2011年全国各地100份中考数学试卷分类汇编第26章矩形菱形与正方形
- 格式:doc
- 大小:3.79 MB
- 文档页数:48
ABCDMP 第4题图34.矩形、菱形、正方形一 选择题 A 组1、(2011浙江杭州模拟14)下列命题中的真命题是( ).A. 对角线互相垂直的四边形是菱形B. 中心对称图形都是轴对称图形C. 两条对角线相等的梯形是等腰梯形D. 等腰梯形是中心对称图形 答案:C2、(2011浙江杭州模拟16)下列图形中,周长不是32的图形是( )答案:B3.(2011浙江省杭州市8模)如图,ABCD 、CEFG 是正方形,E 在CD 上,直线BE 、DG 交于H ,且HE ·HB =422-,BD 、AF 交于M ,当E 在线段CD (不与C 、D 重合)上运动时,下列四个结论:① BE ⊥GD ;② AF 、GD 所夹的锐角为45°;③ GD=2AM ;④ 若BE 平分∠DBC ,则正方形ABCD 的面积为4。
其中正确的结论个数有( )A. 1个B. 2个C. 3个D. 4个 答案:D 4、(2011年黄冈中考调研六)矩形ABCD 中,1AB =,2AD =,M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,则APM △的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的( )答案AM H G F ED C B A 第3题图MH GF ED C BA丙丙甲乙乙甲5、(2011年浙江杭州三模) 如图,在菱形ABCD 和菱形BEFG 中,点A 、B 、E 在同一直线上,P 是线段DF 的中点,连结PG ,PC 。
若∠ABC=∠BEF =60°,则=PCPG( ) A.2 B. 3C.22 D.33 答案:B6、(2011年浙江杭州八模)如图,ABCD 、CEFG 是正方形,E 在CD 上,直线BE 、DG 交于H ,且HE ·HB =422-,BD 、AF 交于M ,当E 在线段CD (不与C 、D 重合)上运动时,下列四个结论:① BE ⊥GD ;② AF 、GD 所夹的锐角为45°;③ GD=2AM ;④ 若BE 平分∠DBC ,则正方形ABCD 的面积为4。
2011年全国各地100份中考数学试卷分类汇编第31章 平移、旋转与对称一、选择题1. (2011浙江省舟山,3,3分)如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为( ) (A )30°(B )45° (C )90° (D )135°【答案】C2. (2011广东广州市,4,3分)将点A (2,1)向左..平移2个单位长度得到点A ′,则点A ′的坐标是( ) A .(0,1) B.(2,-1) C.(4,1) D.(2,3) 【答案】A[来源:]3. (2011广东广州市,8,3分)如图1所示,将矩形纸片先沿虚线AB 按箭头方向向右..对折,接着将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )A .B .C .D .【答案】D4. (2011江苏扬州,8,3分)如图,在Rt △ABC 中,∠ACB=90º,∠A=30º,BC =2,将△ABC 绕点C 按顺时针方向旋转n 度后,得到△EDC ,此时,点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )CDB (A )ABABCD图1ABOCD(第3题)A. 30,2B.60,2C. 60,23D. 60,3 【答案】C 5. (2011山东菏泽,5,3分)如图所示,已知在三角形纸片ABC 中,BC =3, AB =6,∠BCA =90°,在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则DE 的长度为A .6B .3C . 23D .3【答案】C6. (2011山东泰安,3,3分)下列图形:其中是中心对称图形的个数为( )A.1B.2C.3D.4 【答案】B7. (2011浙江杭州,2,3)正方形纸片折一次,沿折痕剪开,能剪得的图形是( )A .锐角三角形B .钝角三角形C .梯形D .菱形 【答案】C8. (2011 浙江湖州,7,3)下列各图中,经过折叠不能..围成一个立方体的是【答案】D9. (2011 浙江湖州,8,3)如图,已知△OAB 是正三角形,OC ⊥OB ,OC =OB ,将△OAB 绕A B C D E点O按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是A.150°B.120°C.90°D.60°[来源:学§科§网]【答案】A10.(2011浙江省,2,3分)下列图形中,既是轴对称图形又是中心对称图形的是()【答案】D11.(2011浙江义乌,6,3分)下列图形中,中心对称图形有()A.4个B.3个C.2个D.1个【答案】B12. (2011四川重庆,3,4分)下列图形中,是中心对称图形的是()A.B.C.D.【答案】B13. (2011浙江省嘉兴,3,4分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD 是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()(A)30°(B)45°(C)90°(D)135°【答案】C14. (2011台湾台北,21)21.坐标平面上有一个线对称图形,)25,3(-A、)211,3(-B两点在此图形上且互为对称点。
证明:∵∠AEP=∠AOE=90°,∠EAP=∠OAE∴△AOE ∽△AEP ∴AO AE AE AP=,得AE 2=AO ·AP 即2AE 2=2AO ·AP 又AC=2AO∴2AE 2=AC ·AP15. (2011广东株洲,23,8分)如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点, PO 的延长线交BC 于Q.(1)求证: OP=OQ ;(2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形.【答案】(1)证明:四边形ABCD 是矩形,∴AD ∥BC ,∴∠PDO=∠QBO ,又OB=OD ,∠POD=∠QOB ,∴△POD ≌△QOB ,∴OP=OQ 。
(2)解法一: PD=8-t∵四边形ABCD 是矩形,∴∠A=90°,∵AD=8cm ,AB=6cm ,∴BD=10cm ,∴OD=5cm.当四边形PBQD 是菱形时, PQ ⊥BD ,∴∠POD=∠A ,又∠ODP=∠ADB ,∴△ODP ∽△ADB , ∴OD AD PD BD =,即58810t =-, A B C DE FO P解得74t =,即运动时间为74秒时,四边形PBQD 是菱形. 解法二:PD=8-t当四边形PBQD 是菱形时,PB=PD=(8-t)cm ,∵四边形ABCD 是矩形,∴∠A=90°,在RT △ABP 中,AB=6cm ,∴222AP AB BP +=, ∴2226(8)t t +=-, 解得74t =,即运动时间为74秒时,四边形PBQD 是菱形. 16. (2011江苏苏州,28,9分)(本题满分9分)如图①,小慧同学吧一个正三角形纸片(即△OAB )放在直线l 1上,OA 边与直线l 1重合,然后将三角形纸片绕着顶点A 按顺时针方向旋转120°,此时点O 运动到了点O 1处,点B 运动到了点B 1处;小慧又将三角形纸片AO 1B 1绕B 1点按顺时针方向旋转120°,点A 运动到了点A 1处,点O 1运动到了点O 2处(即顶点O 经过上述两次旋转到达O 2处).小慧还发现:三角形纸片在上述两次旋转过程中,顶点O 运动所形成的图形是两段圆弧,即弧OO 1和弧O 1O 2,顶点O 所经过的路程是这两段圆弧的长度之和,并且这两端圆弧与直线l1围成的图形面积等于扇形AOO 1的面积、△AO 1B 1的面积和扇形B 1O 1O 2的面积之和.小慧进行类比研究:如图②,她把边长为1的正方形纸片OABC 放在直线l 2上,OA 边与直线l 2重合,然后将正方形纸片绕着顶点A 按顺时针方向旋转90°,此时点O 运动到了点O 1处(即点B 处),点C 运动到了点C 1处,点B 运动到了点B 1处;小慧又将正方形纸片AO 1C 1B 1绕B 1点按顺时针方向旋转90°,……,按上述方法经过若干次旋转后,她提出了如下问题:问题①:若正方形纸片OABC 按上述方法经过3次旋转,求顶点O 经过的路程,并求顶点O 在此运动过程中所形成的图形与直线l 2围成图形的面积;若正方形OABC 按上述方法经过5次旋转,求顶点O 经过的路程;问题②:正方形纸片OABC 按上述方法经过多少次旋转,顶点O 经过的路程是222041+π? 请你解答上述两个问题.【答案】解问题①:如图,正方形纸片OABC 经过3次旋转,顶点O 运动所形成的图形是三段弧,即弧OO 1、弧O 1O 2以及弧O 2O 3,∴顶点O 运动过程中经过的路程为πππ)221(1802902180190+=⋅⋅+⨯⋅⋅.顶点O 在此运动过程中所形成的图形与直线l 2围成图形的面积为11212360)2(90236019022⨯⨯⨯+⋅⋅+⨯⋅⋅ππ=1+π. 正方形OABC 经过5次旋转,顶点O 经过的路程为πππ)2223(1802903180190+=⋅⋅+⨯⋅⋅. 问题②:∵方形OABC 经过4次旋转,顶点O 经过的路程为πππ)221(1802902180190+=⋅⋅+⨯⋅⋅ ∴222041+π=20×)221(+π+21π. ∴正方形纸片OABC 经过了81次旋转.17. (2011江苏泰州,24,10分)如图,四边形ABCD 是矩形,直线L 垂直平分线段AC ,垂足为O ,直线L 分别与线段A D 、CB 的延长线交于点E 、F .(1)△ABC 与△FOA 相似吗?为什么?(2)试判定四边形AFCE 的形状,并说明理由.【答案】(1)相似.由直线L 垂直平分线段AC ,所以AF=FC ,∴∠FAC=∠ACF ,又∵∠ABC=∠AOF=90°,∴△ABC ∽FOA .(2)四边形AFCE 是菱形。
全国2011年中考数学试题分类解析汇编(181套)专题36:矩形、菱形、正方形一、选择题1.(某某某某、某某3分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为(A )48cm(B )36cm (C )24cm (D )18cm 【答案】A 。
【考点】菱形的性质,平行四边形的性质。
【分析】根据①②③④四个平行四边形面积的和为14cm2,四边形ABCD 面积是11cm2,从图可求出⑤的面积: 2ABCD 1S S S 2cm ⑤四边形①+②+③+④=-=11-7=4。
从而可求出菱形的面积:2EFGH S S 14418cm ==+=①+②+③+④+⑤菱形。
又∵∠EFG=30°,∴菱形的边长为6cm 。
从而根据菱形四边都相等的性质得:①②③④四个平行四边形周长的总和=2(AE+AH+HD+DG+GC+CF+FB+BE )=2(EF+FG+GH+HE )=48cm 。
故选A 。
2.(某某某某4分)如图,在矩形ABCD 中,对角线AC ,BD 交与点O .已知∠AOB=60°,AC=16,则图中长度为8的线段有A 、2条B 、4条C 、5条D 、6条 【答案】D 。
【考点】矩形的性质。
等边三角形的判定和性质。
【分析】因为矩形的对角线相等且互相平分,AC=16,所以AO=BO=CO=DO=8;又由∠AOB=60°,所以三角形AOB 是等边三角形,所以AB=AO=8;又根据矩形的对边相等得,CD=AB=AO=8.从而可求出线段为8的线段有6条。
故选D 。
3.(某某某某3分)如图,矩形ABCD 中,AB =4,BC =5,AF 平分∠DAE,EF⊥AE,则CF 等于A .23B .1C .32D .2【答案】C 。
2011年全国各地100份中考数学试卷分类汇编 第19章
图形的展开与叠折
1. (2011山东德州16,4分)长为1,宽为a 的矩形纸片(12
1<<a ),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n 此操作后,剩下的矩形为
正方形,则操作终止.当n =3时,
a 的值为_____________.
【答案】35或34
2. (2011浙江绍兴,15,5分) 取一张矩形纸片按照图1、图2中的方法对折,并沿图3中过矩形顶点的斜线(虚线)剪开,那剪下的①这部分展开,平铺在桌面上,若平铺的这个图形是正六边形,则这张矩形纸片的宽和长之比为
. 第一次操作
第二次操作
【答案】3:2
3. (2011甘肃兰州,20,4分)如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。
已知第一个矩形的面积为1,则第n 个矩形的面积为 。
【答案】
114n
4. (2011四川绵阳17,4)如图,将长8cm ,宽4cm 的矩形纸片ABCD 折叠,使点A 与C 重合,则折痕EF 的长为
_____cm.
【答案】25
……。
2011全国各地中考数学100套真题分类汇编第28章图形的相似与位似一、选择题1. (2011浙江金华,9,3分)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A.600mB.500mC.400mD.300m环城路曙 光 路西安路南京路书店八一街400m 400m 300m【答案】B2.(2011安徽,9,4分)如图,四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD =22,CD =2,点P 在四边形ABCD 的边上.若P 到BD 的距离为 32,则点P 的个数为( )A .1B .2C .3D .4【答案】B3. (2011广东东莞,31,3分)将左下图中的箭头缩小到原来的12,得到的图形是( )【答案】A4. (2011浙江省,6,3分)如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A 与点B 重合,折痕为DE ,则S △BCE :S △BDE 等于( )A. 2:5 B.14:25 C.16:25 D. 4:21【答案】B5. (2011浙江台州,5,4分)若两个相似三角形的面积之比为1:4,则它们的周长之比为( )A. 1:2B. 1:4C. 1:5D. 1:16【答案】A6. (2011浙江省嘉兴,7,4分)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32(B )33(C )34(D )36【答案】B7. (2011浙江丽水,9,3分)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A.600mB.500mC.400mD.300m环城路曙 光 路西安路南京路书店八一街400m 400m 300m【答案】B8. (2011台湾台北,26)图(十)为一ABC ∆,其中D 、E 两点分别在AB 、AC 上,且AD=31,DB =29,AE =30,EC =32。
2011年全国各地中考数学真题分类汇编—矩形、菱形与正方形1. (2011福建福州,21,12分)已知,矩形ABCD 中,4AB cm =,8BC cm =,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图10-1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图10-2,动点P 、Q 分别从A 、C 两点同时出发,沿AFB ∆和CDE ∆各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中, ①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,0ab ≠),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.【答案】(1)证明:①∵四边形ABCD 是矩形∴AD ∥BC∴CAD ACB ∠=∠,AEF CFE ∠=∠ ∵EF 垂直平分AC ,垂足为O ∴OA OC = ∴AOE ∆≌COF ∆ ∴OE OF =∴四边形AFCE 为平行四边形 又∵EF AC ⊥ABC DE图10-1O图10-2备用图∴四边形AFCE 为菱形②设菱形的边长AF CF xcm ==,则(8)BF x cm =- 在Rt ABF ∆中,4AB cm =由勾股定理得2224(8)x x +-=,解得5x =∴5AF cm =(2)①显然当P 点在AF 上时,Q 点在CD 上,此时A 、C 、P 、Q 四点不可能构成平行四边形;同理P 点在AB 上时,Q 点在DE 或CE 上,也不能构成平行四边形.因此只有当P 点在BF 上、Q 点在ED 上时,才能构成平行四边形∴以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,PC QA = ∵点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒 ∴5PC t =,124QA t =- ∴5124t t =-,解得43t = ∴以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,43t =秒.②由题意得,以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,点P 、Q 在互相平行的对应边上. 分三种情况:i)如图1,当P 点在AF 上、Q 点在CE 上时,AP CQ =,即12a b =-,得12a b += ii)如图2,当P 点在BF 上、Q 点在DE 上时,AQ CP =, 即12b a -=,得12a b +=iii)如图3,当P 点在AB 上、Q 点在CD 上时,AP CQ =,即12a b -=,得12a b +=综上所述,a 与b 满足的数量关系式是12a b +=(0)ab ≠2. (2011广东广州市,18,9分)如图4,AC 是菱形ABCD 的对角线,点E 、F 分别在边AB 、AD 上,且AE =AF . 求证:△ACE ≌△ACF .【答案】∵四边形ABCD 为菱形 ∴∠BAC=∠DAC 又∵AE=AF ,AC=AC ∴△ACE ≌△ACF (SAS )3. (2011山东滨州,24,10分)如图,在△ABC 中,点O 是AC 边上(端点除外)的一个动点,过点O 作直线MN ∥BC .设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F ,连接AE 、AF 。
2011年全国各地100份中考数学试卷分类汇编第26章 矩形、菱形与正方形一、选择题1. (2011浙江省舟山,10,3分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为( )(A )48cm(B )36cm (C )24cm (D )18cm【答案】A 2. (2011山东德州8,3分)图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第n 个图形的周长是(A )2n (B )4n (C )12n + (D )22n +【答案】C3. (2011山东泰安,17 ,3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为A.17B.17C.18D.19图1图2 图3……(第10题) FA B C D H EG ①② ③ ④ ⑤4. (2011山东泰安,19 ,3分)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE 折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为A.23B. 332C. 3D.6【答案】A5. (2011浙江杭州,10,3)在矩形ABCD中,有一个菱形B F D E(点E,F分别在线段AB,CD上),记它们的面积分别为ABCD BFDES S和.现给出下列命题:()①若232ABCDBFDESS+=,则3tan3EDF∠=.②若2,DE BD EF=∙则2DF AD=.则:A.①是真命题,②是真命题 B.①是真命题,②是假命题C.①是假命题,②是真命题 D,①是假命题,②是假命题【答案】A6. (2011浙江衢州,1,3分)衢州市新农村建设推动了农村住宅旧貌变新颜,如图为一农村民居侧面截图,屋坡AF AG、分别架在墙体的点B、点C处,且AB AC=,侧面四边形BDEC为矩形,若测得100FAG∠=︒,则FBD∠=( )A. 35°B. 40°C. 55°D. 70°【答案】C7. (2011浙江温州,6,4分)如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOB= 60°,AC=16,则图中长度为8的线段有( )A.2条B.4条C.5条D.6条EAB CDFG(第5题)8. 2011四川重庆,10,4分)如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C9. (2011浙江省嘉兴,10,4分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为( )(A )48cm(B )36cm (C )24cm (D )18cm【答案】A 10.(2011台湾台北,29)如图(十二),长方形ABCD 中,E 为BC 中点,作AEC 的角平分线交AD 于F 点。
【解】(1) 假设当m =10时,存在点P 使得点Q 与点C 重合(如下图),∵PQ ⊥PD ∴∠DPC =90°,∴∠APD +∠BPC =90°, 又∠ADP +∠APD =90°,∴∠BPC =∠ADP , 又∠B =∠A =90°,∴△PBC ∽△DAP ,∴PB BCDA AP=, ∴1044AP AP-=,∴2AP =或8,∴存在点P 使得点Q 与点C 重合,出此时AP 的长2 或8.(2) 如下图,∵PQ ∥AC ,∴∠BPQ =∠BAC ,∵∠BPQ =∠ADP ,∴∠BAC =∠ADP ,又∠B =∠DAP =90°,∴△ABC ∽△DAP ,∴AB BC DA AP =,即44m AP =,∴16AP m=.∵PQ ∥AC ,∴∠BPQ =∠BAC ,∵∠B =∠B ,∴△PBQ ∽△ABC ,PB BQAB BC=,即164m BQ m m -=,∴2164BQ m =-.(3)由已知 PQ ⊥PD ,所以只有当DP =PQ 时,△PQD 为等腰三角形(如图),∴∠BPQ =∠ADP ,又∠B =∠A =90°,∴△PBQ ≌△DAP , ∴PB =DA =4,AP =BQ =4m -,∴以P 、Q 、C 、D 为顶点的四边形的面积S 与m 之间的函数关系式为:S 四边形PQCD = S 矩形ABCD-S △DAP -S △QBP =1122DA AB DA AP PB BQ ⨯-⨯⨯-⨯⨯=()()114444422m m m -⨯⨯--⨯⨯-=16(4<m ≤8).30.(2011贵州贵阳,18,10分)如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA,延长BE交边AD于点F.(1)求证:△ADE≌△BCE;(5分)(2)求∠AFB的度数.(5分)(第18题图)【答案】解:(1)∵四边形ABCD是正方形,∴∠ADC=∠BCD=90°,AD=BC.∵△CDE是等边三角形,∴∠CDE=∠DCE=60°,DE=CE.∵∠ADC=∠BCD=90°,∠CDE=∠DCE=60°,∴∠ADE=∠BCE=30°.∵AD=BC,∠ADE=∠BCE,DE=CE,∴△ADE≌△BCE.(2)∵△ADE≌△BCE,∴AE=BE,∴∠BAE=∠ABE.∵∠BAE+∠DAE=90°,∠ABE+∠AFB=90°,∠BAE=∠ABE,∴∠DAE=∠AFB.∵AD=CD=DE,∴∠DAE=∠DEA.∵∠ADE=30°,∴∠DAE=75°,∴∠AFB=75°.31.(2011广东肇庆,20,7分)如图,在正方形ABCD中,E为对角线AC上一点,连接EB、ED.(1)求证:△BEC≌△DEC;(2)延长BE交AD于点F,若∠DEB =140 ,求∠AFE的度数.【答案】解:(1)证明:∵四边形ABCD 是正方形 ∴CD =CB , ∵AC 是正方形的对角线 ∴∠DCA =∠BCA又 CE = CE ∴△BEC ≌△DEC (2)∵∠DEB = 140︒由△BEC ≌△DEC 可得∠DEC =∠BEC =140︒÷2=70︒, ∴∠AEF =∠BEC =70︒,又∵AC 是正方形的对角线, ∠DAB =90︒ ∴∠DAC =∠BAC =90︒÷2=45︒, 在△AEF 中,∠AFE =180︒— 70︒— 45︒=65︒32. (2011广东肇庆,22,8分)如图,矩形ABCD 的对角线相交于点O ,DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 是菱形;(2)若∠ACB =30︒,菱形OCED 的面积为38,求AC 的长.【答案】解:(1)证明:∵DE ∥OC ,CE ∥OD ,∴四边形OCED 是平行四边形.∵四边形ABCD 是矩形 ∴ AO =OC =BO =OD ∴四边形OCED 是菱形.(2)∵∠ACB =30° ∴∠DCO = 90°— 30°= 60° 又∵OD = OC , ∴△OCD 是等边三角形 过D 作DF ⊥OC 于F ,则CF =21OC ,设CF =x ,则OC = 2x ,AC =4x 在Rt △DFC 中,tan 60°=FCDF∴DF =FC ⋅ tan 60°x 3= 由已知菱形OCED 的面积为38得OC ⋅ DF =38,即3832=⋅x x , 解得 x =2, ∴ AC =4⨯2=833. (2011湖北襄阳,25,10分)如图9,点P 是正方形ABCD 边AB 上一点(不与点A ,B 重合),连接PD 并将线段PD 绕点P 顺时针方向旋转90°得到线段PE ,PE 交边BC 于点F ,连接BE ,DF .E图E(1)求证:∠ADP =∠EPB ; (2)求∠CBE 的度数; (3)当ABAP的值等于多少时,△PFD ∽△BFP ?并说明理由.【答案】(1)证明:∵四边形ABCD 是正方形∴∠A =∠PBC =90°,AB =AD ,∴∠ADP +∠APD =90° ·················· 1分 ∵∠DPE =90° ∴∠APD +∠EPB =90° ∴∠ADP =∠EPB . ······························································································ 2分 (2)过点E 作EG ⊥AB 交AB 的延长线于点G ,则∠EGP =∠A =90° ····· 3分GPFE DCBA又∵∠ADP =∠EPB ,PD =PE ,∴△PAD ≌△EGP∴EG =AP ,AD =AB =PG ,∴AP =EG =BG ·············································· 4分 ∴∠CBE =∠EBG =45°. ················································································· 5分 (3)方法一:当21=AB AP 时,△PFE ∽△BFP . ······································································· 6分 ∵∠ADP =∠FPB ,∠A =∠PBF ,∴△ADP ∽△BPF ······························ 7分 设AD =AB =a ,则AP =PB =a 21,∴BF =BP ·a AD AP 41= ···················· 8分 ∴a AP AD PD 2522=+=,a BF PB PF 4522=+= ∴55==PF BF PD PB ································································································ 9分 又∵∠DPF =∠PBF =90°,∴△ADP ∽△BFP ········································· 10分 方法二:假设△ADP ∽△BFP ,则PFBFPD PB =. ····························································· 6分 ∵∠ADP =∠FPB ,∠A =∠PBF ,∴△ADP ∽△BPF ···························· 7分PFEDCBA图9∴BFAPPF PD =, ··································································································· 8分 ∴BFAPBF PB =, ···································································································· 9分 ∴PB =AP , ∴当21=AB AP 时,△PFE ∽△BFP . 10分34. (2011湖南永州,25,10分)探究问题: ⑴方法感悟: 如图①,在正方形ABCD 中,点E ,F 分别为DC ,BC 边上的点,且满足∠EAF=45°,连接EF ,求证DE+BF=EF .感悟解题方法,并完成下列填空: 将△ADE 绕点A 顺时针旋转90°得到△ABG ,此时AB 与AD 重合,由旋转可得: AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°, ∴∠ABG+∠ABF=90°+90°=180°,因此,点G ,B ,F 在同一条直线上. ∵∠EAF=45° ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°. ∵∠1=∠2, ∴∠1+∠3=45°. 即∠GAF=∠_________. 又AG=AE ,AF=AF ∴△GAF ≌_______. ∴_________=EF ,故DE+BF=EF .⑵方法迁移:如图②,将AB C Rt ∆沿斜边翻折得到△ADC ,点E ,F 分别为DC ,BC 边上的点,且∠EAF=21∠DAB .试猜想DE ,BF ,EF 之间有何数量关系,并证明你的猜想.⑶问题拓展:321GEFD CBA (第25题)①EFDCBA(第25题)②如图③,在四边形ABCD 中,AB=AD ,E ,F 分别为DC,BC 上的点,满足DAB EAF ∠=∠21,试猜想当∠B 与∠D 满足什么关系时,可使得DE+BF=EF .请直接写出你的猜想(不必说明理由).【答案】⑴EAF 、△EAF 、GF . ⑵DE+BF=EF ,理由如下: 假设∠BAD 的度数为m ,将△ADE 绕点A 顺时针旋转︒m 得到△ABG ,此时AB 与AD 重合,由旋转可得:AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°, ∴∠ABG+∠ABF=90°+90°=180°,因此,点G ,B ,F 在同一条直线上. ∵∠EAF=︒m 21 ∴∠2+∠3=∠BAD-∠EAF=︒=︒-︒m m m 2121 ∵∠1=∠2, ∴∠1+∠3=︒m 21. 即∠GAF=∠EAF 又AG=AE ,AF=AF ∴△GAF ≌△EAF . ∴GF=EF , 又∵GF=BG+BF=DE+BF ∴DE+BF=EF .⑶当∠B 与∠D 互补时,可使得DE+BF=EF . 35. (2011江苏盐城,27,12分)情境观察将矩形ABCD 纸片沿对角线AC 剪开,得到△ABC 和△A′C ′D ,如图1所示.将△A′C ′D 的顶点A′与点A 重合,并绕点A 按逆时针方向旋转,使点D 、A (A′)、B 在同一条直线321GE FDCB A (第25题)②解得图EFD CBA(第25题)③上,如图2所示.观察图2可知:与BC 相等的线段是 ▲ ,∠CAC ′= ▲ °.问题探究如图3,△ABC 中,AG ⊥BC 于点G ,以A 为直角顶点,分别以AB 、AC 为直角边,向△ABC 外作等腰Rt △ABE 和等腰Rt △ACF ,过点E 、F 作射线GA 的垂线,垂足分别为P 、Q . 试探究EP 与FQ 之间的数量关系,并证明你的结论.拓展延伸如图4,△ABC 中,AG ⊥BC 于点G ,分别以AB 、AC 为一边向△ABC 外作矩形ABME 和矩形ACNF ,射线GA 交EF 于点H . 若AB =k AE ,AC =k AF ,试探究HE 与HF 之间的数量关系,并说明理由.【答案】情境观察AD (或A′D ),90 问题探究结论:EP =FQ .证明:∵△ABE 是等腰三角形,∴AB =AE ,∠BAE =90°.∴∠BAG +∠EAP =90°.∵AG ⊥BC ,∴∠BAG +∠ABG =90°,∴∠ABG =∠EAP .图4MNGFECBAH图3AB CEFGPQ图1 图2C'A'B A DCABCDBCD A (A')C'∵EP ⊥AG ,∴∠AGB =∠EP A =90°,∴Rt △ABG ≌Rt △EAP . ∴AG =EP . 同理AG =FQ . ∴EP =FQ . 拓展延伸结论: HE =HF .理由:过点E 作EP ⊥GA ,FQ ⊥GA ,垂足分别为P 、Q .Q P H ABCEFGNM∵四边形ABME 是矩形,∴∠BAE =90°,∴∠BAG +∠EAP =90°.AG ⊥BC ,∴∠BAG +∠ABG =90°, ∴∠ABG =∠EAP .∵∠AGB =∠EP A =90°,∴△ABG ∽△EAP ,∴AG EP = ABEA.同理△ACG ∽△F AQ ,∴AG FP = ACF A .∵AB =k AE ,AC =k AF ,∴AB EA = AC F A =k ,∴AG EP = AGFP. ∴EP =FQ .∵∠EHP =∠FHQ ,∴Rt △EPH ≌Rt △FQH . ∴HE =HF .36. (20011江苏镇江,23,7分)已知:如图,在梯形ABCD 中A B ∥CD,BC=CD,AD ⊥BD,E 为AB 中点, 求证:四边形BCDE 是菱形.答案:证明:∵AD ⊥BD , ∴∠ADB=90°。
2021年中考数学真题分项汇编【全国通用】(第02期)专题20矩形菱形正方形姓名:__________________ 班级:______________ 得分:_________________ 一、单选题1.如图,在边长为3的正方形ABCD 中,30∠=︒CDE ,DE CF ⊥,则BF 的长是( )A.1 B C D .22.如图,在边长为4的正方形ABCD 中,点E ,F 分别在CD ,AC 上,BF EF ⊥,1CE =,则AF 的长是( )A.B C D .543.如图,矩形AOBC 的顶点A 、B 在坐标轴上,点C 的坐标是(﹣10,8),点D 在AC 上,将BCD 沿BD 翻折,点C 恰好落在OA 边上点E 处,则tan ∠DBE 等于( )A .34B .35C D .124.如图,在等腰直角ABC 中,90C ∠=︒,M 、N 分别为BC 、AC 上的点,50CNM ∠=︒,P 为MN 上的点,且12PC MN =,117BPC ∠=︒,则ABP ∠=( )A .22︒B .23︒C .25︒D .27︒5.如图,在平面直角坐标系中,//AB DC ,AC BC ⊥,5CD AD ==,6AC =,将四边形ABCD 向左平移m 个单位后,点B 恰好和原点O 重合,则m 的值是( )A .11.4B .11.6C .12.4D .12.66.如图1,动点P 从矩形ABCD 的顶点A 出发,在边AB ,BC 上沿A →B →C 的方向,以1cm/s 的速度匀速运动到点C ,APC △的面积S (cm 2)随运动时间t (s )变化的函数图象如图2所示,则AB 的长是( )A .3cm 2B .3cmC .4cmD .6cm7.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,点E 在BD 上,连接AE ,CE ,60ABC ∠=︒,15BCE ∠=︒,2ED =+,则AD =( )A.4 B .3 C .D .28.如图,将图1中的菱形纸片沿对角线剪成4个直角三角形,拼成如图2的四边形ABCD (相邻纸片之间不重叠,无缝隙).若四边形ABCD 的面积为13,中间空白处的四边形EFGH 的面积为1,直角三角形的两条直角边分别为a 和b ,则()2a b +=( )A .12B .13C .24D .259.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E 是CD 中点,连接OE ,则下列结论中不一定正确的是( )A .AB =AD B .OE 12=AB C .∠DOE =∠DEO D .∠EOD =∠EDO10.如图,在菱形ABCD 中,点E ,F 分别在AB ,CD 上,且BE =2AE ,DF =2CF ,点G ,H 分别是AC 的三等分点,则S 四边形EHFG ÷S 菱形ABCD 的值为( )A .19B .16C .13D .2911.如图,正方形ABCD 的边长为3,E 为BC 边上一点,BE =1.将正方形沿GF 折叠,使点A 恰好与点E 重合,连接AF ,EF ,GE ,则四边形AGEF 的面积为( )A .B .C .6D .512.如图,将矩形纸片ABCD 的两个直角进行折叠,使CB ,AD 恰好落在对角线AC 上,B ′,D ′分别是B ,D 的对应点,折痕分别为CF ,AE .若AB =4,BC =3,则线段B D ''的长是( )A .52B .2C .32D .113.如图,在矩形纸片ABCD 中,7AB =,9BC =,M 是BC 上的点,且2CM =.将矩形纸片ABCD 沿过点M 的直线折叠,使点D 落在AB 上的点P 处,点C 落在点C '处,折痕为MN ,则线段P A 的长是( )A .4B .5C .6D .14.如图,在边长为2的正方形ABCD 中,若将AB 绕点A 逆时针旋转60︒,使点B 落在点B '的位置,连接B B ',过点D 作DE ⊥BB ',交'BB 的延长线于点E ,则B E '的长为( )A 1B .2C D第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题15.如图,矩形ABCD 中,6AB =,8BC =,对角线BD 的垂直平分线EF 交AD 于点E 、交BC 于点F ,则线段EF 的长为 __.16.如图,在矩形ABCD 中,E 为AD 的中点,连接CE ,过点E 作CE 的垂线交AB 于点F ,交CD 的延长线于点G ,连接CF .已知12AF =,5CF =,则EF =_________.17.如图,一个由8个正方形组成的“C”型模板恰好完全放入一个矩形框内,模板四周的直角顶点M,N,O,P,Q都在矩形ABCD的边上,若8个小正方形的面积均为1,则边AB的长为__________.AD=,点P从点B出发,以2cm/s的速度沿BC边向点C运18.如图,在矩形ABCD中,8cmAB=,12cmv的速度沿CD边向点D运动,到达点D停止,规定其动,到达点C停止,同时,点Q从点C出发,以cm/s△全等.中一个动点停止运动时,另一个动点也随之停止运动.当v为_____时,ABP△与PCQ19.如图,在菱形ABCD中,60∠=︒,G为AD中点,点E在BC延长线上,F、H分别为CE、GE中点,A∠=∠,CF=AB=_____.EHF DGE20.如图,90POQ ∠=︒,定长为a 的线段端点A ,B 分别在射线OP ,OQ 上运动(点A ,B 不与点O 重合),C 为AB 的中点,作OAC 关于直线OC 对称的OA C ',A O '交AB 于点D ,当OBD 是等腰三角形时,OBD ∠的度数为_____________.21.如图,四边形ABCD 为矩形,AB =AD =P 为边AB 上一点.以DP 为折痕将△DAP 翻折,点A 的对应点为点A '.连结AA ',AA ' 交PD 于点M ,点Q 为线段BC 上一点,连结AQ ,MQ ,则AQ +MQ 的最小值是________22.如图,在矩形ABCD 中,AB =6,BC =10,以点B 为圆心、BC 的长为半径画弧交AD 于点E ,再分别以点C ,E 为圆心、大于12CE 的长为半径画弧,两弧交于点F ,作射线BF 交CD 于点G ,则CG 的长为__________________.23.如图,在矩形ABCD 中,AD ,对角线相交于点O ,动点M 从点B 向点A 运动(到点A 即停止),点N 是AD 上一动点,且满足∠MON =90°,连结MN .在点M 、N 运动过程中,则以下结论中,①点M 、N 的运动速度不相等;②存在某一时刻使ΔAMNMON S S =;③AMNS逐渐减小;④222MN BM DN =+.正确的是________.(写出所有正确结论的序号)24.如图,正方形OABC的边长为2,将正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,连接BC′,当点A′恰好落在线段BC′上时,线段BC′的长度是___.25.如图,矩形ABCD中,AD,点E在BC边上,且AE=AD,DF⊥AE于点F,连接DE,BF,BF的延长线交DE于点O,交CD于点G.以下结论:①AF=DC,②OF:BF=CE:CG,③S△BCG△DFG,④图形中相似三角形有6对,则正确结论的序号是____.∠平分线BE的垂线,垂足为点E,且交BD于点F;26.如图,在矩形ABCD中,连接BD,过点C作DBC∠平分线DH的垂线,垂足为点H,且交BD于点G,连接HE,若BC=CD过点C作BDC则线段HE的长度为_________.三、解答题27.如图,在ABCD中,E为CD边的中点,连接BE并延长,交AD的延长线于点F,延长ED至点G,=,分别连接AE,AG,FG.使DG DE(1)求证:BCE FDE ≅△△;(2)当BF 平分ABC ∠时,四边形AEFG 是什么特殊四边形?请说明理由. 28.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,BOC CEB ≅△△.(1)求证:四边形OBEC 是矩形;(2)若120ABC ∠=︒,6AB =,求矩形OBEC 的周长.29.如图,点E 是矩形ABCD 的边BC 上一点,将△ABE 绕点A 逆时针旋转至△AB 1E 1的位置,此时E 、B 1、E 1三点恰好共线.点M 、N 分别是AE 和AE 1的中点,连接MN 、NB 1.(1)求证:四边形MEB 1N 是平行四边形; (2)延长EE 1交AD 于点F ,若EB 1=E 1F ,11AE FCB ESS=,判断△AE 1F 与△CB 1E 是否全等,并说明理由.30.如图,四边形ABCD 是平行四边形,延长DA ,BC ,使得AE =CF ,连接BE ,DF . (1)求证:ABE CDF △≌△;(2)连接BD ,∠1=30°,∠2=20°,当∠ABE = °时,四边形BFDE 是菱形.31.如图,在ABCD 中,G 为BC 边上一点,DG DC =,延长DG 交AB 的延长线于点E ,过点A 作//AF ED 交CD 的延长线于点F .求证:四边形AEDF 是菱形.32.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,//BE AC ,//AE BD . (1)求证:四边形AOBE 是菱形;(2)若60AOB ∠=︒,4AC =,求菱形AOBE 的面积.33.如图,四边形ABCD 中,AD //BC ,AB =AD =CD 12=BC .分别以B 、D 为圆心,大于12BD 长为半径画弧,两弧交于点M .画射线AM 交BC 于E ,连接DE . (1)求证:四边形ABED 为菱形; (2)连接BD ,当CE =5时,求BD 的长.34.已知:如图,在▱ABCD 中,点E 、F 分别在AD 、BC 上,且BE 平分∠ABC ,EF ∥AB .求证:四边形ABFE 是菱形.35.如图,四边形ABCD 是正方形,△ECF 为等腰直角三角形,∠ECF =90°,点E 在BC 上,点F 在CD 上,N 为EF 的中点,连结NA ,以NA ,NF 为邻边作□ANFG .连结DG ,DN ,将Rt △ECF 绕点C 顺时针方向旋转,旋转角为α(0°≤α≤360°).(1)如图1,当α=0°时,DG 与DN 的关系为____________________;(2)如图2,当045α︒<<︒时,(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由;(3)在Rt △ECF 旋转的过程中,当□ANFG 的顶点G 落在正方形ABCD 的边上,且AB =12,EC =连结GN ,请直接写出GN 的长.36.已知:如图,在矩形ABCD 和等腰Rt ADE △中,8cm AB =,6cm AD AE ==,90DAE ∠=︒.点P 从点B 出发,沿BA 方向匀速运动.速度为1cm/s ;同时,点Q 从点D 出发,沿DB 方向匀速运动,速度为1cm/s .过点Q 作//QM BE ,交AD 于点H ,交DE 于点M ,过点Q 作//QN BC ,交CD 于点N .分别连接PQ ,PM ,设运动时间为()()s 08t t <<.解答下列问题:(1)当PQ BD ⊥时,求t 的值;(2)设五边形PMDNQ 的面积为()2cm S ,求S 与t 之间的函数关系式; (3)当PQ PM =时,求t 的值;(4)若PM 与AD 相交于点W ,分别连接QW 和EW .在运动过程中,是否存在某一时刻t ,使AWE QWD ∠=∠?若存在,求出t 的值;若不存在,请说明理由.37.已知正方形ABCD ,E ,F 为平面内两点.(探究建模)(1)如图1,当点E 在边AB 上时,DE DF ⊥,且B ,C ,F 三点共线.求证:AE CF =; (类比应用)(2)如图2,当点E 在正方形ABCD 外部时,DE DF ⊥,AE EF ⊥,且E ,C ,F 三点共线.猜想并证明线段AE ,CE ,DE 之间的数量关系;(拓展迁移)(3)如图3,当点E 在正方形ABCD 外部时,AE EC ⊥,AE AF ⊥,DE BE ⊥,且D ,F ,E 三点共线,DE 与AB 交于G 点.若3DF =,AE CE 的长.38.如图,平面直角坐标系中,O 是坐标原点,直线15(0)y kx k =+≠经过点()3,6C ,与x 轴交于点A ,与y 轴交于点B .线段CD 平行于x 轴,交直线34y x =于点D ,连接OC ,AD .(1)填空:k = __________.点A 的坐标是(__________,__________);(2)求证:四边形OADC 是平行四边形;(3)动点P 从点O 出发,沿对角线OD 以每秒1个单位长度的速度向点D 运动,直到点D 为止;动点Q 同时从点D 出发,沿对角线OD 以每秒1个单位长度的速度向点O 运动,直到点O 为止.设两个点的运动时间均为t 秒.①当1t =时,CPQ 的面积是__________.②当点P ,Q 运动至四边形CPAQ 为矩形时,请直接写出此时t 的值.39.问题背景:如图1,在矩形ABCD 中,AB =30ABD ∠=︒,点E 是边AB 的中点,过点E 作EF AB ⊥交BD 于点F .实验探究:(1)在一次数学活动中,小王同学将图1中的BEF 绕点B 按逆时针方向旋转90︒,如图2所示,得到结论:①AE DF=_____;②直线AE 与DF 所夹锐角的度数为______. (2)小王同学继续将BEF 绕点B 按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当BEF 旋转至D 、E 、F 三点共线时,则ADE 的面积为______.40.已知:在正方形ABCD 的边BC 上任取一点F ,连接AF ,一条与AF 垂直的直线l (垂足为点P )沿AF 方向,从点A 开始向下平移,交边AB 于点E .(1)当直线l经过正方形ABCD的顶点D时,如图1所示.求证:AE BF=;∠的度数;(2)当直线l经过AF的中点时,与对角线BD交于点Q,连接FQ,如图2所示.求AFQ(3)直线l继续向下平移,当点P恰好落在对角线BD上时,交边CD于点G,如图3所示.设2,,===,求y与x之间的关系式.AB BF x DG y。
2011年全国各地100份中考数学试卷分类汇编第26章 矩形、菱形与正方形一、选择题1. (2011浙江省舟山,10,3分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为( )(A )48cm(B )36cm (C )24cm (D )18cm【答案】A 2. (2011山东德州8,3分)图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第n 个图形的周长是(A )2n (B )4n (C )12n + (D )22n +【答案】C3. (2011山东泰安,17 ,3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为A.17B.17C.18D.19【答案】B(第10题) FA B C D H EG ①② ③ ④⑤ 图1图2图3……4. (2011山东泰安,19 ,3分)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为A.23B. 332 C. 3D.6【答案】A5. (2011浙江杭州,10,3)在矩形ABCD中,有一个菱形B F D E(点E,F分别在线段AB,CD上),记它们的面积分别为ABCD BFDES S和.现给出下列命题:()①若232ABCDBFDESS+=,则3tan3EDF∠=.②若2,DE BD EF=∙则2DF AD=.则:A.①是真命题,②是真命题B.①是真命题,②是假命题C.①是假命题,②是真命题D,①是假命题,②是假命题【答案】A6. (2011浙江衢州,1,3分)衢州市新农村建设推动了农村住宅旧貌变新颜,如图为一农村民居侧面截图,屋坡AF AG、分别架在墙体的点B、点C处,且AB AC=,侧面四边形BDEC为矩形,若测得100FAG∠=︒,则FBD∠=( )A. 35°B. 40°C. 55°D. 70°【答案】C7. (2011浙江温州,6,4分)如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOB= 60°,AC=16,则图中长度为8的线段有( )A.2条B.4条C.5条D.6条EAB CDFG(第5题)【答案】D8. 2011四川重庆,10,4分)如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是()A .1B .2C .3D .4【答案】C9. (2011浙江省嘉兴,10,4分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为( )(A )48cm(B )36cm (C )24cm (D )18cm:【答案】A 10.(2011台湾台北,29)如图(十二),长方形ABCD 中,E 为BC 中点,作AEC 的角平分线交AD 于F 点。
若AB =6,AD =16,则FD 的长度为何?A .4B .5C .6D .8【答案】C11. (2011湖南邵阳,7,3分)如图(二)所示,ABCD 中,对角线AC ,BD 相交于点O ,且AB ≠AD ,则下列式子不正确的是()A.AC ⊥BDB.AB =CDC. BO=ODD.∠BAD=∠BCD(第10题) FA B C D H EG ①② ③ ④ ⑤… A 1 A A 2 A 3B B 1 B 2B 3C C 2 C 1 C 3D D 2 D 1 D 3【答案】A.提示:当且仅当ABCD 为菱形时,AC ⊥BD 。
12. (2011湖南益阳,7,4分)如图2,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于12AB 的长为半径画弧,两弧相交于C 、D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是...A .矩形B .菱形C .正方形D .等腰梯形【答案】B13. (2011山东聊城,7,3分)已知一个菱形的周长是20cm ,两条对角线的比是4∶3,则这个菱形的面积是( )A .12cm 2B . 24cm 2C . 48cm 2D . 96cm 2【答案】B14. (2011四川宜宾,7,3分)如图,矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF=3,则AB 的长为( )A .3B .4C .5D .6【答案】D15. ( 2011重庆江津, 10,4分)如图,四边形ABCD 中,AC=a,BD=b,且AC ⊥BD,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2……,如此进行下去,得到四边形A n B n C n D n .下列结论正确的有( )①四边形A 2B 2C 2D 2是矩形; ②四边形A 4B 4C 4D 4是菱形;③四边形A 5B 5C 5D 5的周长4b a +; ④四边形A n B n C n D n 的面积是12+n ab(第7题图) FEDCB A B ACD 图2A.①②B.②③C.②③④D.①②③④【答案】C ·16. (2011江苏淮安,5,3分)在菱形ABCD 中,AB=5cm ,则此菱形的周长为( )A. 5cmB. 15cmC. 20cmD. 25cm【答案】C17. (2011山东临沂,11,3分)如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 于点D 、F ,BE ⊥DF 交DF 的延长线于点E ,已知∩A =30°,BC =2,AF =BF,则四边形BCDE 的面积是( )A .23B .33C .4D .43【答案】A18. (2011四川绵阳7,3)下列关于矩形的说法中正确的是A .对角线相等的四边形是矩形B .对角线互相平分的四边形是矩形C .矩形的对角线互相垂直且平分D .矩形的对角线相等且互相平分【答案】D19. (2011四川乐山9,3分)如图(5),在正方形ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 交BF 于点H ,CG ∥AE 交BF 于点G 。
下列结论:①tan ∠HBE=cot ∠HEB ②CG BF BC CF ⋅=⋅ ③BH=FG ④22BC BG CF GF=.其中正确的序号是 A .①②③ B .②③④ C . ①③④ D .①②④【答案】D20.(2011江苏无锡,5,3分)菱形具有而矩形不一定具有的性质是 ( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补【答案】A21. (2011湖北武汉市,12,3分)如图,在菱形ABCD 中,AB =BD ,点E ,F 分别在AB ,AD 上,且AE =DF .连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H .下列结论: ①△AED ≌△DFB ; ②S 四边形 BCDG = 43 CG 2; ③若AF =2DF ,则BG =6GF .其中正确的结论A .只有①②.B .只有①③.C .只有②③.D .①②③.【答案】D22. (2011广东茂名,5,3分)如图,两条笔直的公路1l 、2l 相交于点O ,村庄C 的村民在公路的旁边建三个加工厂 A .B 、D ,已知AB =BC =CD =DA =5公里,村庄C 到公路1l 的距离为4公里,则村庄C 到公路2l 的距离是A .3公里B .4公里C .5公里D .6公里【答案】B23. (2011湖北襄阳,10,3分)顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 一定是A .菱形B .对角线互相垂直的四边形C .矩形D .对角线相等的四边形【答案】D24. (2011湖南湘潭市,5,3分)下列四边形中,对角线相等且互相垂直平分的是A.平行四边形B.正方形C.等腰梯形D.矩形【答案】B二、填空题1. (2011山东滨州,17,4分)将矩形ABCD 沿AE 折叠,得到如图所示图形。
若∠CED ′=56°,则∠AED 的大小是_______.A B CDEFGH 第12题图 (第17题图) ED D′C BA2l 1l【答案】62°2. (2011山东德州16,4分)长为1,宽为a 的矩形纸片(121<<a ),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n 此操作后,剩下的矩形为正方形,则操作终止.当n =3时,a 的值为_____________.【答案】35或343. (2011湖北鄂州,5,3分)如图:矩形ABCD 的对角线AC=10,BC=8,则图中五个小矩形的周长之和为_______.【答案】284. (2011山东烟台,17,4分)如图,三个边长均为2的正方形重叠在一起,O 1、O 2是其中两个正方形的中心,则阴影部分的面积是 . O 2O 1【答案】25. (2011 浙江湖州,16,4)如图,甲类纸片是边长为2的正方形,乙类纸片是边长为1的正方形,丙类纸片是长、宽分别为2和1的长方形.现有甲类纸片1张,乙类纸片4张,则应至少取丙类纸片张,才能用它们拼成一个新的正方形.A BC D第5题图第一次操作第二次操作【答案】46. (2011浙江绍兴,15,5分) 取一张矩形纸片按照图1、图2中的方法对折,并沿图3中过矩形顶点的斜线(虚线)剪开,那剪下的①这部分展开,平铺在桌面上,若平铺的这个图形是正六边形,则这张矩形纸片的宽和长之比为 .【答案】3:27. (2011甘肃兰州,20,4分)如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。
已知第一个矩形的面积为1,则第n 个矩形的面积为 。