范晓慧-烧结球团生产过程优化模型与人工智能(2015)
- 格式:pdf
- 大小:3.84 MB
- 文档页数:81
人工智能在化工领域的应用
随着人工智能技术的发展,化工领域也开始逐渐应用人工智能技术,以提高生产效率、降低成本、提升产品质量。
人工智能在化工领域的应用主要包括以下几个方面:
1. 生产过程控制
人工智能可以通过对生产过程的监测和分析,实现对生产过程的自动化控制和优化。
例如,通过人工智能技术可以根据实时监测到的数据预测生产过程中的异常情况,及时发出警报并采取相应的措施,从而避免生产事故的发生。
2. 质量控制
人工智能可以通过对生产过程的数据进行分析,预测产品的质量并进行调整,从而提高产品的质量。
例如,通过采用人工智能技术可以对产品的成分、温度、压力等参数进行监测和优化,从而提高产品的均匀性和稳定性。
3. 新材料研发
人工智能可以通过模拟和预测化学反应的过程,加速新材料的研发过程。
例如,通过人工智能技术可以预测不同材料在不同条件下的反应情况,从而为新材料的研发提供指导和支持。
4. 能源管理
人工智能可以通过对能源的消耗进行分析和管理,实现能源的节约和优化。
例如,通过人工智能技术可以对生产过程中的能源消耗进行监测和分析,从而发现和解决能源浪费的问题。
总之,人工智能在化工领域的应用可以提高生产效率、降低成本、提升产品质量、加速新材料的研发、实现能源的节约和优化,为化工行业的可持续发展注入新的动力。
- 1 -。
烧结过程智能监测与优化控制系统技术方案北京北科亿力科技有限公司2015年3月目录1 需求分析12 系统功能与控制目标22.1 系统功能22.2 控制目标23 技术方案33.1 设备管控33.1.1 设备精度控制33.1.2 设备运行监控43.2 烧结过程优化控制系统43.2.1 无扰换堆模型53.2.2 配料计算模型63.2.3 水分跟踪与控制模型63.2.4 烧透点分析与控制模型73.2.5 燃烧一致性控制模型83.2.6 烧结过程热状态分析模型93.3 成品质量管控系统103.3.1 碱度分析与控制113.3.2 亚铁分析与控制123.4 精细化管理平台133.4.1 能源及原料消耗133.4.2 数据仓库133.4.3 生产报表133.4.4 数据采集143.4.5 质量管理144 烧结二级系统实现144.1 硬件系统144.2 建立数据库154.3 开发软件系统165 效益分析166 设备清单与供货范围171 需求分析随着烧结设备的大型化和高炉对烧结矿质量要求的提高,烧结过程计算机控制技术的作用和成效更为显著,烧结自动控制水平已成为衡量烧结工艺水平的一个重要标志。
近年来新建和大修改建的大中型烧结机都配置了计算机自动控制系统,但由于缺少品种齐全、性能优良的检测仪器仪表和必要的人工智能控制技术,我国的烧结自动控制系统与世界先进水平相比,在劳动生产率、生产成本、质量和能耗等方面仍存在着较大的差距。
因此,如何利用烧结过程的全方位信息,采用先进的控制技术和优化方法,使整个烧结生产运行处于最优状态,仍是我国钢铁企业目前需要解决的关键问题之一。
烧结过程的控制非常复杂,它涉及到温度、压力、速度以及流量等大量物理参数,包括物理变化、化学反应、液相生成等复杂过程,以及气体在固体料层中的分布、温度场分布等多方面的问题。
从控制的角度来看,烧结生产过程具有大滞后、多变量、强非线性以及强耦合性等特点,属于工艺流程长、控制设备大型化的连续复杂工业过程,传统的依靠人工“眼观—手动”的调节方法已经无法满足大型烧结设备的控制要求,需要更加精确和稳定的自动控制。
球团矿有机粘结剂应用及研究现状摘要:有机粘结剂制备球团矿具有添加量少、粘结性好、球团矿铁品位高的特点,冶金原料工作者多年来致力于有机粘结剂的研究与开发,试图找到提高球团矿质量、降低能耗等特点的有机粘结剂替代膨润土作为球团矿主导粘结剂。
关键词:球团矿膨润土有机粘结剂在铁矿球团工艺刚刚兴起的时候,人们就发现膨润土能做粘结剂,膨润土具有亲水性好、分散性高、比表面积大、粘结性强、成球指数高等特性,少量添加就能改善成球性,因此膨润土成了铁矿球团中最主要的粘结剂。
随后,人们开发了粘土、硅藻土、石灰、水泥、水玻璃、硼酸盐[1,2]等一系列无机物粘结剂。
不过,所有无机粘结剂具有增加有害元素的副作用,使球团矿铁品位下降,并且有可能使球团冶金性能变差,甚至造成环境污染。
有机粘结剂一个固有的优点就是它们在球团焙烧过程中挥发或烧掉,对提高球团矿铁品位有利,一、有机粘结剂研究进展1.粘结剂的特点国内外造块工作者进行粘结剂的多年研究开发工作,普遍认为粘结剂应具备下列条件:1.1改善物料成球性,提高生球、干球强度及热稳定性,在较低温度下可获得优质球团矿,改善焙烧球质量。
1.2不带入有害元素,粘结剂原料来源充足,在适宜添加量时,成本不能太高。
2.有机粘结剂理想分子模型基于对有机粘结剂在球团矿中作用的化学原理的系统研究,可以认为理想的有机粘结剂分子结构应具有以下特征[3]:2.1具有与铁精矿表面发生强烈的化学吸附作用的极性官能团。
2.2具有增强矿物表面亲水性的亲水基团。
2.3其本身链架不易断裂,具有良好的胶结性能。
当铁精矿加入有机粘结剂时,粘结剂所含的极性基与矿物表面作用,使粘结剂亲固,亲水基团伸向矿物表面外而具有强烈的亲水性,同时其有机架键具有胶接性,从而改善造球性能并提高生球强度。
3.有机粘结剂的应用现状3.1国外应用现状荷兰恩卡公司生产的佩利多(peridur)是一种高效无毒的高分子粘结剂,其聚合主体为纤维素的衍生物,以多糖分子形式存在,粘结效果优于膨润土,用量小,仅占膨润土的1/10~1/5[4]。
一种成品球团矿无人化制取样系统摘要:本文主要讲解运用机械手实现一种成品球团矿无人化制取样系统的设计,工艺流程,系统组成,以及使用实绩。
该系统是集取样、制样、分析、弃料于一体,计算机控制与检测的大型机电一体化设备,在大型球团产线上实现自动取样,自动送样,自动完成粒度、筛分指数、抗压强度测定的高度无人化功能。
高效的筛分和抗压强度测定数据系统,及时指导上道工序工艺参数调整。
关键词:球团;无人化;机械手;制取样;压溃机;筛分;引言钢铁行业正在向无人化、智能化、智慧化的工业4.0快步前进,未来将有大量工业机械手被成熟地运用在当前的全自动化、无人化钢铁生产过程中。
作为工业机械手非常重要的分支,工业机械手能按预设动作,不间断重复动作,特别适合替代简单重复的生产劳作,是提升钢铁产线全自动无人化不二选择。
为提升球团矿生产线的无人化水平,减少球团矿生产线的3D岗位接触粉尘危害风险,缩短成品球团矿筛分、抗压测定周期,我们设计了一套成品球团矿无人化在线制取样系统。
本文主要从描述系统工艺设计,系统组成及其功能要求,系统运行实绩效果验证进行阐述。
1.系统工艺设计本系统根据GB/T 10322、GB/T 14201、GB/T 8209等国家标准,设计包括取样流程、试样分配、转鼓强度样收集、筛分粒度、样品定量缩分、强度样品分拣、抗压强度测定、成分样制备等八小系统,具体工艺流程如下:1.1取样流程皮带中部自动取制样装置接收到主皮带发来的信号,在主皮带累计流量达到正常范围之内时,采样系统按事先设定的采样间隔进入自动运行,当输送流量出现异常,采样系统可暂停取样,待流量达到正常时再恢复原采样方案。
1.2试样分配取样机完成取样,每取一次所得试样为一个份样,取得的份样进一级定量缩分机中。
定量缩分机缩分出成约10kg分样,约25kg粒度样 ,约20kg转鼓强度样,剩余余为弃样送入弃料皮带机。
1.3转鼓强度样人工收集机械手抓取缩分后的转鼓强度样放置至样品缓存装置,人工定时收取。
(完整)烧结文献目录编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)烧结文献目录)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)烧结文献目录的全部内容。
1.《烧结理论与工艺》作者:唐贤容页数:425 出版日期:1992年10月第1版简介:论述了烧结过程的燃料燃烧、水分在烧结混合料中的行为、液相形成及冷凝等。
2. 《宝钢环保技术第三分册烧结环保技术》作者:冶金部宝钢环保技术编委会页数:195 出版日期:1989年3。
《烧结过程数学模型与人工智能》作者:范晓慧,王海东著页数:251 出版日期:2002简介:国家自然科学基金和高校骨干教师资助项目资助4. 《烧结》作者:唐先觉页数:380 出版日期:1984年10月第1版5. 《包钢烧结矿质量研究报告汇编》作者:包头钢铁公司北京钢铁学院页数:566。
《简易吹风法烧结》作者:韩文琦页数:106 出版日期:1976年01月第1版7。
《烧结设计参考资料》作者:《烧结设计参考资料》编写组页数:535 出版日期:1973年11月第1版8. 《矿山、冶金设备定型产品样本烧结、耐火材料及焦化设备》作者:第一机械工业部页数:174 出版日期:1973年04月第1版9. 《烧结论坛》作者:首钢矿业公司烧结厂页数:180 出版日期:2001年04月10. 《烧结矿与球团矿生产》作者:王悦祥主编页数:254 出版日期:2006.07简介:高职高专规划教材:本书内容包括含铁原料烧结矿、球团矿的烧结原理、生产工艺和主体设备以及实验研究和产品质量检验方法等.11。
《英汉烧结球团专业词汇》作者:袁文彬页数:283 出版日期:1983年03月第1版12。
智慧烧结关键技术研究与应用智慧烧结是一种先进的烧结技术,通过引入智能化和信息化手段,结合烧结过程的特点和需求,实现对烧结过程的精确控制和优化,从而提高产品质量和生产效率。
本文将从智慧烧结的概念、关键技术和应用领域等方面进行探讨。
一、智慧烧结的概念智慧烧结是指利用现代信息技术、自动化技术和控制技术,对烧结过程进行智能化管理和控制的一种方法。
它通过传感器、数据采集系统、智能控制系统等设备,实时监测和获取烧结过程中的各项参数,并根据预先设定的控制策略进行实时调整,以达到最佳烧结效果。
二、智慧烧结的关键技术1. 传感器技术:传感器是智慧烧结的基础,用于实时监测烧结过程中的温度、压力、湿度等参数。
目前常用的传感器包括温度传感器、压力传感器、湿度传感器等,它们能够准确地获取烧结过程中的各项参数,为后续的控制提供数据支持。
2. 数据采集与处理技术:通过数据采集系统,将传感器获取的数据进行采集和处理,形成可用于分析和控制的数据。
数据采集与处理技术的主要任务是对原始数据进行滤波、去噪和校正等处理,以提高数据的准确性和可靠性。
3. 智能控制技术:智能控制技术是智慧烧结的核心,它通过对烧结过程中的各项参数进行分析和判断,实现对烧结过程的自动控制。
常用的智能控制技术包括PID控制、模糊控制、神经网络控制等,它们能够根据实时的烧结数据,调整烧结设备的工作状态,以实现烧结过程的优化。
4. 数据分析与优化技术:通过对烧结过程中的数据进行分析和优化,可以找出影响烧结质量的关键因素,从而优化烧结工艺和参数设定。
常用的数据分析与优化技术包括统计分析、回归分析、优化算法等,它们能够帮助研究人员找到最佳的烧结工艺,提高产品的质量和产量。
三、智慧烧结的应用领域智慧烧结技术在许多领域都有广泛的应用,以下是几个典型的应用领域:1. 陶瓷材料制备:智慧烧结技术可以应用于陶瓷材料的制备过程中,通过对烧结工艺和参数进行优化,提高陶瓷制品的致密度和力学性能。
智慧烧结关键技术研究与应用智慧烧结是一种先进的制造技术,它将传统的烧结工艺与智能化技术相结合,为材料制备和工业生产带来了革命性的变革。
在智慧烧结技术的应用下,传统的烧结工艺得到了优化和升级,使得材料的制备更加高效、精确和可控。
智慧烧结关键技术的研究与应用已经在多个领域取得了显著的成果,为材料科学和工业生产提供了新的发展机遇。
第一,智慧烧结技术的研究使得烧结工艺更加高效和节能。
传统的烧结工艺往往需要长时间的高温处理,耗能量大,而智慧烧结技术通过精确控制温度、压力和时间等参数,实现了烧结过程的优化。
例如,研究人员通过模拟和优化算法,改进了烧结温度和保温时间的控制策略,使得烧结过程更加高效和节能。
第二,智慧烧结技术的研究使得材料的制备更加精确和可控。
传统的烧结工艺往往受到工艺参数的限制,导致材料的制备存在一定的不确定性。
而智慧烧结技术通过利用传感器和控制系统,实时监测和调节烧结过程中的温度、气氛和压力等参数,实现了对材料制备过程的精确控制。
例如,研究人员通过智能化的控制系统,实现了对烧结过程中材料的晶粒尺寸、相组成和物理性能等的精确控制。
第三,智慧烧结技术的研究使得材料的性能和品质得到了提升。
传统的烧结工艺往往存在着材料的颗粒粒径分布不均匀、晶粒长大不完全和杂质含量较高等问题,而智慧烧结技术通过优化烧结工艺和控制参数,实现了材料性能和品质的提升。
例如,研究人员通过调节烧结工艺和添加适量的助剂,实现了对材料颗粒的均匀分布和晶粒的完全长大,从而提高了材料的力学性能和导电性能。
第四,智慧烧结技术的研究为材料的多功能化和复合化提供了新的途径。
传统的烧结工艺往往只能制备单一功能的材料,而智慧烧结技术通过控制烧结过程中的温度和气氛等参数,实现了材料的多功能化和复合化。
例如,研究人员通过调节烧结工艺和添加不同种类的助剂,实现了对材料的多相复合和功能调控,从而实现了材料的多功能化应用。
智慧烧结关键技术的研究与应用为材料制备和工业生产带来了革命性的变革。