矿的质量。
(2)烧结矿需要较高的铁品位,tfe大于/等于60%,sio2小于4.5%。
这样可以帮助高炉炼铁实现高喷煤、低渣比和低焦比的目的,提高经济效益。
(3)烧结矿应保持较低的feo含量小于5%,若feo含量过高则会降低烧结矿的还原性,降低高炉冶炼过程中的煤气的利用率,使得焦炭的能耗增加。
由于我国在冶炼烧结矿时其燃料的粒度不够细致、成分比重过多,且磁铁精矿也被大量的用于冶炼之中,因而在我国现阶段不少钢铁企业在生成烧结矿时以高feo含量来增强烧结矿的强度,这种烧结矿不仅还原性差,而且其抗磨性和抗压性都会很差,致使烧结矿的质量不稳定。
马钢高炉炉前操作优化和耐火材料管理1. 概要—简单介绍高炉炉前情况2. 高炉出铁场的布置和装备3. 炉前出铁操作和炮泥的管理4. 炉前渣铁沟维护技术1. 概要马钢股份公司第三炼铁总厂(马钢新区)拥有二座4000m3高炉,高炉产能640万吨,平均日产8800吨/天。
延长主沟耐材的使用寿命、减少出铁次数,使铁水与炉渣的排出过程得以顺畅,可减轻炉前劳动强度,有效的稳定了炉内操作。
对出铁场用耐火材料采取吨铁总承包的管理模式外,在整个出铁场区域采取了大量的技术措施和细节管理,实现了整个出铁场操作的稳定。
高炉达到了日均出铁次数9次以下的目标,渣铁沟的周期通铁量稳定在22~24万吨。
2. 高炉出铁场的布置和装备2.1 出铁场布置简介高炉设计两个对称纵向布置的矩形出铁场,每座高炉设置有四个铁口,不设渣口,东西出铁场各设置两个出铁口,铁口夹角为70°,每个出铁口配置YP600E 液压泥炮、进口液压开口机、揭盖机、主出铁沟、铁沟,渣沟、摆动流嘴等渣铁处理设施。
另外,东西出铁场各配置一台50/10吨吊车,配置了主沟解体机、快速搅拌机、浇注用模具、烘烤器、模具专用吊具等。
泥炮和开口机同侧布置,每个出铁场配置一套MG法冲渣设备,整个出铁场趋于平坦化布置,详见附图。
出铁场布置示意图2. 高炉出铁场的布置和装备2.2 炉前装备性能介绍(1) 开铁口机--德国TMT制造设备(2) 液压泥炮(YP600E,西冶生产)(3) 揭盖机为了提高铁口区域除尘效果,我们在与TMT合作的基础上,设计制作了一套揭盖机,运行效果良好。
3. 炉前出铁操作和炮泥的管理3.1 炮泥的性能要求炮泥是用以堵塞高炉出铁口的耐火产品,要保证高炉内渣铁的排出和堵塞功能。
世界上1950年底诞生了焦油型炮泥,1975年诞生了无焦油(树脂)型炮泥。
炮泥的主要作用有三点:⑴堵塞铁口;⑵保证有规则地排放铁水及炉渣;⑶保护铁口周围的内部炉衬砖。
⑴堵塞铁口炮泥的第一个性能是抗挤压。
高炉炼铁对炉料质量(de)要求及优化配矿技术王维兴 中国金属学会一. 高炉炼铁炉料质量对生产有重要意义炼铁学基本理论和高炉生产实践均证明,优化高炉炼铁原燃料(de)质量和冶金性能既是高炉高效化、大型化、长寿化、节能减排(de)前提条件,也是提高喷煤比、降低焦比和燃料比(de)基础条件.所谓优化炉料质量即是提高炉料质量是入炉矿品位高,渣量少和改善原燃料性能等.大高炉做到入炉矿品位≥58%、炉料含低SiO 2、低Al 2O 3、低MgO,高炉渣比在300kg/t 铁以下,焦炭(de)反应性(CRI )≤25%,反应后(de)强度在≥65%等,这是保证高炉生产高效、低耗和大喷煤(de)必要条件.1. 高炉炼铁是以精料为基础钢铁产业发展政策规定:“企业应积极采用精料入炉、富氧喷吹、大型高炉……先进工艺技术和装备.精料是基础.国内外炼铁工作者均公认,高炉炼铁是以精料为基础.精料技术对高炉生产指标(de)影响率在70%,工长操作水平(de)影响占10%,企业现代化管理水平占10%,设备作业水平占5%,外界因素(动力、供应、上下工序等)占5%.在高冶炼强度、高喷煤比条件下,焦炭质量变化对高炉指标(de)影响率在35%左右.炼铁精料技术(de)内涵:精料技术(de)内容有:高、熟、稳、均、小、净,少,好八个方面 ⑴ 高:入炉矿含铁品位高,原燃料转鼓指数高,烧结矿碱度高.入炉矿品位高是精料技术(de)核心,其作用:矿品位在57%条件下,品位升高1%,焦比降1.0%~1.5%,产量增加1.5%~2.0%,吨铁渣量减少30公斤,允许多喷煤粉15公斤.;入炉铁品位在52%左右时,品位下降1%,燃料比升高2.0%~2.2%.高碱度烧结矿是碱度在1.8~2,2(倍),其转鼓强度高、还原性好.⑵熟:指熟料(烧结和球团矿)比要高,一般>80%.⑶稳:入炉(de)原燃料质量和供应数量要稳定.要求炉料含铁品位波动±<0.5%,碱度波动±<0.08(倍),FeO含量波动±≤1.0%,合格率大于80%~98%等.详见表4和表5.⑷均:入炉(de)原燃料粒度要均匀.⑸小:入炉(de)原燃料粒度要偏小,详见表7.⑹.净:入炉(de)原燃料要干净,粒度小于5mm占总量比例(de)5%以下,5~10mm粒级占总量(de)30%以下.⑺少:入炉(de)原燃料含有害杂质要少.祥见表10.⑻.好:铁矿石(de)冶金性能要好:还原性高(>60%)、软融温度高(1200℃以上)、软融温度区间要窄(100~150℃)、低温还原粉化率和膨胀率要低(一级<15%,二级<20%))等.2用科学发展观来采购原燃料用精料技术(de)内容来判断铁矿石性能(de)优劣,不能只看其价格,要看它(de)化学成分和物理性能,以及使用效果(造块和高炉冶炼).要用技术经济分析(de)办法进行科学计算和评价,找出合理采购铁品位(de)数值.算账不能只计算到采购及炼铁效果,还要看对炼钢、轧钢,以致对全公司(de)影响.所以,买低品位铁矿石要有个度.还要研究其对能耗和环境(de)影响.韩国、日本和宝钢买煤,要求煤(de)热值要大于7400大卡.我国有些企业在买6500大卡(de)煤.这样,企业之间(de)能耗水平就不是在一个起点上(de)对标.我国炼铁用焦炭灰分一般在12.5%左右.欧美国家炼铁用(de)焦炭灰分要比我国低3%左右.这样,我国与他们(de)燃料比就有不可比性.韩国FINIX所用(de)煤灰分在6~8%,入炉铁品位在61%,所消耗(de)煤炭为710kg/t(比高炉能耗高).焦炭质量(de)优劣对企业(de)生产指标影响是很大(de),特别是企业之间(de)吨钢综合能耗、炼铁工序能耗进行进行对标,要作具体分析,要注重所用焦炭(de)质量情况.焦炭质量对高炉(de)影响见表1:表1 指标变动量燃料比变变化铁产量变化炼焦配煤用主焦煤、三分之一主焦煤、肥煤、气煤、瘦煤等.现在,国内外出现采购来(de)煤不是单一煤种,是混煤.造成再按五种煤进行配煤炼焦,出现假象,使焦炭质量下降,给炼铁产生负面影响.我们要用煤岩学(de)办法去分析煤(de)G值、Y值、反射率等指标,来判断煤(de)性质,再进行采购和炼焦配煤.3.原燃料质量对企业节能减排有重大影响炼铁系统(de)能耗占企业总用能(de)70%,成本占60%~70%,污染物排放占70%.所以说,炼铁系统要完成企业(de)节能减排、降成本重任.钢铁联合企业用能结构有80%以上是煤炭,主要也是炼铁用焦炭和煤粉,烧结用煤量较少.2014年中钢协会员企业炼铁燃料比为543.06kg/t,焦比为361.65kg/t,煤比为145.85kg/t.比上年均有所劣化,是原燃料质量变化所致.钢铁企业节能思路是:首先是要减量化用能,体现出节能要从源头抓起.第二是要提高能源利用效率,第三是提高二次能源回收利用水平.减量化用能工作(de)重点是要降低炼铁燃料比和降低能源亏损等.目前,我国炼铁燃料比与国际先进水平(de)差距在50~60kg/t左右.主要原因是,我国高炉入炉矿石含铁品位低,热风温度低、焦炭灰分高等造成(de).在高冶炼强度和高喷煤比条件下,焦炭质量对高炉(de)影响率将达到35%左右.也就是说,焦炭质量已成为极重要(de)因素.近年来,一些大型高炉出现失常,主要原因是焦炭质量恶化和成分波动大,高炉操作如没进行及时合理(de)调整,会影响高炉燃料比(焦比、煤比、小块焦比)变化,影响燃料比变化(de)主要因素见表2.表2 影响高炉燃料比变化(de)因素从表2可看出,M10变化±0.2%,燃料比将变化7kg/t,比焦炭(de)其它指标对高炉指标(de)作用都大.所以,我们应十分关注M10(de)变化,希望其值≤7%.4.新修订(de)高炉炼铁工程设计规范对不同容积(de)高炉使用烧结、焦炭、球团、入炉块矿、煤粉质量均有具体要求.祥见表3~10.表3 .入炉原料含铁品位及熟料率要求注:平均含铁(de)要求不包括特殊矿..表4 烧结矿质量要求表5 球团矿质量要求注:不包括特殊矿石.球团矿碱度应根据高炉(de)炉料结构合理选择,并在设计文件中做明确规定,为保证球团矿(de)理化性能,宜采用酸性球团矿与高碱度烧结矿搭配(de)炉料结构.表6 入炉块矿质量要求表7 原料粒度要求注:石灰石、白云石、萤石、锰矿、硅石粒度应与块矿粒度相同.表8 顶装焦炭质量要求表8 喷吹煤质量要求表10 入炉原料和燃料有害杂质量控制值(kg/t)5.高炉炼铁生产对铁矿石质量(de)要求5.1.高炉炼铁对铁粉矿(de)质量要求:铁矿粉分为烧结粉和球团精粉两类,对两类(de)质量要求列于表11/12表11 对烧结粉矿和球团精粉化学成分(de)要求(%)铁矿粉 种类 TFeSiO 2 Al 2O 3SPK 2O+Na 2OclTiO 2PbZnCuAs烧结粉矿 ≥62.0 ≤5.0 ≤2.0 ≤0.3 ≤0.05 ≤0.2 ≤0.001 ≤0.25 ≤0.1 ≤0.1 ≤0.2 ≤0.07 球团精粉≥66.0 ≤3.5 ≤1.5 ≤0.3 ≤0.05 ≤0.2 ≤0.001 ≤0.25 ≤0.1 ≤0.1 ≤0.2 ≤0.07 表12 对烧结粉矿和球团精粉物理性能(de)要求(%)5.2.高炉炼铁对块矿(de)质量要求:对直接用于高炉冶炼块矿质量要求包括化学成分,物理性能和冶金性能三个方面,分为三级列于表13表13 高炉炼铁对块矿质量要求指标矿粉种类 铁>6.3mm 1~(200目)比表 积(cm 2/g ) H 2O LOI 烧结粉矿 <8.0 <22.0 20~30 —— —— ≤6≤6球团精粉——————≥80.0≥1300≤8 ≤1.5表14 高炉炼铁对块矿冶金性能(de)要求5.3.高炉炼铁对烧结矿(de)质量要求:烧结矿是我国高炉炼铁(de)主要原料(占炉料结构(de)75%左右),它(de)质量很大程度上影响着高炉(de)指标,因此高炉炼铁应十分重视烧结矿(de)质量,配料希望不加MgO,对其(de)质量要求列于表15 表15 高炉炼铁对烧结矿(de)质量要求结矿级别TFe FeO SiO2Al2O3MgOCaO/SiO2S P TiO2K2O+Na2O优质≥58.0 ≤8.0 ≤5.0 ≤1.8 ≤1.8 ≥1.90 ≤0.03 ≤0.05 ≤0.25 ≤0.02 普通≥55.0 ≤10.0 ≤6.0 ≤2.0 ≤2.0 ≥180 ≤0.06 ≤0.07 ≤0.40 ≤0.10 表16 高炉炼铁对烧结物理、冶金性能(de)要求烧结矿级别转鼓指数筛分指数抗磨指数还原度指数低温还原粉化指数T+6.3(%) (%)(%)RI(%) RDI+3.15(%)优质73.0 ≤5.0 ≤6.0 ≥82.0 ≥75.0 普通70.0 ≤8.0 ≤8.0 ≥78.0 ≥70.05.4.高炉炼铁对球团矿(de)质量要求:球团矿也是高炉炼铁(de)一种主要原料,它(de)优势在高品位、低Si02,高MgO它是高炉炼铁(de)优质原料,对球团矿(de)质量要求列于表17表17 高炉炼铁对球团矿(de)质量要求球团矿类别TFe FeO SiO2 MgO S TiO2K2O+Na2OCa酸性≥66.0 ≤2.0 ≤4.0 ≥2.0 ≤0.03 ≤0.25 ≤0. 2 ≤碱性≥64.0 ≤1.0 ≤3.5 —≤0.05 ≤0.25 ≤0. 2 ≥表18 高炉炼铁对球团物理、冶金性能(de)要求球团矿类别抗压强度转鼓指数筛分指数抗磨指数9~15mm 还原度还原膨胀指数(N/个球)T+6.3(%) (%)(%)(%) RI(%) RSI(%)酸性≥2500 ≥90.0 ≤5.0 ≤5.0 90.0 ≥65 ≤15.0 碱性≥2200 ≥88.0 ≤6.0 ≤6.0 85.0 ≥75 ≤20.06.不同容积(de)高炉对炉料质量(de)要求不一样,大高炉要有高质量炉料,见表19中(de)具体数据:表19 2014年不同容积高炉指标7.不同(de)操作制度,可适应不同(de)炉料质量,取得最优(de)技术经济指标,得到低成本.如沙钢5800M3高炉(de)炉料质量比京唐高炉用炉料质量差;但沙钢开发出适应本企业炉料质量(de)优化布料技术,适宜(de)鼓风动能,富氧12.62%,煤比174.98kg/t,煤气CO含量达23.70%,炉缸活跃,铁2水温度充沛,炼铁工序能耗363.09kgce/t,铁水成本较低,取得较好(de)经济效益.因此,各企业要寻找适合本企业炉料质量(de)高炉操作制度,求得优化(de)指标和底成本.二.优化配矿技术优化配矿是要实现铁矿石(de)性质与烧结和球团指标之间(de)内在关系.我们要在满足烧结、球团质量要求和矿石供应条件(de)基础上,通过优化配矿使矿石(单一或混合矿)具备优良(de)制粒性能、成矿性能,造出(de)熟料,能使高炉取得良好(de)技术经济指标.首先,要掌握铁矿石(de)制粒性能、成矿行为,找出影响造块(烧结、球团)质量(de)主要因素,分析出铁矿石成分、性能与熟料质量之间(de)相关内在联系;在满足熟料质量要求(de)基础上,实现最低成本(de)配矿方案.1.铁矿石优化配矿技术针对铁矿粉(de)优化配矿技术已被普遍重视,为企业扩大铁矿资源,降低烧结和炼铁成本、提高企业竞争力,提供了有效支撑.优化配矿技术(de)发展和应用已不在停留在化学成分、成本(de)简单要求,而是结合铁矿粉烧结条件下(de)高温烧结性能,其在烧结过程中(de)作用和贡献,铁矿粉之间性能差异与性能互补性,合理(de)利用不同类型(de)铁矿粉层面.中南大学姜涛等人针对褐铁矿、钒钛磁铁矿、含氟铁矿、镜铁矿、赤/褐混合铁矿等(de)应用问题,建立了快速评价铁矿石成矿性能(de)铁酸钙生成曲线法,揭示了含铁原料基本物化性能与制粒、成矿性能(de)关系,提出了基于调控粘附粉含量、成分、比表面积和核颗粒矿物组成(de)配矿标准,开发出化配矿综合技术经济系统,解决了多品种、难造块铁矿资源快速优化配矿(de)难题.工业生产采用该技术后,使褐铁矿、镜铁矿配比分别增加20%、10%以上,烧结原料成本降低了25元/t以上.2. 铁矿石含铁品位综合评价方法所谓铁矿石品位综合评价法是不仅考虑铁矿石(de)品位,同时兼顾铁矿石(de)有价成分和负价成分,即碱性脉石(de)价值和酸性脉石(de)影响,具体表达式依炉渣(de)二元碱度(R2)还是四元碱度(R4)列为两式:TFe(R2综)=TFe×[100+2R2(SiO2+ Al2O3)-2(CaO+MgO)]-1×100% (1)TFe(R4综)=TFe×[100+2R4(SiO2+Al2O3)-2(CaO+MgO)]-1×100% (2)式中R2、 R4分别为二元和四元炉渣碱度,SiO2、Al2O3、CaO和MgO 均为铁矿石(de)化学成分含量(%).该两个表达式可说明铁矿石(de)实际品位,既考虑了碱性脉石(CaO+MgO)(de)作用,又扣除了酸性脉石(SiO2+ Al2O3)作为渣量(de)源头对品位造成(de)影响,这就是铁矿石(de)实际品位.这种综合评价法所不足(de)是尚没有考虑有害杂质对品位造成(de)影响(有害元素增加1%,高炉生产增加成本30~50元/吨),下面以表达式〈2〉举2个实例作计算和分析说明.例1:宝钢进口巴西(de)高品位低SiO2低Al2O3矿(de)实际综合品位分析.进口铁矿粉和炉渣(宝钢1高炉)(de)化学成分列于下表19将表中数据代入〈2〉式得:TFe(R4综)=67.5×[100+2×1.026(0.7+0.74)-2(0.01+0.02)]-1×100% =67.5×[100+2.955-0.06]-1=67.5/102.9×100%=65.60%例2:沿海某钢铁企业进口印度低品位,高SiO 2高Al 2O 3矿(de)实际综合品位分析.进口铁矿粉和炉渣(de)化学成分列于下表20将表中数据代入〈2〉式得:TFe (R 4综)=60.0×[100+2×0.887(6.0+4.0)-2(0.2+0.10)]-1×100%=60.0×[100+17.74-0.6]-1 =60.0/117.14×100% =51.22%实例分析:由以上两个实例可以说明,铁矿石(de)脉石含量对其实际品位有直接影响.在宝钢条件下,进口铁矿石(de)综合品位仅比标出品位低不足 2.0%:△Tfe=标出品位一综合品位=67.5%-65.6%=1.9%.而对沿海某企业(de)高SiO 2高Al 2O 3矿而言,情况就大不一样,△Tfe=60.0%-51.22%=8.78%因此购买铁矿石必须考虑脉石(de)含量,特别要注意酸性脉石(SiO 2+ Al 2O 3)对综合品位(de)影响,达到合理(de)性价比.正因为矿石(de)Al 2O 3含量会影响炉渣Al 2O 3和MgO 含量,因此计算应考虑炉渣(de)四元碱度,而非二元碱度,故建议应采用计算式〈2〉作为铁矿石品位综合评价法.3.铁矿石冶金价值(de)评价方法:这一评价法是前苏联M.A.巴甫洛夫院士提出(de)铁矿石冶金价值(de)计算方法(公式):P1=(F÷f)(p-C×P2-c×P3-g) (3)式中:P1为铁矿石(de)价值(元/t), F为铁矿石(de)品位(%) f为生铁(de)含铁量(%) P为生铁车间成本(元/t) C为焦比(t/t) P2为焦炭价格(元/t)c为生铁熔剂消耗(t/t) P3为熔剂价格(元/t)g为炼铁车间加工费(元/t)M.A.巴甫洛夫院士提出(de)上一计算公式,是上世纪四十年代(de)事,当时铁矿石(de)品种很单一,主要是天然块矿入炉,当时高炉炼铁远没有喷煤,有害杂质对矿石冶炼价值(de)影响,也不如当代认识(de)突出,因此是一个很有水平(de)铁矿石价值计算公式,它既考虑了铁矿石(de)品位,同时考虑焦比和熔剂消耗(de)因素,它直接计算出了铁矿石在某厂条件下(de)利用价值,计算出来(de)数据直观所用铁矿石到厂(de)最高价,若购买超过P1(de)价格,就意味着采用这种价格(de)铁矿石冶炼工厂就要亏本.4.铁矿石极限价值和实用价值评价方法:根据现代高炉炼铁喷煤和有害元素对矿石冶炼价值(de)影响,也参照了国内邯钢和华菱集团涟钢对M.A.巴甫洛夫院士计算公式(de)修正意见,提出一个简单易行(de)直接入炉铁矿石价格(de)评价方法(计算公式):铁矿石(de)剩余价值P 1=P M -P S (4)式中P M 为铁矿石用于冶炼(de)极限价值,P S 为铁矿石(de)实用价值.4.1、矿石(de)极限价值:P M =(F÷f)(P -C 1×P 1-C 2×P 2- C 3×P 3- C 4×P 4-g) (5)〈5〉式中(de)含义是铁矿石(de)极限价值等于生铁成本减去焦炭、喷煤熔剂、有害杂质(de)消耗加上车间加工费之和.〈5〉式中:F 、f 、P 和g 与〈3〉式中相同.C 1、P 1为焦比(t/t )和焦炭(de)价格(元/t ) C 2、P 2为喷煤比(t/t )和煤粉(de)价格(元/t ) C 3、P 3为炼铁熔剂消耗(t/t )和熔剂(de)价格(元/t ) C 4、P 4为有害杂质总量(kg/t )和其当量价值(元/kg ) 例3:设某厂买入(de)铁矿石品位(F)为62%,生铁(de)含铁量(f )为95%,生铁(de)成本价格(P )为2800元/t,炼铁焦比(C1)为380kg/t,焦炭(de)价格为2000元/t,喷煤比(C2)160kg/t,煤粉(de)价格(P2)为900元/t.吨铁有害杂质总量为3.5kg/t,有害杂质(de)当量价值(P4)为30元/kg,将以上数据代入〈5〉式得:P M =62%/0.95×(2800-0.38×2000-0.16×900-0.145×120-3.5×30-120)= 62%/0.95×(2800-760-144-17.4-105-120) = 62%/0.95×(2800-1146.4)= 1079.14元/t例3计算(de)结果告诉我们,在已知(de)条件下,62%品位铁矿石(de)最高买价(P M )为1079. 14元/t,若超过此值,炼铁会亏本.4.2铁矿石实用价值:P S =C 1×Tfe+C 2(CaO+MgO)-C 3(SiO 2+Al 2O 3)-C 4(CaO+MgO+SiO 2+Al 2O 3+S+P+5×K 2O+Na 2O+PbO+ZnO+ As 2O 3+CuO+5CL) ………… 〈6〉 式中C 1为铁矿石(de)平均成本(元/tFe )C 2为矿石中碱性脉石(CaO+MgO )(de)价值,C 3为矿石中酸性脉石(SiO 2+Al 2O 3)消耗熔剂(de)当量价值,C 4为矿石中除Fe 元素外其他元素消耗燃料(de)当量价值. 式中其余符号均为铁矿石(de)化学成分.〈6〉式(de)直观性很强,即铁矿石(de)实用价值等于其有价元素价值之和与负价元素消耗之和(de)差值.例5:某厂购进铁矿石(de)化学成分列于下表6设C 1=1815 C 2=400 C 3=520 C 4=430 将上表数据代入〈6〉中得:P S =1800×63.5%+400×(0.2+0.1)%-520×(4.5+1.9)%-430×(0.2+0.1+4.5+1.9)+0.05+0.07+5×0.2+0.18+0.10+0.10+0.15+0.008+5×0.01)%=1143.0+1.2-33.28-35.86 =1075.06元/t若把例3、例4结合起来,则P 1=P M -P S =1079.14-1075.06=4.08元/t 说明在上两种条件下,铁矿石有4.08元/t(de)剩余价值.相当于采用此矿价冶炼一顿生铁有4.08×1.65=6.73元(de)效益,可见效益甚微.注:本例题C 1、C 2、C 3和C 4(de)设定是根据长治钢铁公司(de)设定值由矿价(de)涨幅作适当调整而来(de)(原长钢(de)设定值C 1=585,C 2=100,C 3=172,C 4=143),本例题中1800是根据平均矿价1200元/t,冶炼一顿生铁,采用63.5%品位需用 1.5吨矿,得吨铁平均矿价1800元.C 2、C 3、C 4各企业可根据本企业(de)实际数据作修正.以上铁矿石(de)极限价值和实用价值适用于直接入炉(de)块矿和球团矿,不适用于烧结生产和球团矿生产(de)粉矿和精粉.因为粉矿和精粉(de)实用价值还受着其烧结特征和球团焙烧特性(de)影响.4.3.烧结粉和球团精粉价值评价方法:已有(de)文献资料,对烧结粉(de)价值评价倾向于用单烧值(de)烧结指标和冶金性能进行经济分析,再根据所用烧结矿(de)炼铁价值去推算铁矿粉(de)价值,而且以自熔性烧结矿为基础.笔者认为这实际上是很难实现(de),笔者曾对十八种进口铁矿粉(de)单烧指标作过质量分析,进行单烧试验(de)料层厚度不同,碱度不同配比和混合料水分不同,且目前全国都生产高碱度烧结矿,难以作出统一(de)价值评价,在烧结生产中,各种矿(de)配比是根据合理(de)配矿实现(de),它(de)基础还是化学成分(包括烧损和有害杂质),物理性能和高温特性.因此笔者认为对烧结粉矿(de)价值评价最基本(de)还是铁矿粉(de)化学成分(包括有价成分、负价成分和有害元素)和物理特性(烧损、粒度和粒度组成),对目前已知各种矿粉(de)高温特性(同化性,液相流动性、粘结相强度,生成铁酸钙能力和固相连晶能力,也包括晶体颗粒大小,水化程度等)和已有(de)分类(A 类B 类C 类矿)要加以适当考虑(作修正系数,但这常规还是通过合理配矿解决),至于用于球团生产(de)精粉也很复杂,同样是赤铁矿精粉,中国(de)、巴西(de)和印度(de)均有各自(de)不同特征.但对铁矿粉价值评价最基本(de)还是品位和化学成分,粒度和粒度组成包括(LOI )值,基于以上分析,笔者认为对用于烧结和球团生产(de)粉矿和精矿粉,它们(de)价值主要还是应采用品位综合评价法加上有害元素影响,烧损和粒度组成(de)调整方法比较简易实用.铁矿粉(de)价值评价法用TFe 粉综表示:TFe 粉综=TFe×[100+1.5R 4(SiO 2+Al 2O 3)-2(CaO+MgO)+1.5(S+P+5×K 2 +Na 2O+PbO+ZnO+CuO+As 2O 3+5CL)+C 1LOI+C 2Lm]-1×100% (7)式中C1为烧损(LOI )当量价值,根据经验;当LOI<3%时,C 1取“-0.6”当LOI=3%—6%时C1取“0”,当LOI>6%时.C 1取“0.6”,C 1所取舍尚可由企业作调整.C 2为粒度当量价值,当粉矿(de)粒度+8mm>5或 1.0—0.25mm,含量>22时应作修正,C 2可取绝对值超量%(de)“0.3”.例如粒度+8mm 为11%和(1.0—0.25mm )为28%时,C 2Lm 项(de)值为0.3×(11-5)+0.3(28-22)=3.6,C(de)数值企业也可根据生产数2据作调整.例5:某钢铁企业购进(de)烧结粉,化学成分指标列于下表7(R4为1.02)粒度:+8mm为9%,(1.0—0.25mm)为24%.将上表中数据代入〈7〉中得:Tfe粉综=62.0×[100+1.5×1.02(6.8+2.6)- 2(0.2+0.1)+1.5(0.05+0.06+5×0.1+0.20+0.18+0.16+0.20+0.10+5×0.02)+0.3(4+2)]-1×100%=62.0×[100+17.907]-1×100%=62.0/117.907×100%=52.58%说明某钢铁公司购进62.0%品位(de)铁矿粉,其实际(de)价值相当于52.26%(de)品位价值.。