肝微粒体的制备
- 格式:docx
- 大小:37.07 KB
- 文档页数:2
洛克沙胂对猪肝微粒体CYP3A4及CYP2E1蛋白的影响蒋美琳;李银生;赵春;鲁晓旭;周新初;王秀红;邱江平;艾晓杰【摘要】洛克沙胂是一种常用的饲料添加药物,细胞色素P450酶系(CYP或P450)是动物体内药物代谢的主要酶类.本文研究了洛克沙胂对猪肝微粒体P450酶系中的2种酶CYP3A4和CYP2E1的蛋白表达的影响,为揭示该药的代谢机理、残留机制以及临床安全用药提供理论依据.实验将洛克沙胂以5、25和125 mmol/L 3个剂量,分别添加到猪肝微粒体体外孵育体系中,以生理盐水作对照,于37℃孵育1h,测定微粒体蛋白含量及CYP3A4及2E1的蛋白表达.结果表明中剂量和高剂量的洛克沙胂对猪肝细胞微粒体的CYP3A4及2E1的蛋白表达均呈现抑制作用,而低剂量的洛克沙胂对CYP3A4和CYP2E1的蛋白表达影响很小.【期刊名称】《上海交通大学学报(农业科学版)》【年(卷),期】2015(033)004【总页数】6页(P38-42,52)【关键词】洛克沙胂;CYP3A4;CYP2E1;猪肝微粒体;Western blot【作者】蒋美琳;李银生;赵春;鲁晓旭;周新初;王秀红;邱江平;艾晓杰【作者单位】上海交通大学农业与生物学院,上海200240;上海市兽医生物技术重点实验室,上海200240;上海交通大学农业与生物学院,上海200240;上海交通大学农业与生物学院,上海200240;上海交通大学农业与生物学院,上海200240;上海交通大学农业与生物学院,上海200240;上海交通大学农业与生物学院,上海200240;上海交通大学农业与生物学院,上海200240;上海交通大学农业与生物学院,上海200240;上海市兽医生物技术重点实验室,上海200240【正文语种】中文【中图分类】S859.791细胞色素P450酶系(cytochrome P450 enzymes,CYP450.CYP)是一类参与机体内内源性和外源性物质以及药物代谢的血红蛋白酶类,在调节机体与外环境的相互作用以及保持机体内环境的稳态中起着重要作用[1]。
肝微粒体的制备肝微粒体是细胞内的一种重要细胞器,其具有多种生物合成和代谢功能。
为了研究肝微粒体的结构和功能,科学家们开展了一系列的制备方法。
肝微粒体的制备方法主要包括离心法、差速离心法和梯度离心法。
离心法是最常用的制备方法之一。
首先需要从动物或人体中提取肝脏组织,然后将组织切碎并加入缓冲液。
接下来,用离心机对混合物进行离心,使得细胞器按照密度分层。
通过不同离心速度和离心时间的调节,可以分离出肝微粒体。
差速离心法是离心法的一种改进方法。
该方法利用不同细胞器的密度差异,通过多次离心来进一步分离纯净的肝微粒体。
首先,将组织切碎并加入缓冲液进行离心,得到一个粗制的肝微粒体上清液。
然后,将上清液进行再离心,获得更纯净的肝微粒体。
通过多次离心,可以得到更高纯度的微粒体。
梯度离心法是一种更为精细的制备方法。
该方法利用不同密度的梯度溶液,通过离心使得细胞器分层。
首先,制备不同浓度的梯度溶液,然后将组织切碎并加入梯度溶液。
接下来,用离心机对混合物进行离心,使得细胞器按照密度分层。
通过调节离心速度和时间,可以分离出纯净的肝微粒体。
肝微粒体的制备方法选择取决于研究的目的和需要。
离心法简单易行,适用于初步的制备。
差速离心法和梯度离心法需要更多的技术和设备支持,但可以得到更高纯度的肝微粒体。
在肝微粒体的制备过程中,需要注意以下几点。
首先,组织的采集和处理需要在低温和无氧条件下进行,以保持微粒体的完整性和活性。
其次,离心速度和时间的选择应根据具体实验要求进行调整,以获得最佳的分离效果。
此外,在制备过程中,需要注意避免污染和交叉感染,以确保实验结果的准确性和可靠性。
肝微粒体的制备是研究肝细胞生物学和代谢过程的重要工具。
离心法、差速离心法和梯度离心法是常用的制备方法,选择适合的方法可以得到纯净的肝微粒体。
在实验过程中,需要注意操作技巧和实验条件的控制,以确保制备的微粒体质量和纯度。
通过这些制备方法,科学家们可以更深入地研究肝微粒体的结构和功能,为相关疾病的治疗和药物研发提供理论基础。
2.1.3 大鼠肝微粒体的制备大鼠肝微粒体制备全过程:1.购买实验动物SD 大鼠,20 只,雌雄各半,体重(180-220)g,广州中医药大学实验动物中心提供。
合格证号:00557062.大鼠肝脏灌流购买的大鼠当天腹腔注射3%戊巴比妥钠(30 mg·kg-1 ),使其麻醉,利用酒精进行常规消毒后,打开腹腔暴露肝脏,肝门静脉处进行插管并固定。
结扎上腔静脉,剪破下腔静脉用磷酸盐缓冲液进行灌流,直至肝脏颜色呈土黄色。
3.灌流好的肝脏取出后按1:4 比例放入装有磷酸盐缓冲液(含1mMEDTA ,0.25M 蔗糖)的匀浆管内,剪碎,匀浆。
4.将匀浆液倒入50mL 高速离心管中在4℃条件下9000g 离心20 min。
5.保留上清并转移到超速离心管中,在4℃条件下100000g 离心60min。
6.保留沉淀并重新混悬于磷酸盐缓冲液(含0.9%的NaCL)中, 4℃条件下100000g 再离心60 min,得到的沉淀即为肝微粒体。
7.将肝微粒体重悬于0.1M 磷酸缓冲液(PH7.4,20%甘油,1mM EDTA,0.25M 蔗糖)中于-70℃冰箱保存,其中留取一小管用于蛋白浓度测定。
8.微粒体蛋白浓度测定依据的是Lowry et. al.方法(Lowry et al.,1951),首先用牛血清白蛋白标准溶液配置成不同浓度的蛋白标准溶液,与斐林试剂混匀发生反应后测定蛋白浓度,根据吸光度A 和蛋白浓度C 进行线性回归并绘制标准曲线。
同样的方法测定肝微粒体的吸光度,根据标准曲线线性回归方程计算肝微粒体蛋白浓度。
9.肝微粒体中P450 酶含量测定根据Omura and Sato 的方法(Omura and Sato,1964),用Tris-HCl 缓冲液把肝微粒体样品稀释至0.3−0.5 mg/mL,取两份肝微粒体分别放于参比池和样品池,400 nm~500 nm 扫描基线;参比池和样品池都加入少量Na2S2O4,轻微搅拌,并给样品池通CO 气体30 s,再次扫描,记录450 nm 和490 nm 处的吸光度,按Beer 定律(公式2.1)计算CYP450 的含量。
体外肝代谢系统【摘要】肝药酶在药物代谢中具有十分重要的作用。
对肝药酶的研究方法中,以动物肝脏或肝细胞为基础,构建体外肝代谢系统是体外代谢研究中最重要的环节之一。
对体外肝代谢的研究,主要是利用肝微粒体、基因重组CYP450酶系、肝细胞培养、肝组织切片及离体肝灌流系统等方法。
本文综述近年国内外所应用的不同体外肝代谢系统,并对各体外代谢研究方法进行比较,指出根据各系统的特性、不同的实验要求和目的,选择适当的研究方法的重要性。
【关键词】细胞色素P450酶;肝微粒体;肝细胞培养;肝组织切片;离体肝灌流药物代谢一般是指药物的生物转化。
药物经生物转化后,可引起药物的药理活性或∕和毒理活性的改变。
因此,研究药物的生物转化,明确其代谢过程,对新药开发、新剂型设计及制定合理的临床用药方案等方面都具有重要的指导意义。
肝脏是药物生物转化的重要器官,含有参与药物代谢重要的酶系组成,主要有CYP1、CYP2、CYP3三大家族[1]。
本文所介绍的各种体外代谢系统均含有一种或多种CYP450酶的同工酶,为研究药物体外代谢提供了研究的对象和基础。
动物肝体外代谢研究可以较好地排除体内因素干扰,直接观察酶对底物代谢的选择性,为整体试验提供可靠的科学依据。
以肝脏为基础的体外代谢系统主要包括肝微粒体、基因重组CYP450酶系、肝细胞、肝组织切片及离体肝灌流。
1肝微粒体肝微粒体的制备多数采用差速离心法[2],通过高速离心使微粒体与其他成分分离,操作简单,无需其他试剂辅助。
但较耗时,设备要求高,使该法的普及和深入研究受到一定的限制。
针对这些情况,可采用试剂辅助分离的方法[3],在离心前额外加入一定比例的PEG6000或CaCl2,促进微粒体沉降。
此法对设备要求降低,并缩短了实验周期。
肝微粒体的制备过程均应在4℃下进行。
正确、合理地选择缓冲液,能起到良好介质的作用,按比例加入后进行肝组织的破碎和匀浆,才可有效分离肝微粒体和避免细胞器受损。
肝微粒体的主要应用测定CYP450酶活性测定原理是在特定酶催化下,底物在辅助因子以及适合的温度、时间作用下反应,借助仪器测定生成的特定产物量。
肝微粒体代谢肝微粒体代谢是指在肝细胞内的微粒体内进行的代谢活动。
微粒体是一种细胞内的膜包被结构,是肝细胞中重要的代谢活动场所,具有氧化、解毒、合成、分解等多种代谢酶。
本文将从微粒体的结构与功能,细胞色素P450系统、柠檬酸循环等方面对肝微粒体的代谢进行详细介绍。
一、微粒体的结构与功能微粒体是一个直径约0.2~1μm的球形膜包被,由内部核心区域和外部透明区域两部分组成。
核心区域内含有许多含有酶活性的颗粒,称为微半滤泡,是微粒体的重要机能部位。
微半滤泡内含有氧化酶、脱氢酶、羧化酶等多种代谢酶,可以进行多种代谢反应,使微粒体成为肝细胞中重要的代谢活动场所。
透明区域内除了蛋白质外,还含有磷脂、胆固醇和三酰甘油等物质。
微粒体主要有以下3个功能:1. 氧化功能:微粒体内含有多种氧化酶和其他辅助酶,可以将一些有机物质氧化为产生能量或生成活性物质,如柠檬酸循环中的α-酮戊二酸脱氢酶、丙酮酸酸激酶、甘油酸磷酸酰转移酶等。
2. 解毒功能:微粒体内含有许多解毒酶,如γ-谷氨酰转移酶、酰转移酶、羟醛脱氢酶、过氧化氢酶和催化酶等,可以将入侵机体的毒素和代谢产物脱除或转化成水溶性物质,有利于排泄出体外。
3. 合成与分解功能:微粒体内含有许多酶,可以合成各种胆固醇、激素、脂肪酸等物质,并降解体内各种废弃物质,如脂肪酸代谢产物、血红蛋白等。
二、细胞色素P450系统细胞色素P450(cytochrome P450,CYP)是微粒体内最重要的催化酶之一,是许多生物合成和降解反应的关键酶系统。
细胞色素P450酶目前已发现有很多种,分布于不同的组织和细胞。
其中的一部分是肝细胞内的酶,被称为肝微粒体细胞色素P450酶系统。
该系统被认为是微粒体最重要的代谢系统之一,参与了人体内许多生物活性物质的合成和代谢。
1. CYP酶的特点CYP酶是一类蛋白质催化酶,分子量约50 kDa,含有一个有着630~700 nm吸收峰的铁血红素分子,这就是著名的色素P450。
肝微粒体制备1. 简介肝微粒体(mitochondria)是细胞中的一种细胞器,主要负责细胞内能量的产生和调节。
肝微粒体制备是一种常用的实验技术,用于研究肝脏中微粒体的结构和功能。
本文将介绍肝微粒体制备的步骤和相关实验方法。
2. 肝微粒体制备步骤2.1 器材准备•洗涤缓冲液:含有0.25 M 蔗糖、10 mM Tris-HCl(pH 7.4)、1 mM EDTA 和0.1% BSA的缓冲液。
•离心管:用于离心过程。
•显微镜滑片:用于观察制备得到的肝微粒体。
2.2 肝脏取材•将新鲜动物(如小鼠)的肝脏取出,并放入冰冻盒中保持低温。
•快速切碎肝脏组织,以避免氧化酶的活性降低。
2.3 组织匀浆•将切碎后的肝脏组织加入洗涤缓冲液中。
•使用均质机将组织匀浆,以破碎细胞膜和释放肝微粒体。
2.4 离心分离•将匀浆后的混合液离心10分钟,以去除未破碎的细胞碎片和细胞核。
•将上清液转移到新的离心管中,并进行第二次离心,以沉淀肝微粒体。
2.5 肝微粒体收集•将离心得到的沉淀用洗涤缓冲液悬浮。
•用洗涤缓冲液洗涤肝微粒体,以去除杂质。
•最后一次离心后,将上清液倒掉,保留沉淀中的肝微粒体。
3. 肝微粒体制备相关实验方法3.1 蛋白含量测定•使用Bradford方法或BCA方法测定制备得到的肝微粒体中蛋白质的含量。
•根据实验需要调整蛋白质的浓度。
3.2 肝微粒体功能检测•使用荧光探针(如JC-1)检测肝微粒体的膜电位。
•使用呼吸链底物(如琥珀酸、NADH)测定肝微粒体的呼吸功能。
3.3 肝微粒体结构观察•使用透射电子显微镜观察制备得到的肝微粒体的形态和结构。
•准备样品时要注意避免溶剂残留和样品的干燥。
4. 结论肝微粒体制备是一种重要的实验技术,用于研究肝脏中微粒体的结构和功能。
通过合理的步骤和实验方法,可以成功制备得到高质量的肝微粒体,并进一步开展相关实验研究。
了解肝微粒体的制备过程对于深入理解细胞内能量代谢和调节机制具有重要意义。
双峰驼肝微粒体的制备及 CYP1A 酶活性检测何兴瀚;张文彬;哈斯苏荣【摘要】为研究双峰驼细胞色素氧化酶1A(CYP1A)的体外活性,首先采用差速离心法制备双峰驼肝微粒体,并用 BCA 法测定其蛋白浓度;然后采用 CO 还原差示光谱法分别测定 CYP 总酶含量和细胞色素 b5含量;最后通过 CYP1A 酶对7-乙氧基香豆素的脱羟基作用评价其体外活性。
结果表明,所制备的双峰驼肝微粒体悬液蛋白浓度为1.652 mg/g±0.341 mg/g,CYP 总酶含量为0.08 nmol/mg±0.014 nmol/mg,细胞色素 b5(Cybts)含量为0.113 nmol/mg±0.036 nmol/mg,且 CYP1A 酶具有降解其特异性底物-7-乙氧基香豆素的活性。
说明所制备的双峰驼肝微粒体悬液蛋白浓度、CYP 总酶和 Cytb5含量以及 CYP1A 酶活性等基本参数均能满足后续的双峰驼 CYP1A 酶体外活性研究基本要求。
%To establish a reliable hepatic microsomal platform for studying the activities of Bactrian camel CYP1A enzyme in vitro ,the Bactrian camel hepatic microsomes were prepared by using differential centrif-ugation,and the protein concentration was determined by BCA method;and then the content of total CYP enzyme and cytochrome b5 were detected by differential spectroscopy;finally the activity of CYP1A en-zyme was evaluated by 7-ethoxycoumarin dehydrogenases.The results showed that the prepared suspension of Bactrian camel hepatic microsomal protein concentration was 1.652 mg/g±0.341 mg/g,total CYP en-zyme content was 0.08 nmol/m±0.014 nmol/mg,cytochrome b5 (Cybts)content was 0.113 nmol/mg±0. 036 nmol/mg,and the CYP1A enzyme can degrade the substrate specificity which is 7-ethoxycoumarin.Therefore,the basic parameters of hepatic microsomal protein,total CYP enzyme and Cytb5 content and CYP1A enzyme activity can meet all of requirements for follow-up study on Bactrian camel CYP1A enzyme activities in vitro .【期刊名称】《动物医学进展》【年(卷),期】2015(000)012【总页数】4页(P41-44)【关键词】双峰驼;肝微粒体的制备;评价;CYP1A【作者】何兴瀚;张文彬;哈斯苏荣【作者单位】内蒙古农业大学兽医学院,农业部动物疾病临床诊疗技术重点实验室,内蒙古呼和浩特 010018;内蒙古阿拉善骆驼科学研究所,内蒙古巴彦浩特 750300;内蒙古农业大学兽医学院,农业部动物疾病临床诊疗技术重点实验室,内蒙古呼和浩特 010018; 内蒙古骆驼研究院,内蒙古巴丹吉林镇 750300【正文语种】中文【中图分类】S852.21双峰驼由于长期生活在干旱的半荒漠草原地区,因此具有极强耐受性,能够耐高温、耐饥渴、耐盐碱,对恶劣环境的适应性和抗病力很强。
肝微粒体的制备2篇
肝微粒体的制备(一)
肝微粒体(hepatocyte mitochondria)是存在于肝细胞内的细胞器,其主要功能是参与能量代谢和细胞呼吸。
肝微粒体的制备主要通过离心分离的方法实现。
首先,需要准备一定数量的新鲜肝组织,可以选择小鼠或大鼠的肝脏作为材料。
肝脏应在动物安乐死后立即取出,并放入生理盐水中进行冲洗,以去除任何附着在表面的血液。
然后将肝脏切割成小块,并用冰冷的缓冲液洗涤,以进一步清除血液。
接下来,使用钝性杆或刀片将肝组织切成更小的块。
这样做的目的是增加细胞器的表面积,以便更好地制备微粒体。
然后,将这些组织块置于含有细胞质破碎缓冲液(常用的缓冲液为MES缓冲液)的离心管中,经过适当的研磨和振荡,使细胞质破碎,释放出细胞器。
接下来,将细胞质悬液用离心机进行离心分离。
首先进行低速离心,以去除细胞核和细胞碎片,得到一个大部分富含肝微粒体的上清液。
然后,将上清液继续进行高速离心,将肝微粒体沉淀。
离心结束后,将上清液倒掉,得到肝微粒体的沉淀。
最后,可以用适当的缓冲液洗涤肝微粒体沉淀,以去除杂质。
洗涤后,将肝微粒体沉淀进行储存或进一步使用。
制备好的肝微粒体可以用于细胞呼吸和能量代谢的研究。
肝微粒体的制备(二)
肝微粒体(hepatocyte mitochondria)的制备是一项重要的技术,常用于研究肝细胞能量代谢和细胞呼吸等领域。
下面介绍一种常用的肝微粒体制备方法。
首先,准备新鲜的肝组织,可以选择小鼠或大鼠的肝脏作为材料。
肝脏取出后立即放入冰冷的生理盐水中冲洗,以去除附着在表面的血液。
然后将肝脏切割成小块,并加入冰冷的细胞质破碎缓冲液(如MES 缓冲液)中。
接下来,使用均质器或超声处理器对肝组织进行细胞质破碎。
通
过适当的处理时间和功率,使细胞质完全破碎释放出肝微粒体。
破碎
后的细胞质悬液可以通过低速离心去除细胞核和细胞碎片。
然后,将去除细胞核和细胞碎片的细胞质上清液继续进行高速离心,以沉淀肝微粒体。
离心结束后,将上清液倒掉,得到肝微粒体的
沉淀。
最后,可以用适当的缓冲液洗涤肝微粒体沉淀,以去除杂质。
洗
涤后,肝微粒体沉淀可以进一步用于细胞呼吸和能量代谢相关的实验。
总结:肝微粒体的制备是一个较为复杂的过程,需要严格控制操
作步骤和条件,以确保制备到纯净的肝微粒体。
这些制备好的肝微粒
体可以用于深入研究肝细胞能量代谢和细胞呼吸等生物学过程,为相
关领域的研究提供重要的实验工具。