8.5 直线、平面垂直的判定及性质
- 格式:ppt
- 大小:900.50 KB
- 文档页数:46
教学过程在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.规律方法证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面).解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.【训练1】(2013·江西卷改编)教学效果分析教学过程如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=2,AA1=3,E为CD上一点,DE=1,EC=3.证明:BE⊥平面BB1C1C.考点二平面与平面垂直的判定与性质【例2】(2014·深圳一模)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AA1,且AC=2BC,点D是AB的中点.证明:平面ABC1⊥平面B1CD.规律方法证明两个平面垂直,首先要考虑直线与平面的垂直,也教学效果分析教学过程可简单地记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明非常类似,这种转化方法是本讲内容的显著特征,掌握化归与转化思想方法是解决这类问题的关键.【训练2】如图,在长方体ABCDA1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.考点三平行、垂直关系的综合问题教学效果分析教学过程【例3】(2013·山东卷)如图,在四棱锥P-ABCD中,AB⊥AC,AB⊥P A,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.(1)求证:CE∥平面P AD;(2)求证:平面EFG⊥平面EMN.规律方法线面关系与面面关系的证明离不开判定定理和性质定理,而形成结论的“证据链”依然是通过挖掘题目已知条件来实现的,如图形固有的位置关系、中点形成的三角形的中位线等,都为论证提供了丰富的素材.【训练3】(2013·辽宁卷)如图,AB是圆O的直径,P A垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面P AC;(2)设Q为P A的中点,G为△AOC的重心,求证:QG∥平面PBC.教学效果分析1.转化思想:垂直关系的转化2.在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.如有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.故熟练掌握“线线垂直”、“面面垂直”间的转化条件是解决这类问题的关键.创新突破6——求解立体几何中的探索性问题【典例】(2012·北京卷)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.[反思感悟] (1)解决探索性问题一般先假设其存在,把这个假设作已知条件,和题目的其他已知条件一起进行推理论证和计算,在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在,如果得到了一个不合理的结论,则说明不存在.(2)在处理空间折叠问题中,要注意平面图形与空间图形在折叠前后的相互位置关系与长度关系等,关键是点、线、面位置关系的转化与平面几何知识的应用,注意平面几何与立体几何中相关知识点的异同,盲目套用容易导致错误.【自主体验】(2014·韶关模拟)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=12AB=2,点E为AC中点,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2.(1)求证:DA⊥BC;(2)在CD上找一点F,使AD∥平面EFB.基础巩固题组(建议用时:40分钟)一、填空题1.设平面α与平面β相交于直线m,直线a在平面α内,直线b 在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的________条件.2.(2014·绍兴调研)设α,β为不重合的平面,m,n为不重合的直线,则下列正确命题的序号是________.①若α⊥β,α∩β=n,m⊥n,则m⊥α;②若m⊂α,n⊂β,m⊥n,则n⊥α;③若n⊥α,n⊥β,m⊥β,则m⊥α;④若m∥α,n∥β,m⊥n,则α⊥β.3.如图,AB是圆O的直径,P A垂直于圆O所在的平面,C是圆周上不同于A,B的任一点,则图形中有________对线面垂直.4.若M是线段AB的中点,A,B到平面α的距离分别是4 cm,6 cm,则M到平面α的距离为________.5.(2014·郑州模拟)已知平面α,β,γ和直线l,m,且l⊥m,α⊥γ,α∩γ=m,β∩γ=l,给出下列四个结论:①β⊥γ;②l⊥α;③m⊥β;④α⊥β.其中正确的是________.6.如图,在四棱锥P ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)7.设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用代号表示).8.如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.二、解答题9.(2013·北京卷)如图,在四棱锥P ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD.E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.10.(2013·泉州模拟)如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥平面A1BD;(2)求证:MD⊥AC;(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.能力提升题组(建议用时:25分钟)一、填空题1.如图,在斜三棱柱ABCA1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在直线______上.2.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为________.①AC⊥BD;②AC∥截面PQMN;③AC=BD;④异面直线PM与BD所成的角为45°.3.(2013·南通二模)如图,已知六棱锥P ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).二、解答题4.(2014·北京西城一模)。
直线、平面垂直的判定及其性质知识点一、直线和平面垂直的定义与判定1.直线和平面垂直定义:如果直线和平面内的任意一条直线都垂直,我们就说直线与平面互相垂直,记作.直线叫平面的垂线;平面叫直线的垂面;垂线和平面的交点叫垂足.2.直线和平面垂直的判定定理判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.符号语言:特征:线线垂直线面垂直知识点二、斜线、射影、直线与平面所成的角一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线.过斜线上斜足外的一点间平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影.平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.知识点三、二面角1.二面角定义平面内的一条直线把平面分成两部分,这两部分通常称为半平面.从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱,这两个半平面叫做二面角的面.表示方法:棱为、面分别为的二面角记作二面角.有时为了方便,也可在内(棱以外的半平面部分)分别取点,将这个二面角记作二面角.如果棱记作,那么这个二面角记作二面角或.2.二面角的平面角在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的射线,则这两条构成的角叫做二面角的平面角.二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度.平面角是直角的二面角叫做直二面角.知识点四、平面与平面垂直的定义与判定1.平面与平面垂直定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面垂直.。
表示方法:平面与垂直,记作.2.平面与平面垂直的判定定理判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.符号语言:图形语言:特征:线面垂直面面垂直知识点五、直线与平面垂直的性质1.基本性质:一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线.符号语言:图形语言:2.性质定理:垂直于同一个平面的两条直线平行.符号语言:图形语言:知识点六、平面与平面垂直的性质性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.符号语言:图形语言:。
知识梳理两直线垂直于同一个平面,
1.判断下列结论正误
表示两条不同的直线,
考点一线面垂直的判定与性质
2MB,求点C到平面
,O为AC的中点,
⊥平面POM.
的距离.
=2
3BC=
42
3,∠ACB
上的一点,若三棱锥E-ABC的体积为
;
-BCD的体积为
SAD,可得BD⊥SD
多维探究PCD;
AD的中点,
,使得AC⊥BM,若存在点
,所以MN⊥AC.
⊥平面MBN.
所成角的余弦值;
PDC,
的正切值.
PD2=25,∴PA=5. [思维升华]
证明线面垂直时,易忽视面内两条线为相交线这一条件
基础巩固题组
如图,在正方体中,E,F,G,M,N,Q均为所在棱的中点,易知六个点共面,直线BD1与平面EFMNQG
中的平面与这个平面重合,不满足题意,只有选项D
不垂直,满足题意,故选D.
B.直线AB上D.△ABC内部
,所以PC垂直于直线
AB⊥平面PAC,又因为
BD,因为PA⊥
PAC,所以BD⊥PC
C1D1中,AB=BC
________.
AC1与平面A1B1
AC=22,
的中点,求证:BD⊥平面AOF.
G,连接FG,AG
是梯形CDPE的中位线,
;
PB上是否存在点F
C,所以DC⊥平面
AC,所以AB⊥AC
B.AH⊥平面EFH
D.HG⊥平面AEF AH⊥HE,AH⊥HF不变,又HE
C.4
上的射影为E,连接D1E
C1DF,
ADC;
与其在平面ABD内的正投影所成角的正切值为。
8.5 直线、平面垂直的判定与性质五年高考考点l 垂直的判定与性质1.(2012浙江.10,5分)已知矩形,2,1,==BC AB ABCD 将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中, ( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD”,“AB 与CD”,“AD 与 BC”均不垂直 2.(2013辽宁.18,12分)如图,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点. (1)求证:平面PAC ⊥平面PBC ;(2)若AB = 2.AC = 1,PA = 1,求二面角C - PB - A 的余弦值.3.(2013广东,18,14分)如图①,在等腰直角三角形ABC 中,E D BC A ,,6,90==∠分别是AC ,AB 上的点,o BE CD ,2==为BC 的中点,将△ADE 沿-DE 折起,得到如图②所示的四棱锥,BCDE A -其中.3=AO(1)证明:⊥AO 平面BCDE ;(2)求二面角B CD A --的平面角的余弦值.智力背景华尔街最有名的数学家 美国经济学家Robert Merton 和Myron Scholes 在伊藤的工作的基础上提出了计算金融衍生工具的Black - Scholes 模型,从而获得了1997年的诺贝尔经济学奖,因为这个原因,伊藤清曾经被戏称为“华尔街最有名的数学家”,伊藤清是日本(以及亚洲)在二十世纪贡献出的最重要的几位数学家之一,他的工作的主要研究对象是随机过程.确切来说,这门学问可以说根本就是他建立起 来的——他在二十世纪中叶的工作让他得到了“现代随机分析之父”的称呼,4.(2013陕西,18,12分)如图,四棱柱1111A D C B A BCD -的底面ABCD 是正方形,0为底面中心,⊥O 1A平面1,AA AB ABCD =.2=(1)证明:⊥C A 1平面;11D D BB(2)求平面1OCB 与平面D D BB 11的夹角θ的大小.5.(2013四川.19,12分)如图,在三棱柱111C B A ABC -中,侧棱⊥1AA 底面,2,1AA AC AB ABC ==1,,120D D BAC =∠分别是线段11,C B BC 的中点,P 是线段AD 的中点.(1)在平面ABC 内,试作出过点P 与平面BC A 1平行的直线L ,说明理由,并证明直线L ⊥平面;11A ADD (2)设(1)中的直线L 交AB 于点M ,交AC 于点N ,求二面角A N M A --1的余弦值.6.(2012山东,侣,12分)在如图所示的几何体中,四边形ABCD 是等腰梯形,⊥=∠FC DAB CD AB ,60,//平面⊥AE ABCD ,.,CF CD CB BD == (1)求证:BD ⊥平面AED ;(2)求二面角F - BD - C 的余弦值.7.(2012广东,18,13分)如图所示,在四棱锥P- ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,点E 在线段PC 上,PC ⊥平面BDE . (1)证明:BD 上平面PAC ;(2)若PA = 1,AD = 2,求二面角B-PC-A 的正切值.8.(2012陕西.18,12分)(1)如图,证明命题“α是平面π内的一条直线,b 是π外的一条直线(b 不垂直于)π,c 是直线b 在π上的投影,若a ⊥b ,则a ⊥c”为真;(2)写出上述命题的逆命题,并判断其真假(不需证明).9.(2011北京.16,14分)如图,在四棱锥P - ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,.60,2 =∠=BAD AB(1)求证:BD ⊥平面PAC ;(2)若PA = AB ,求PB 与AC 所成角的余弦值; (3)当平面PBC 与平面PDC垂直时,求PA 的长,智力背景自学成才的科学巨匠—一华罗庚 1936年去英国剑桥大学工作,1938年任西南联合大学教授1946年任美国普林斯顿高等研究所研究员,并在普林斯顿大学执教1950年回国,先后任清华大学教授,中国科学院数学研究所所长,数理化学部委员和学部副主任,中国科学技术大学数学系主任、副校长,中国科学院应用数学研究所所长.中国科学院副院长等职,他在解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、离维数值积分等数学领域中都做出了卓越贡献 .解读探究知识清单1.直线与平面垂直(1)定义:如果一条直线和一个平面相交,并且和这个平面内的① 直线都垂直则称这条直线和这个平面互相垂直.(2)判定定理:如果一条直线和一个 个平面内的② 直线垂直,那么这条直线垂直于这个平面用数学符号表示为若⊂m ⋅⊥⊥=⊂,,,,,αααl m l B n m n(3)性质定理:垂直于同一个平面的两直线平行.2.平面与平面垂直【知识拓展】1.应用三垂线定理的难点主要是对非水平放置的图形的辨认.在解决证明题时可按照“一定平面,二定垂线,三找斜线,射影可见,直线随便”的原则去认定图形,其关键是转化,即把已知的线线垂直转化为所需的线线垂直,也就是斜线与它在平面内的射影的转化,因此,寻找斜线、射影非常重要.2.直线和平面垂直、平面和平面垂直是直线与平面、平面与平面相交的特殊情况,对这种特殊位置关系的认识,既可以从直线和平面、平面和平面的交角为90的角度讨论,又可以从已有的线线垂直、线面垂直关系出发进行推理和论证.3.无论是线面垂直还是面面垂直,都源自于线与线的垂直,这种转化为“降维”垂直的思想方法,在解题时非常重要,在处理实际问题的过程中,可以先从题设条件入手,分析已有的垂直关系,再从结论入手分析所要证明的垂直关系,从而架起已知与未知之间的“桥梁”,4.在线面垂直和面面垂直的判定定理中,有一些非常重要的限制条件,如“两条相交直线”“一个平面经过另一个平面的一条垂线”等,这既为证明指明了方向,同时又有很强的制约性,所以使用这些定理时,一定要注意逻辑推理的规范性,知识清单答案突破方法例1、(2012东北三校二模.18,12分)如图,已知PA ⊥平面ABCD ,且四边形ABCD 为矩形,M 、N 分别是AB 、PC 的中点.(1)求证:MN ⊥CD ;(2)若,45 =∠PDA 求证:MN ⊥平面PCD .解题思路智力背景熊庆来(一) 熊庆来是中国著名的数学家和教育家,他生于1893年,卒于1969年,云南弥勒人,熊庆来18岁时考入云南省高等学堂,因为成绩优异,20岁时便被派往比利时学习采矿技术 ,后来他又到法国留学,并获得了博士学位,熊庆来主 要从事函 数论方面的研究,他定义了一个“无穷级函数”,国际上称之为“熊氏无穷数”.证明 (1)如图所示,取PD 的中点E ,连结AE 、NE ,∵ N 为PC 的中点,E 为PD 的中点,,21//CD NE CD NE =∴而而CD AM //且,2121CD AB AM == ,//AM NE ∴∴ 四边形AMNE 为平行四边形,.//AE MN ∴ (2分) 又PA ⊥平面,,CD PA ABCD ⊥∴ 又 ∵ ABCD 为矩形,,CD AD ⊥∴ 而,A PA AD =∴ CD ⊥ 平面PAD , (4分) ∴ CD ⊥ AE .又,//MN AE.CD MN ⊥∴ (6分)(2) ∵ PA ⊥平面,,AD PA ABCD ⊥∴ (8分) 又,45 =∠PDA∴ △PAD 为等腰直角三角形, 又E 为PD 的中点,∴ AE ⊥PD ,又由(1)知CD ⊥AE , ∴ AE ⊥平面PCD.(10分) 又AE//MN , ∴ MN ⊥平面PCD. (12分)【方法点拨】 证明直线和平面垂直的常用方法有 (1)利用判定定理.(2)利用平行线垂直于平面的传递性⋅⊥⇒⊥),//(ααb a b a (3)利用面面平行的性质⋅⊥⇒⊥)//,(βαβααa(4)利用面面垂直的性质,当直线和平面垂直时,该直线垂直于平面内的任一直线,常用来证明线线垂直,方法2 面面垂直的判定例2(2012河北保定二模.17,12分)如图,在直三棱柱111C B A ABC -中,AC= BC ,点D 是AB 的中点.(1)求证:;//11D CA BC 平面 (2)求证:平面⊥D CA 1平面.AA 11B B解题思路证明(1)连结1AC 交C A 1于E ,连结DE ,C C AA 11 为矩形,则E 为 1AC 的中点.(2分) 又D 是AB 的中点,∴ 在1ABC ∆中,⋅1//BC DE (4分) 又⊂DE 平面,,111D CA BC D CA 平面⊂/.//11D CA BC 平面∴ (6分)D BC AC ,)2(= 为AB 的中点,∴ 在△ABC 中,.CD AB ⊥(8分) 又⊥1AA 平面,,ABC CD ABC 平面⊂,.11A AB AA CD AA =⊥∴ 又 .11B B AA CD 平面⊥∴ (10分)又,1D CA CD 平面⊂∴ 平面⊥D CA 1平面.AA 11B B (12分)【方法点拨】 证明面面垂直的主要方法有:①利用判定.定理,在审题时要注意直观判断哪条直线可能是垂线,充分利用等腰三角形底边的中线垂直于底面,勾股定理等结论.②用定义证明.只需判定两平面所成二面角为直二面角,③客观题中,也可应用:两个平行平面中的一个垂直于第三个平面,则另一个也垂直于第三个平面.智力背景熊庆来(二) 熊庆来非常热爱教育事业,他为培养中国的科学人才做出了卓越贡献.1930年,他在清华大学当数学系主任时,从学术杂志上看到了华罗庚的名字,了解到华罗庚的自学经历和数学才华后,破格录取只有初中学历的华罗庚到清华大学学习.三年模拟A 组 2011-2013年模拟探究专项基础测试时间:70分钟 分值:75分 一、选择题(每题5分,共10分) 1.(2013黑龙江齐齐哈尔一模.4)在如图所示的四个正方体中,能得出AB ⊥CD 的是 ( )2.(2013青海同仁一模.7)如果MC 上菱形ABCD 所在平面,那么MA 与BD 的位置关系是 ( ) A .平行 B .垂直相交 C .垂直但不相交 D .相交但不垂直 三、填空题(每题5分.共10分)3.(2013安徽合肥二模.12)设m 、n 是两条不同直线,γβα、、/是三个不同平面,给出下列四个命题:①若,//,ααn m ⊥则m ⊥n ;②若,,//,//αββα⊥m y 则;γ⊥m ③若,//,//βαm m 则;//βα④若,,γβγα⊥⊥则⋅βα//其中正确命题的序号是 4.(2012北京怀柔4月模拟.14)P 为△ABC 所在平面外一点,且PA 、PB 、PC 两两垂直,则下列命题:;BC PA ⊥①;AC PB ⊥②;AB PC ⊥③.BC AB ⊥④其中正确的个数是 . 三、解答题(共55分) 5.(2013北京海淀一模)在四棱锥P - ABCD 中,PA ⊥平面AB-CD ,△ABC 是正三角形,AC 与BD 的交点M 恰好是AC 中点,又,120,4 =∠==CDA AB PA 点N 在线段PB 上,且.2=PN(1)求证:BD ⊥PC;(2)求证:MN∥平面PDC ;(3)求二面角A-PC - B 的余弦值.6.(2013北京东城高三联考)在四棱锥P - ABCD 中,底面ABCD 为矩形,PD ⊥底面F G PD BC AB ABCD 、,3,2,1,===分别为AP 、CD 的中点.(1)求证:AD ⊥ PC ; (2)求证:FG//平面BCP ;(3)线段AD 上是否存在一点R ,使得平面BPR ⊥ 平面PCB ,若存在,求出AR 的长;若不存在,请说明理由.7.(2013陕西榆林4月.20)如图,E 是矩形ABCD 中AD 边上的点,F 为CD 边的中点,,3AD AE BA == 现将△ABE 沿BE 边折至△PBE 位置,且平面PBE ⊥平面BCDE.(1)求证:平面PBE 上平面PEF; (2)求二面角E-PF-C 的大小.8.(2013江南十校二模.19)如图,已知直四棱柱-ABCD 1111D C B A 的底面是边长为oADC 1202=∠、的菱形,Q 是侧棱)22(11>DD DD 延长线上的一点,过点11C A Q 、、作菱形截面11PC QA 交侧棱 1BB 于点P ,设截面11PC QA 的面积为,1S 四面体P C A B 111-的三个侧面P A B PC B C A B 1111111∆∆∆、、 面积的和为⋅-=212,s s s s (1)证明:AC ⊥QP ;(2)当|s 取得最小值时,求11cos QC A ∠的值,智力背景熊庆来《三) 在熊庆来的指导下,华罗庚通过不断的努力,成为我国著名的数学家,我国许多著名的科学家也都是熊庆来的学生,他在70多岁高龄时,虽已身染重病,还是耐心地指导着两位研究生,这两位研究生就是后来享誉数学界的数学家杨乐和张广厚,熊庆来爱惜和培养人才的高尚品格,深受人们的 敬佩.1921年,他在当时的东南大学任教时,发现一个叫刘光的学生虽然很贫困,但非常有才华.熊庆来 便经常指点他读书、研究,在经济上还经常帮助他.B 组 2011-2013年模拟探究专项提升测试时间:45分钟 分值:45分 一、选择题(每题5分,共10分) 1.(2013广东汕头一模,5)如图,P 是正方形ABCD 外一点,且PA ⊥平面ABCD ,则平面PAB 与平面PBC 、平面PAD 的位置关系是 ( )A .平面PAB 与平面PBC 、平面PAD 都垂直 B .它们两两垂直C .平面PAB 与平面PBC 垂直,与平面PAD 不垂直 D .平面PAB 与平面PBC 、平面PAD 都不垂直2.(2013吉林长春二模.6)若m 、n 为两条不重合的直线,βα、为两个不重合的平面,则下列命题中,真命题的个数是 ( )①若直线m 、n 都平行于平面α,则m 、n -定不是相交直线;②若直线m 、n 都垂直于平面α,则m 、n 一定是平行直线;③已知平面αβ互相垂直,且直线m 、n 也互相垂直,若α⊥m ,则β⊥n ;④直线m 、n 在平面α内的射影互相垂直,则m ⊥n , 1.A 2.B 3.C 4.D 二、填空题(每题5分,共10分) 3.(2013湖北十堰一模,13)如图所示,在四棱锥P - ABCD 中,PA ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足 时,平面MBD ⊥平面PCD.(只要填写一个你认为是正确的条件即可)4.(2013江苏南通二模.14)已知a 、b 、L 表示三条不同的直线,γβα、、表示三个不同的平面,有下列四个命题: ①若,,b a ==γββα且,//b a 则;//γα②若a 、b 相交,且都在αβαβαβα则外、,//,//,//,//,b b a a ;//β ③若;,,,,αββαβα⊥⊥⊂=⊥b b a b a 则④若.,,,,,αααα⊥⊂/⊥⊥⊂⊂l l b l a l b a 则 其中正确命题的序号是 三、解答题(共25分)5.(2013山东淄博一模.19)已知△BCD 中,==∠BC BCD ,90⊥=AB CD ,1平面,60,=∠ADB BCD E 、F 分别是AC 、AD 上的动点,且⋅<<==)10(λλADAFAC AE (1)求证:不论λ为何值,总有平面BEF ⊥平面ABC ; (2)当λ为何值时,平面BEF ⊥平面ACD?6.(2013河南开封5月.19)如图,四棱锥P -ABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,,3,1===AD AB PA 点F 是PB 的中点,点E 在边BC 上移动.(1)当点E 为BC 的中点时,试判断职与平面PAC 的位置关系,并说明理由; .(2)证明:无论点E 在BC 边的何处,都有PE ⊥ AF ;(3)当BE 等于何值时,PA 与平面PDE 所成角的大小为.45o智力背景熊庆来(四) 有一次,熊庆来为了资助刘光,甚至卖掉了自己穿的皮袍子,刘光成为著名的物理学 家后,经常满怀深情地提起这段往事,他说:“教授为我卖皮袍子的事,10年后我才听到,当时我感动得热泪盈眶.这件事我永生不能感怀.他对我们这一代付出了多么巨大的关爱啊!”。
专题8.5 直线、平面垂直的判定及性质【考纲要求】1.了解平面的含义,理解空间点、直线、平面位置关系的定义,掌握公理、判定定理和性质定理;2. 掌握公理、判定定理和性质定理.【知识清单】知识点1.直线与平面垂直的判定与性质定义:如果一条直线和一个平面内的任何一条直线都垂直,那么称这条直线和这个平面垂直. 定理:⎭⎪⎬⎪⎫a αb αl ⊥a l ⊥ba ∩b =A ⇒l ⊥α知识点2.平面与平面垂直的判定与性质定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直. 定理:⎭⎪⎬⎪⎫AB βAB ⊥α⇒β⊥α⎭⎪⎬⎪⎫α⊥βα∩β=MNAB βAB ⊥MN⇒AB ⊥α 知识点3.线面、面面垂直的综合应用 1.直线与平面垂直(1)判定直线和平面垂直的方法 ①定义法.②利用判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.③推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.(2)直线和平面垂直的性质①直线垂直于平面,则垂直于平面内任意直线.②垂直于同一个平面的两条直线平行.③垂直于同一直线的两平面平行.2.斜线和平面所成的角斜线和它在平面内的射影所成的锐角,叫斜线和平面所成的角.3.平面与平面垂直(1)平面与平面垂直的判定方法①定义法②利用判定定理:如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直.(2)平面与平面垂直的性质如果两平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.【考点梳理】考点一:直线与平面垂直的判定与性质【典例1】(2020·贵溪市实验中学月考(文))如图,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥平面ABCD,点E、F分别是AB和PC的中点.(1)求证:AB⊥平面P AD;(2)求证:EF//平面P AD.【答案】(1)证明见解析(2)证明见解析【解析】(1)∵侧棱P A垂直于底面,∴P A⊥AB.又底面ABCD是矩形,∴AD⊥AB,这样,AB垂直于平面P AD内的两条相交直线,∴AB⊥平面P AD.(2)取CD的中点G,∵E、F分别是AB、PC的中点,∴FG是三角形CPD的中位线,∴FG∥PD,FG∥面P AD.∵底面ABCD是矩形,∴EG∥AD,EG∥平面P AD.故平面EFG ∥平面P AD ,∴EF ∥平面P AD .【典例2】(2019·甘肃高三期末(文))如图,在三棱柱111ABC A B C -中,1AC BC ==,AB =,11B C =,1B C ⊥平面ABC .(1)证明:AC ⊥平面11BCC B ; (2)求点C 到平面11ABB A 的距离.【答案】(1)见解析;(2【解析】(1)证明:因为1B C ⊥平面ABC ,AC ⊂平面ABC ,所以1B C AC ⊥.因为1AC BC ==,AB ,所以AC BC ⊥, 又1BC B C ⋂,所以AC ⊥平面11BCC B . (2)设点C 到平面11ABB A 的距离为h ,因为1B C ⊥平面ABC ,所以1B C AC ⊥,1B C BC ⊥.则1AB ,1BB AB =,所以1ABB ∆是等边三角形,故12ABB S ∆==111122C ABB A C ABB B ABC V V V ---==111233ABC B C S ∆=⨯⨯⨯=,11111123323C ABB A ABB A V S h h h -=⋅=⨯⨯⋅=.所以h【规律方法】(1)证明直线和平面垂直的常用方法:①判定定理;②垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);③面面平行的性质(a ⊥α,α∥β⇒a ⊥β);④面面垂直的性质.(2)证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想. (3)线面垂直的性质,常用来证明线线垂直. 【变式探究】1. (2019·河南南阳中学高三开学考试(文))如图,已知四棱锥P ABCD -的底面是梯形,AB CD AD AB ⊥,, 且24 3.AD CD AB PA PD PC ======,(1)若O 为AC 的中点,证明:PO ⊥平面.ABCD (2)求点C 到平面PAB 的距离.【答案】(1)证明见解析;(2【解析】(1)证明:因为AB CD AD AB ⊥,,AD CD AC ∴⊥=,,又3PA PC ==,O 为AC 的中点PO AC ∴⊥,1PO ==连接OD ,在Rt ACD ∆中,O 为AC 的中点12OD AC ∴== ∵222OD OP PD +=,PO OD ∴⊥又ODAC O =∴PO ⊥平面ABCD(2)解:设点C 到平面PAB 的距离为h ,则12442ABC S ∆=⨯⨯=,PB ==在PAB ∆中,32PA AB PB ==,, ∴9452cos 2323PAB +-∠==⨯⨯.∴1322PAB S ∆=⨯⨯=由C PAB P ABC V V --=44PO =⨯=,解得h =2.(2019·陕西高一期末)如图,在四棱锥P ABCD -中,底面ABCD 为菱形,2AB =,060BAD ∠=,面PAD ⊥面ABCD ,PAD ∆为等边三角形,O 为AD 的中点.(1)求证:AD ⊥平面POB ;(2)若E 是PC 的中点,求三棱锥P EDB -的体积. 【答案】(1)详见解析(2)12【解析】(1)证:因为O 为等边PAD ∆中边AD 的中点, 所以AD PO ⊥,又因为在菱形ABCD 中,060BAD ∠=, 所以ABD ∆为等边三角形,O 为AD 的中点, 所以AD BO ⊥,而PO BO O =,所以AD ⊥平面POB .(2)解:由(1)知AD PO ⊥,面PAD ⊥面ABCD ,所以PO ⊥底面ABCD ,因为等边PAD ∆的边长为2,所以PO , 易知BCD ∆为边长为2的等边三角形,所以三棱锥P BCD -的体积为:21213P BCD V -==, 因为E 是PC 的中点,所以1122P EDB P BCD V V --==, 所以三棱锥P EDB -的体积为12.考点二 : 平面与平面垂直的判定与性质【典例3】(2020·全国高考真题(文))如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面PAB ⊥平面PAC ;(2)设DO ,求三棱锥P −ABC 的体积.【答案】(1)证明见解析;(2【解析】(1)连接,,OA OB OC ,D 为圆锥顶点,O 为底面圆心,OD ∴⊥平面ABC ,P 在DO 上,,OA OB OC PA PB PC ==∴==,ABC 是圆内接正三角形,AC BC ∴=,PAC ≌PBC ,90APC BPC ∴∠=∠=︒,即,PB PC PA PC ⊥⊥,,PA PB P PC =∴⊥平面,PAB PC ⊂平面PAC ,∴平面PAB ⊥平面PAC ;(2)设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为,rl rl π==2222OD l r =-=,解得1,r l ==2sin 603AC r ==在等腰直角三角形APC 中,22AP AC ==在Rt PAO 中,PO ===,∴三棱锥P ABC -的体积为11333248P ABC ABC V PO S -=⋅=⨯⨯⨯=△.【典例4】(2020·五华·云南师大附中高三月考(文))如图,在三棱柱111ABC A B C -中,AB AC ⊥,1A B ⊥平面ABC ,1AB AC ==,12AA =.(1)证明:平面1AA B ⊥平面11AAC C ; (2)求三棱锥111B A BC -的体积.【答案】(1)证明见解析;(2)6.【解析】(1)证明:∵1A B ⊥平面ABC ,AC ⊂平面ABC , ∴1A B AC ⊥.又∵AB AC ⊥,∵1AB A B B ⋂=, ∴AC ⊥平面1A AB . 又∵AC ⊂平面11A ACC , ∴平面1AA B ⊥平面11AAC C .(2)111111111111111332B A BC B A B C A B C V V S A B --==⋅=⨯⨯⨯=△. 【规律方法】 1.判定面面垂直的方法 ①面面垂直的定义;②面面垂直的判定定理(a ⊥β,a ⊂α⇒α⊥β). 2.证面面垂直的思路(1)关键是考虑证哪条线垂直哪个面.这必须结合条件中各种垂直关系充分发挥空间想象综合考虑. (2)条件中告诉我们某种位置关系,就要联系到相应的性质定理,如已知两平面互相垂直,我们就要联系到两平面互相垂直的性质定理. 【变式探究】1.在四边形ABCD 中,//,,45AD BC ADAB BCD,90BAD ∠=︒,将ABD ∆沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A BCD -,如图,则在三棱锥A BCD -中,下列结论正确的是( )A.平面ABD ⊥平面ABCB.平面ADC ⊥平面BDCC.平面ABC ⊥平面BDCD.平面ADC ⊥平面ABC 【答案】D 【解析】在直角梯形ABCD 中,因为ABD ∆为等腰直角三角形,故45ABD ADB ∠=∠=︒, 所以45DBC ∠=︒,故CD BD ⊥,折起后仍然满足CD BD ⊥.因为平面ABD ⊥平面BCD ,CD ⊂平面BCD , 平面ABD ⋂平面BCD BD =, 所以CD ⊥平面ABD ,因AB 平面ABD ,所以CD AB ⊥.又因为AB AD ⊥,AD CD D =,所以AB ⊥平面ADC ,因AB平面ABC ,所以平面ADC ⊥平面ABC .2.(2020·贵溪市实验中学月考(文))如图所示,在四棱锥P ABCD -中,PD ⊥平面ABCD ,BD 是线段AC 的中垂线,BD 与AC 交于点O ,8AC =,2PD =,3OD =,5OB =.(1)证明:平面PBD ⊥平面PAC ; (2)求点B 到平面PAC 的距离.【答案】(1)证明见解析;(2 【解析】(1)因为PD ⊥平面ABCD ,所以PD AC ⊥. 又因为BD AC ⊥,BDPD D =,所以AC ⊥平面PBD .又AC ⊂平面PAC ,所以平面PBD ⊥平面PAC . (2)因为8AC =,2PD =,3OD =,5OB =,所以由勾股定理得5AD CD ===,AP CP ==所以182PACS =⨯=△11852022ABC S AC OB =⋅=⨯⨯=△. 设点B 到平面PAC 的距离为h .由B PAC P ABC V V --=,得1133PAC ABC S h S PD ⋅=⋅△△, 即1141320233h ⨯⨯=⨯⨯, 解得101313h =. 【总结提升】在已知平面垂直时,一般要用性质定理进行转化,转化为线面垂直或线线垂直. 转化方法:在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直. 考点三 : 线面、面面垂直的综合应用【典例5】(2020·安徽省舒城中学月考(文))设m ,n 是空间两条不同的直线,α,β是空间两个不同的平面.给出下列四个命题:①若m ∥α,n ∥β,α∥β,则m ∥n ;②若α⊥β,m ⊥β,m ⊄α,则m ∥α;③若m ⊥n ,m ⊥α,α∥β,则n ∥β;④若α⊥β,α∩β=l ,m ∥α,m ⊥l ,则m ⊥β. 其中正确的是( ) A .①② B .②③C .②④D .③④【答案】C 【解析】由,m n 是空间两条不同的直线,,αβ是空间两个不同的平面. 在①中,若//,//,//m n αβαβ,则m 与n 相交、平行或异面,故①错误;在②中,设,,n n l l ααβ⊂⋂=⊥,因为αβ⊥,所以n β⊥,又m β⊥,所以//m n ,又m α⊄,n ⊂α,所以//m α,故②正确;在③中,若,,//m n m ααβ⊥⊥,则n 与β平行或n β⊂,故③错误;在④中,设,m n γγα⊂⋂=,因为//m α,所以//m n ,又m l ⊥,所以n l ⊥, 又因为,,l n αβαβα⊥⋂⊂=,所以n β⊥,所以m β⊥,故④正确. 故选:C .【典例6】(2020·临猗县临晋中学月考(文))如图,在三棱锥P -ABC 中,P A -AB -P A -BC -AB -BC -P A -AB -BC -2-D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:P A ⊥BD ;(2)求证:平面BDE ⊥平面P AC ;(3)当P A ∥平面BDE 时,求三棱锥E -BCD 的体积. 【答案】(1)证明见解析;(2)证明见解析;(3)13【解析】(I )因为PA AB ⊥,PA BC ⊥,所以PA ⊥平面ABC , 又因为BD ⊂平面ABC ,所以PA BD ⊥.(II )因为AB BC =,D 为AC 中点,所以BD AC ⊥, 由(I )知,PA BD ⊥,所以BD ⊥平面PAC . 所以平面BDE ⊥平面PAC .(III )因为PA 平面BDE ,平面PAC ⋂平面BDE DE =, 所以PA DE .因为D 为AC 的中点,所以112DE PA ==,BD DC ==由(I )知,PA ⊥平面ABC ,所以DE ⊥平面PAC . 所以三棱锥E BCD -的体积1163V BD DC DE =⋅⋅=. 【规律方法】1.证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面).解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.2.垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.3.在垂直关系的证明中,线线垂直是问题的核心,可以根据已知的平面图形通过计算的方式(如勾股定理)证明线线垂直,也可以根据已知的垂直关系证明线线垂直.4.垂直关系的转化:【变式探究】1.(2019·四川高考模拟(理))如图所示,在RtΔABC中,AB=4,AC=3,BC=5,在BC边上任取一点D,并将ΔABD沿直线AD折起,使平面ABD⊥平面ACD,则折叠后B、C两点间距离的最小值为__________.【答案】√13【解析】如图所示,设∠BAD=θ,则∠CAD=π2−θ,过点C作CE⊥AD于E,过B作BF⊥AD交AD的延长线于点F,所以BF=4sinθ,CE=3sin(π2−θ)=3cosθ,AF=4cosθ,AE=3cos(π2−θ)=3sinθ,所以EF=4cosθ−3sinθ,所以|BC|=√CE2+EF2+BF2=√(3cosθ)2+(4cosθ−3sinθ)2+(4sinθ)2 =√9cos2θ+16cos2θ+9sin2θ−24sinθcosθ+16sin2θ=√25−24sinθcosθ=√25−12sin2θ,当sin2θ=1时,|BC|min=√13.2.(2019·云南高三月考(文))如图,在△ABC 中,∠B =90°,AB =BC =2,P 为AB 边上一动点,PD ∥BC 交AC 于点D ,现将△PDA 沿PD 翻折至△PDA 1,E 是A 1C 的中点.(1)若P 为AB 的中点,证明:DE ∥平面PBA 1.(2)若平面PDA 1⊥平面PDA ,且DE ⊥平面CBA 1,求四棱锥A 1﹣PBCD 的体积. 【答案】(1)详见解析(2)12【解析】(1)证明:令1A B 的中点为F ,连接EF ,PF .因为P 为AB 的中点且//PD BC , 所以PD 是ABC △的中位线,所以//PD BC ,12PD BC =. 因为E 是1AC 的中点,且F 为1A B 的中点,所以EF 是1A BC 的中位线,所以//EF BC ,且12EF BC =,于是有PDEF ,所以四边形PDEF 为平行四边形,所以//DE PF , 又DE ⊄平面1PBA ,PF ⊂平面1PBA 所以有//DE 平面1PBA .(2)解:因为DE ⊥平面1CBA ,所以1DE AC ⊥. 又因为E 是1AC 的中点,所以1A D DC DA ==, 即D 是AC 的中点.由//PD BC 可得,P 是AB 的中点.因为在ABC △中,90B ∠=︒,//PD BC ,PDA 沿PD 翻折至1PDA ,且平面1PDA ⊥平面PDA , 利用面面垂直的性质可得1PA ⊥平面PBCD ,所以111131·13322A PBCD PBCD V S A P -==⨯⨯=四棱锥四边形. 考点四: 平行、垂直的综合应用【典例7】(2020·全国高考真题(理))如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【答案】(1)证明见解析;(2【解析】(1),M N 分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB1//MN AA ∴在ABC 中,M 为BC 中点,则BC AM ⊥ 又侧面11BB C C 为矩形,1BC BB ∴⊥ 1//MN BBMN BC ⊥由MN AM M ⋂=,,MN AM ⊂平面1A AMN∴BC ⊥平面1A AMN又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC又11BC ⊂平面11EBC F ,且平面11EB C F ⋂平面ABC EF = 11//B C EF ∴//EF BC ∴又BC ⊥平面1A AMN∴EF ⊥平面1A AMNEF ⊂平面11EB C F∴平面11EB C F ⊥平面1A AMN(2)连接NP//AO 平面11EB C F ,平面AONP ⋂平面11EB C F NP =∴//AO NP根据三棱柱上下底面平行,其面1A NMA ⋂平面ABC AM =,面1A NMA ⋂平面1111AB C A N = ∴//ON AP故:四边形ONPA 是平行四边形 设ABC 边长是6m (0m >)可得:ON AP =,6NP AO AB m ===O 为111A B C △的中心,且111A B C △边长为6m∴16sin 603ON =⨯⨯︒=故:ON AP == //EF BC∴AP EPAM BM=3EP= 解得:EP m =在11B C 截取1B Q EP m ==,故2QN m =1B Q EP =且1//B Q EP∴四边形1B QPE 是平行四边形, ∴1//B E PQ由(1)11B C ⊥平面1A AMN故QPN ∠为1B E 与平面1A AMN 所成角在Rt QPN △,根据勾股定理可得:PQ ===sin10QN QPN PQ ∴∠===∴直线1B E 与平面1A AMN 所成角的正弦值:10.【典例8】(2018·全国高考真题(文))如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【答案】(1)证明见解析;(2)存在,理由见解析 【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点.连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .【总结提升】1.与探索性问题有关的解题策略(1)求条件探索性问题的主要途径:①先猜后证,即先观察与尝试给出条件再证明;②先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.(2)涉及点的位置探索性问题一般是先根据条件猜测点的位置再给出证明,探索点存在问题,点多为中点或三等分点中某一个,也可以根据相似知识建点.2.证明折叠问题中的平行与垂直,关键是分清折叠前后图形的位置和数量关系的变与不变.一般地,折叠前位于“折痕”同侧的点、线间的位置和数量关系折叠后不变,而折叠前位于“折痕”两侧的点、线间的位置关系折叠后会发生变化.对于不变的关系可在平面图形中处理,而对于变化的关系则要在立体图形中解决. 【变式探究】1. (2020·江苏省震泽中学期末)如图,在三棱锥P ABC -中,AP AB =,,M N 分别为线段,PB PC 上的点(异于端点),平面PAB ⊥平面PBC .(1)若//BC 平面AMN ,求证://BC MN ;(2)若M 为PB 的中点,求证:平面AMN ⊥平面PBC .【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)因为//BC 平面AMN ,BC ⊂平面PBC ,平面AMN平面PBC MN =,由线面平行的性质可得//BC MN(2)因为M 为PB 的中点,且AP AB =,由等腰三角形的性质可得AM PB ⊥, 又因为平面PAB ⊥平面PBC , 平面PAB ⋂平面PBC BC =,AM ⊂平面PAB ,由面面垂直的性质定理即可得:AM ⊥平面PBC ,又因为AM ⊂平面AMN ,所以平面AMN ⊥平面PBC2.如图(1)所示,在Rt △ABC 中,∠ABC =90°,D 为AC 的中点,AE ⊥BD 于点E (不同于点D ),延长AE 交BC 于点F ,将△ABD 沿BD 折起,得到三棱锥A 1—BCD ,如图(2)所示.(1)若M 是FC 的中点,求证:直线DM ∥平面A 1EF . (2)求证:BD ⊥A 1F .(3)若平面A 1BD ⊥平面BCD ,试判断直线A 1B 与直线CD 能否垂直?请说明理由. 【答案】【解析】(1)证明:∵D ,M 分别为AC ,FC 的中点, ∴DM ∥EF ,又∵EF ⊂平面A 1EF ,DM ⊄平面A 1EF , ∴DM ∥平面A 1EF .(2)证明:∵EF ⊥BD ,A 1E ⊥BD ,A 1E ∩EF =E ,A 1E ,EF ⊂平面A 1EF , ∴BD ⊥平面A 1EF ,又A 1F ⊂平面A 1EF , ∴BD ⊥A 1F .(3)直线A 1B 与直线CD 不能垂直.理由如下:∵平面BCD ⊥平面A 1BD ,平面BCD ∩平面A 1BD =BD ,EF ⊥BD ,EF ⊂平面CBD , ∴EF ⊥平面A 1BD ,又∵A1B⊂平面A1BD,∴A1B⊥EF,又∵DM∥EF,∴A1B⊥DM.假设A1B⊥CD,∵DM∩CD=D,∴A1B⊥平面MCD,∴A1B⊥BD,与∠A1BD为锐角矛盾,∴直线A1B与直线CD不能垂直.。