控制系统中的根轨迹分析与设计
- 格式:docx
- 大小:37.11 KB
- 文档页数:2
实验五基于MATLAB控制系统的根轨迹及其性能分析一、实验目的1、熟练掌握使用MATLAB绘制控制系统零极点图和根轨迹图的方法。
2、学会分析控制系统根轨迹的一般规律。
3、利用根轨迹图进行系统性能分析。
4、研究闭环零、极点对系统性能的影响。
二、实验原理1、根轨迹与稳定性当系统开环增益从变化时,若根轨迹不会越过虚轴进入s右半平面,那么系统对所有的K 值都是稳定的;若根轨迹越过虚轴进入s右半平面,那么根轨迹与虚轴交点处的K值,就是临界开环增益。
应用根轨迹法,可以迅速确定系统在某一开环增益或某一参数下的闭环零、极点位置,从而得到相应的闭环传递函数。
2、根轨迹与系统性能的定性分析1)稳定性。
如果闭环极点全部位于s左半平面,则系统一定是稳定的,即稳定性只与闭环极点的位置有关,而与闭环零点位置无关。
2)运动形式。
如果闭环系统无零点,且闭环极点为实数极点,则时间响应一定是单调的;如果闭环极点均为复数极点,则时间响应一般是振荡的。
3)超调量。
超调量主要取决于闭环复数主导极点的衰减率,并与其它闭环零、极点接近坐标原点的程度有关。
4)调节时间。
调节时间主要取决于最靠近虚轴的闭环复数极点的实部绝对值;如果实数极点距虚轴最近,并且它附近没有实数零点,则调节时间主要取决于该实数极点的模值。
5)实数零、极点影响。
零点减小闭环系统的阻尼,从而使系统的峰值时间提前,超调量增大;极点增大闭环系统的阻尼,使系统的峰值时间滞后,超调量减小。
而且这种影响将其接近坐标原点的程度而加强。
三、实验内容1、绘制系统的零极点图直接在s 复平面上绘制系统对应的零极点位置,极点用“×”表示,零点用“○”表示。
例1、已知系统的开环传递函数,绘制系统的零极点图。
《图5》22s 5s 5G(s)H(s)s(s 1)(s 2s 2)++=+++2、绘制控制系统的根轨迹图并分析根轨迹的一般规律例2、若已知系统开环传递函数,绘制控制系统的根轨迹图,并分析根轨迹的一般规律。
实验四 控制系统的根轨迹分析一. 实验目的:1. 学习利用MATLAB 语言绘制控制系统根轨迹的方法。
2. 学习利用根轨迹分析系统的稳定性及动态特性。
二. 实验内容:1. 应用MATLAB 语句画出控制系统的根轨迹。
2. 求出系统稳定时,增益K 的范围。
3. 实验前利用图解法画出系统的根轨迹,算出系统稳定的增益范围,与实测值相比较。
4. 应用SIMULINK 仿真工具,建立闭环系统的实验方块图进行仿真。
观察不同增益下系统的阶跃响应,观察闭环极点全部为实数时响应曲线的形状;有共轭复数时响应曲线的形状。
(实验方法参考实验二)5. 分析系统开环零点和极点对系统稳定性的影响。
三. 实验原理:根轨迹分析法是由系统的开环传递函数的零极点分布情况画出系统闭环根轨迹,从而确定增益K 的稳定范围等参数。
假定某闭环系统的开环传递函数为)164)(1()1()()(2++-+=s s s s s K s H s G 利用MATLAB 的下列语句即可画出该系统的根轨迹。
b=[1 1]; %确定开环传递函数的分子系数向量a1=[l 0]; %确定开环传递函数的分母第一项的系数a2=[l -1]; %确定开环传递函数的分母第二项的系数a3=[l 4 16]; %确定开环传递函数的分母第三项的系数a=conv(al ,a2); %开环传递函数分母第一项和第二项乘积的系数 a=conv(a ,a3); %分母第一项、第二项和第三项乘积的系数 rlocus(b,a) %绘制根轨迹,如图(4-l )所示。
p=1.5i ; % p 为离根轨迹较近的虚轴上的一个点。
[k ,poles]=rlocfind(b ,a ,p) %求出根轨迹上离p 点很近的一个根及所对应的增益K 和其它三个根。
K=22.5031, poles= -1.5229+2.7454i -1.5229-2.7454i0.0229+1.5108i 0.0229-1.5108i再令p=1.5108i ,可得到下面结果:k=22.6464, poles=-1.5189+2.7382i -1.5189-2.7382i0.0189+1.5197i 0.0189-1.5197i再以此根的虚部为新的根,重复上述步骤,几步后可得到下面的结果: k=23.316, poles=-1.5000+2.7040i -1.5000-2.7040i0.0000+1.5616i 0.0000-1.5616i这就是根轨迹由右半平面穿过虚轴时的增益及四个根。
根轨迹法的课程设计一、课程目标知识目标:1. 让学生掌握根轨迹法的概念、原理和应用范围;2. 使学生理解根轨迹法在系统稳定性分析中的重要性;3. 引导学生运用根轨迹法分析控制系统性能,并能绘制根轨迹图;4. 帮助学生掌握根据根轨迹图判断系统稳定性的方法。
技能目标:1. 培养学生运用根轨迹法分析实际控制系统的能力;2. 提高学生绘制根轨迹图、判断系统稳定性的技巧;3. 培养学生运用数学软件(如MATLAB)辅助根轨迹分析的能力。
情感态度价值观目标:1. 培养学生对自动控制理论的学习兴趣,激发学生探索科学问题的热情;2. 培养学生团队合作精神,学会倾听他人意见,尊重他人成果;3. 增强学生面对复杂问题时的分析、解决问题的信心,培养勇于克服困难的品质。
课程性质:本课程为自动控制理论课程的一部分,旨在帮助学生掌握根轨迹法这一重要的稳定性分析方法。
学生特点:学生已具备一定的控制系统基础知识,具有一定的数学基础和分析能力。
教学要求:结合学生特点和课程性质,将课程目标分解为具体的学习成果,通过理论讲解、案例分析、上机实践等教学手段,使学生在理解根轨迹法的基础上,能够将其应用于实际控制系统的分析。
同时,注重培养学生的实际操作能力和团队合作精神,提高学生的综合素质。
二、教学内容1. 引入根轨迹法的基本概念,阐述其在控制系统稳定性分析中的作用;2. 讲解根轨迹法的原理,包括根轨迹的定义、绘制方法及其与系统稳定性的关系;3. 介绍根轨迹图的绘制步骤,结合教材实例进行分析;- 确定系统的开环传递函数;- 求解开环极点、零点;- 应用根轨迹规则,绘制根轨迹图;- 分析根轨迹图与系统稳定性的关系。
4. 分析不同控制系统参数变化对根轨迹的影响,探讨参数变化对系统稳定性的影响;5. 介绍利用根轨迹法进行控制系统性能优化,包括调整系统参数以改善稳定性;6. 结合实际案例,运用根轨迹法进行控制系统分析,提高学生解决实际问题的能力;7. 使用数学软件(如MATLAB)辅助根轨迹分析,让学生掌握相关软件操作技巧。
根轨迹实验报告根轨迹实验报告引言:根轨迹是控制系统理论中的一个重要概念,它描述了系统在参数变化下的稳定性和响应特性。
本实验旨在通过实际操作和数据分析,深入理解根轨迹的原理和应用。
通过对比不同系统的根轨迹,可以更好地理解系统的稳定性和控制性能。
一、实验目的本实验的目的是通过实际操作和数据分析,加深对根轨迹的理解,掌握根轨迹的绘制方法和分析技巧。
同时,通过对比不同系统的根轨迹,分析系统参数对根轨迹的影响,进一步认识系统的稳定性和控制性能。
二、实验装置与方法实验所需的装置包括控制系统实验台、计算机和相应的控制软件。
实验过程中,首先将系统接入实验台,通过控制软件设置系统参数,然后进行数据采集和分析。
根据实验要求,可以改变系统参数、增加干扰等,观察根轨迹的变化。
三、实验结果与分析在实验过程中,我们分别绘制了不同系统的根轨迹,并进行了数据分析。
通过观察根轨迹的形状和位置,我们可以判断系统的稳定性和响应特性。
以一个简单的一阶系统为例,我们改变了系统的比例增益和时间常数,绘制了对应的根轨迹。
通过观察根轨迹的位置和形状,我们可以发现以下规律:当比例增益增大时,根轨迹向左移动,系统的稳定性增强;当时间常数增大时,根轨迹变得更加平缓,系统的响应速度变慢。
在另一个二阶系统的实验中,我们改变了系统的阻尼比和自然频率,绘制了对应的根轨迹。
通过观察根轨迹的形状和分布,我们可以得出以下结论:当阻尼比增大时,根轨迹变得更加收敛,系统的稳定性提高;当自然频率增大时,根轨迹变得更加散布,系统的响应速度增加。
通过对比不同系统的根轨迹,我们可以进一步分析系统的稳定性和控制性能。
例如,当两个系统的根轨迹重合或者相似,可以认为它们具有相似的稳定性和响应特性;而当根轨迹相交或者离散较大时,可能存在系统不稳定或者不良的控制性能。
四、实验总结通过本次实验,我们深入了解了根轨迹的原理和应用。
通过实际操作和数据分析,我们掌握了根轨迹的绘制方法和分析技巧。
自动控制原理实验报告实验题目:线性系统的根轨迹班级:学号:姓名:指导老师:实验时间:一、实验目的1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。
2. 利用MATLAB 语句绘制系统的根轨迹。
3. 掌握用根轨迹分析系统性能的图解方法。
4. 掌握系统参数变化对特征根位置的影响。
二、实验内容同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围。
2.1绘制下面系统的根轨迹曲线)136)(22()(22++++=s s s s s Ks G程序:G=tf([1],[1 8 27 38 26 0]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统 step(G_c) %绘制闭环系统的阶跃响应曲线-12-10-8-6-4-20246-10-8-6-4-20246810Root LocusReal AxisI m a g i n a r y A x i s0204060801001201400.10.20.30.40.50.60.70.80.91Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围:K>28.74252.2绘制下面系统的根轨迹曲线)10)(10012)(1()12()(2+++++=s s s s s K s G 程序:G=tf([1 12],[1 23 242 1220 1000]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统 step(G_c) %绘制闭环系统的阶跃响应曲线-60-50-40-30-20-100102030-50-40-30-20-1001020304050Root LocusReal AxisI m a g i n a r y A x i s01234560.0020.0040.0060.0080.010.012Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围: K>1.1202e+032.3绘制下面系统的根轨迹曲线)11.0012.0)(10714.0()105.0()(2++++=s s s s s K s G 程序:G=tf([5 100],[0.08568 1.914 17.14 100 0]); rlocus (G); %绘制系统的根轨迹[k,r]=rlocfind(G) %确定临界稳定时的增益值k 和对应的极点r G_c=feedback(G,1); %形成单位负反馈闭环系统step(G_c) %绘制闭环系统的阶跃响应曲线-60-50-40-30-20-10010203040-60-40-200204060Root LocusReal AxisI m a g i n a r y A x i s012345670.10.20.30.40.50.60.70.80.91Step ResponseTime (sec)A m p l i t u d e得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围:K> 7.8321根据实验结果分析根轨迹的绘制规则:⑴绘制根轨迹的相角条件与系统开环根轨迹增益 值的大小无关。
自动控制原理根轨迹法自动控制原理是现代工程技术中的重要分支,它涉及到机械、电子、计算机等多个领域。
而根轨迹法则是自动控制原理中的一种重要方法,它可以用来分析和设计控制系统,提高系统的稳定性和性能。
本文将从根轨迹法的基本原理、应用场景和优缺点三个方面进行介绍。
一、基本原理根轨迹法是一种基于极点和零点的控制系统分析方法。
在根轨迹图中,系统的极点和零点被表示为一条曲线,称为根轨迹。
根轨迹图可以用来分析系统的稳定性、响应速度和稳态误差等性能指标。
根轨迹法的基本原理是通过改变系统的参数,使得根轨迹图在复平面上移动,从而实现对系统性能的优化。
二、应用场景根轨迹法可以应用于各种控制系统的设计和分析中。
例如,在电机控制系统中,根轨迹法可以用来分析电机的转速响应和负载扰动对系统的影响。
在飞行控制系统中,根轨迹法可以用来设计飞机的自动驾驶系统,提高飞机的稳定性和飞行性能。
在机器人控制系统中,根轨迹法可以用来设计机器人的运动控制系统,实现机器人的精确控制和运动规划。
三、优缺点根轨迹法的优点是可以直观地表示系统的稳定性和性能指标,便于工程师进行控制系统的设计和分析。
此外,根轨迹法还可以用来分析系统的鲁棒性和鲁棒稳定性,提高系统的抗干扰能力和鲁棒性。
但是,根轨迹法也存在一些缺点,例如对于高阶系统,根轨迹法的计算复杂度较高,需要使用计算机进行计算。
此外,根轨迹法也无法处理非线性系统和时变系统,需要使用其他方法进行分析和设计。
总之,根轨迹法是自动控制原理中的一种重要方法,可以用来分析和设计各种控制系统。
在实际工程中,工程师需要根据具体的应用场景和系统要求,选择合适的控制方法和算法,实现对系统的优化和控制。
自动控制原理根轨迹法总结
【根轨迹法概述】
-根轨迹法是分析线性时不变系统稳定性和动态性能的一个重要工具。
它通过在复平面上绘制闭环极点随系统参数变化的轨迹来实现。
【根轨迹法的基本原理】
1. 定义与目的:
-根轨迹是系统开环增益变化时,闭环极点在s平面上的轨迹。
-主要用于分析系统稳定性和设计控制器参数。
2. 绘制原则:
-根据系统开环传递函数,确定轨迹的起点和终点,分支点,穿越虚轴的点等。
-利用角度判据和幅值判据确定根轨迹。
【根轨迹法的应用】
1. 系统稳定性分析:
-根据闭环极点的位置判断系统的稳定性。
-极点在左半平面表示系统稳定,右半平面表示不稳定。
2. 控制器设计:
-调整控制器参数(如比例增益、积分时间常数、微分时间常数等),使根轨迹满足性能指标要求。
-确定合适的开环增益,使闭环系统具有期望的动态性能和稳定裕度。
【根轨迹法的优势与局限性】
-优势:直观、便于分析系统特性,特别是在控制器设计中。
-局限性:仅适用于线性时不变系统,对于非线性或时变系统不适用。
【实践中的注意事项】
-在绘制根轨迹时,应仔细考虑系统所有极点和零点的影响。
-必须结合其他方法(如奈奎斯特法、波特法等)进行综合分析。
【结语】
-根轨迹法是自动控制领域中一种非常有效的工具,对于理解和设计复杂控制系统具有重要意义。
-掌握根轨迹法,能够有效地指导实际的控制系统设计和分析。
编制人:_____________________
日期:_____________________。
一、实验目的1. 熟悉控制系统根轨迹的基本概念和绘制方法。
2. 掌握利用MATLAB软件绘制和分析控制系统根轨迹的方法。
3. 通过根轨迹分析,了解系统参数变化对系统性能的影响。
4. 培养实验操作能力和数据处理能力。
二、实验原理根轨迹是指当系统的某一参数(如开环增益K)从0变化到无穷大时,闭环系统的特征根在s平面上的变化轨迹。
通过分析根轨迹,可以了解系统在参数变化时的稳定性、瞬态响应和稳态误差等性能。
三、实验设备1. 计算机2. MATLAB软件3. 控制系统实验箱四、实验内容1. 绘制控制系统根轨迹(1)首先,根据实验要求,搭建控制系统的数学模型。
(2)利用MATLAB中的rlocus函数绘制系统的根轨迹。
(3)观察根轨迹的变化规律,分析系统在不同参数下的稳定性。
2. 分析系统性能(1)根据根轨迹,确定系统的稳定裕度,包括增益裕度和相位裕度。
(2)分析系统在不同参数下的瞬态响应,如上升时间、调整时间、超调量等。
(3)分析系统在不同参数下的稳态误差,如稳态误差和稳态误差系数。
3. 改变系统参数,观察根轨迹变化(1)改变系统的参数,如增益、时间常数等。
(2)重新绘制根轨迹,观察根轨迹的变化规律。
(3)分析系统参数变化对系统性能的影响。
五、实验结果与分析1. 绘制控制系统根轨迹(1)根据实验要求,搭建控制系统的数学模型,得到开环传递函数。
(2)利用MATLAB中的rlocus函数绘制系统的根轨迹。
(3)观察根轨迹的变化规律,分析系统在不同参数下的稳定性。
2. 分析系统性能(1)根据根轨迹,确定系统的稳定裕度,包括增益裕度和相位裕度。
(2)分析系统在不同参数下的瞬态响应,如上升时间、调整时间、超调量等。
(3)分析系统在不同参数下的稳态误差,如稳态误差和稳态误差系数。
3. 改变系统参数,观察根轨迹变化(1)改变系统的参数,如增益、时间常数等。
(2)重新绘制根轨迹,观察根轨迹的变化规律。
(3)分析系统参数变化对系统性能的影响。
控制系统中的根轨迹分析与设计控制系统是现代工程中不可或缺的一部分,它涉及到各个领域的应用,从机械工程到化学工程,从航空航天到电力系统。
控制系统的设计和分析对于系统的稳定性和性能至关重要。
在控制系统中,根轨迹分析和设计是一种常用的方法,它能够帮助工程师评估和改进系统的性能。
根轨迹是一个闭环系统的极点随着控制器增益变化而形成的运动路径。
通过根轨迹分析,我们可以得到有关系统性能和稳定性的重要信息。
根轨迹分析可以帮助我们确定控制器的增益范围,以确保系统稳定。
此外,根轨迹还可以提供关于系统的阻尼比、峰值时间和超调量等性能指标的信息。
在根轨迹分析中,我们需要首先确定系统的传递函数。
传递函数是一个数学模型,它描述了输入和输出之间的关系。
常见的传递函数形式包括一阶系统、二阶系统和高阶系统。
一阶系统的传递函数形式为G(s) = K/(sT+1),其中K表示系统的增益,T表示系统的时间常数。
对于二阶系统,传递函数形式为G(s) = K/(s^2+2ξω_ns+ω_n^2),其中K 表示系统的增益,ξ表示系统的阻尼比,ω_n表示系统的自然频率。
在根轨迹分析中,我们还可以利用极点和零点的特性来确定系统的性能。
极点是传递函数的根,它们决定了系统的稳定性。
当极点位于左半平面时,系统是稳定的;当极点位于右半平面时,系统是不稳定的。
零点是传递函数的分子根,它们决定了系统的频率响应。
通过分
析极点和零点的位置,我们可以确定系统的性能,并设计适当的控制器。
根轨迹分析的结果可以用于系统的设计和优化。
在设计控制系统时,我们可以根据根轨迹的形状和位置来调整控制器的增益和参数。
通过
改变控制器的增益,我们可以移动根轨迹,使系统的稳定性和性能得
到改善。
此外,根轨迹还可以用于确定合适的控制策略,例如比例控制、积分控制和微分控制。
除了根轨迹分析,我们还可以利用根轨迹设计方法来设计控制系统。
根轨迹设计方法是一种基于根轨迹分析的控制器设计方法。
通过在根
轨迹上确定一个所期望的闭环系统极点的位置,我们可以确定控制器
的增益和参数。
通过根轨迹设计方法,我们可以设计出满足系统要求
的稳定性和性能的控制器。
总之,控制系统中的根轨迹分析与设计是一种重要的工程方法。
它
可以帮助工程师评估和改进系统的性能,确保系统的稳定性。
通过根
轨迹分析和设计,我们可以确定合适的控制器增益和参数,提高系统
的性能和鲁棒性。
掌握根轨迹分析与设计方法,对于控制系统的设计
和优化具有重要的意义。
在日常工程实践中,我们应该善于运用根轨
迹分析与设计方法,以提高系统的可控性和稳定性。