高中物理模型-人船模型
- 格式:doc
- 大小:45.00 KB
- 文档页数:2
《人船模型》说课稿尊敬的各位评委老师:大家好!今天我说课的题目是《人船模型》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析“人船模型”是高中物理动量守恒定律这一章节中的一个重要模型。
它将抽象的物理概念与实际的物理情境相结合,对于学生理解动量守恒定律的内涵和应用具有重要的意义。
本节课在教材中的地位和作用主要体现在以下几个方面:1、巩固和深化动量守恒定律的知识。
通过对人船模型的分析和研究,让学生更加深入地理解动量守恒的条件和规律。
2、培养学生的物理思维能力。
人船模型需要学生从系统的角度出发,分析物体之间的相互作用和运动关系,有助于培养学生的逻辑思维和综合分析能力。
3、为后续学习其他复杂的物理模型打下基础。
人船模型是一个相对简单但具有代表性的模型,掌握了它的分析方法和解题思路,有助于学生在后续学习中更好地应对更复杂的物理问题。
二、学情分析1、知识基础学生已经学习了动量守恒定律的基本概念和公式,对动量守恒的条件有了一定的理解,但对于如何将其应用到实际问题中,特别是像人船模型这样的较为复杂的情境,还存在一定的困难。
2、能力水平高中生已经具备了一定的逻辑思维能力和数学运算能力,但在处理物理问题时,往往容易忽视物理过程的分析,缺乏将实际问题转化为物理模型的能力。
3、学习特点学生在学习过程中,对于直观、生动的物理现象和实验比较感兴趣,但对于抽象的理论知识和复杂的数学推导可能会感到枯燥和困难。
三、教学目标1、知识与技能目标(1)理解人船模型的物理情境和动量守恒的条件。
(2)掌握人船模型中位移关系的推导和应用。
(3)能够运用动量守恒定律解决人船模型相关的问题。
2、过程与方法目标(1)通过对人船模型的分析和推导,培养学生的逻辑思维能力和数学应用能力。
(2)通过小组讨论和交流,培养学生的合作学习能力和表达能力。
3、情感态度与价值观目标(1)让学生在学习过程中体会物理知识的实用性和趣味性,激发学生学习物理的兴趣。
高中物理人船模型的知识点归纳如下:
1. 基础模型展示:人船模型是由人和船两个物体构成的系统,该系统在人和船相互作用下各自运动。
运动过程中,该系统所受到的合外力为零,即人和船组成的系统在运动过程中总动量守恒。
2. 运动特点:人动则船动,人静则船静,人快船快,人慢船慢。
人向左移动则船向右移动,反之亦然。
3. 速度位移关系:由于动量守恒,人的速度与船的速度之比等于它们质量的反比。
同样,人的平均速度与船的平均速度之比,以及人的位移与船的位移之比,也都等于它们质量的反比。
4. 适用条件:人船模型适用的条件是系统原来处于静止状态,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)的动量守恒。
5. 拓展应用:此模型可进一步拓展到其他类似的情境中,例如人沿着静止在空中的热气球下面的软梯滑下或攀上,求解热气球的运动情况等。
角色交换图2中,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平直导轨上,弹簧处在原长状态。
另一质量与B 相同滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离l 1时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连。
已知最后A 恰好返回出发点P 并停止,滑块A 和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变量为l 2,重力加速度为g ,求A 从P 出发时的初速度v 0。
图2解析:令A 、B 质量皆为m ,A 刚接触B 时速度为v 1(碰前) 由功能关系,有121202121mgl mv mv μ=- A 、B 碰撞过程中动量守恒,令碰后A 、B 共同运动的速度为v 2 有212mv mv =碰后A 、B 先一起向左运动,接着A 、B 一起被弹回,在弹簧恢复到原长时,设A 、B 的共同速度为v 3,在这一过程中,弹簧势能始末状态都为零,利用功能关系,有)2()2()2(21)2(2122322l g m v m v m μ=- 此后A 、B 开始分离,A 单独向右滑到P 点停下,由功能关系有12321mgl mv μ= 由以上各式,解得)1610(210l l g v +=μ用轻弹簧相连的质量均为2kg 的A 、B 两物块都以s m v /6=的速度在光滑的水平地面上运动,弹簧处于原长,质量为4kg 的物体C 静止在前方,如图3所示,B 与C 碰撞后二者粘在一起运动。
求:在以后的运动中,图3(1)当弹簧的弹性势能最大时物体A 的速度多大? (2)弹性势能的最大值是多大? (3)A 的速度有可能向左吗?为什么?解析:(1)当A 、B 、C 三者的速度相等时弹簧的弹性势能最大,由于A 、B 、C 三者组成的系统动量守恒,有A CB A B A v )m m m (v )m m (++=+解得:s m v A /3=(2)B 、C 碰撞时B 、C 组成的系统动量守恒,设碰后瞬间B 、C 两者速度为'v ,则s m v v m m v m C B B /2'')(=+=,设物块A 速度为v A 时弹簧的弹性势能最大为E P ,根据能量守恒J v m m m v m v m m E A C B A A C B P 12)(2121')(21222=++-++=(3)由系统动量守恒得B C B A A B A v m m v m v m v m )(++=+设A 的速度方向向左,0<A v ,则s m v B /4> 则作用后A 、B 、C 动能之和J v m m v m E B C B A A k 48)(212122>++=实际上系统的机械能J v m m m E E A C B A P 48)(21'2=+++=根据能量守恒定律,'E E k >是不可能的。
爆炸、反冲及人船模型学校:_________班级:___________姓名:_____________模型概述1.爆炸1)爆炸问题的特点是物体间的相互作用突然发生,作用时间很短,作用力很大,且远大于系统受的外力,故可用动量守恒定律来处理.2)在爆炸过程中,有其他形式的能转化为动能,系统的动能爆炸后会增加,在碰撞过程中,系统的总动能不可能增加,一般有所减少而转化为内能.3)由于爆炸问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程简化处理.即作用后还从作用前瞬间的位置以新的动量开始运动.2.反冲现象:1)反冲现象是指在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化的现象.喷气式飞机、火箭等都是利用反冲运动的实例.2)在反冲现象里,系统不受外力或内力远大于外力,系统的动量是守恒的.3)反冲运动中,由于有其他形式的能转化为机械能,所以系统的总机械能增加3.人船模型1)模型图示2)模型特点①两物体满足动量守恒定律:m人v人-m船v船=0②两物体的位移大小满足:m人x人t-m船x船t=0,又x人+x船=L得x人=m船m船+m人L,x船=m人m船+m人L③运动特点Ⅰ、人动则船动,人静则船静,人快船快,人慢船慢,人左船右;Ⅱ、人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x人x船=v人v船=m船m人.典题攻破1.爆炸1.(2024·青海海南·二模)斜向上发射的炮弹在最高点爆炸(爆炸时间极短)成质量均为m 的两块碎片,其中一块碎片沿原路返回。
已知炮弹爆炸时距地面的高度为H ,炮弹爆炸前的动能为E ,重力加速度大小为g ,不计空气阻力和火药的质量,则两块碎片落地点间的距离为()A.2EHmgB.22EH mgC.23EH mgD.42EH mg【答案】D【详解】火箭炸裂的过程水平方向动量守恒,设火箭炸裂前的速度大小为v ,则E =122mv 2得v =Em设炸裂后瞬间另一块碎片的速度大小为v 1,有2mv =-mv +mv 1解得v 1=3Em根据平抛运动规律有H =12gt 2得t =2H g两块碎片落地点之间的距离x =(v +v 1)t =42EH mg故D 。
人船模型重/难点重点:“人船模型”的基本原理。
难点:“人船模型”各物理量关系、“人船模型”的应用。
重/难点分析重点分析:“人船模型”不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一。
利用“人船模型”及其典型变形,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷,有时甚至一眼就看出结果来了。
难点分析:若系统在整个过程中任意两时刻的总动量相等,则这一系统在全过程中的平均动量也必定守恒。
在此类问题中,凡涉及位移问题时,我们常用“系统平均动量守恒”予以解决。
如果系统是由两个物体组成的,合外力为零,且相互作用前均静止。
相互作用后运动,则由0=m 11v +m 22v 得推论11220m s m s =+,但使用时要明确s 1、s 2必须是相对地面的位移。
突破策略若系统在整个过程中任意两时刻的总动量相等,则这一系统在全过程中的平均动量也必定守恒。
在此类问题中,凡涉及位移问题时,我们常用“系统平均动量守恒”予以解决。
如果系统是由两个物体组成的,合外力为零,且相互作用前均静止。
相互作用后运动,则由0=m 11v +m 22v 得推论11220m s m s =+,但使用时要明确s 1、s 2必须是相对地面的位移。
人船模型的应用条件是:两个物体组成的系统(当有多个物体组成系统时,可以先转化为两个物体组成的系统)动量守恒,系统的合动量为零。
说明:(1)当问题符合动量守恒定律的条件,而又仅涉及位移而不涉及速度时,通常可用平均动量求解。
(2)画出反映位移关系的草图,对求解此类题目会有很大的帮助。
(3)解此类的题目,注意速度必须相对同一参照物。
【例1】如图所示,长为l 、质量为M 的小船停在静水中,一个质量为m 的人站在船头,若不计水的阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少?解析: 当人从船头走到船尾的过程中,人和船组成的系统在水平方向上不受力的作用,故系统水平方向动量守恒,设某时刻人对地的速度为v 2,船对地的速度为v 1,则mv 2-Mv 1=0,即v 2/v 1=M/m 。
在四种常见模型中应用动量守恒定律导练目标导练内容目标1人船模型和类人船模型目标2反冲和爆炸模型目标3弹簧模型目标4板块模型【知识导学与典例导练】一、人船模型和类人船模型1.适用条件①系统由两个物体组成且相互作用前静止,系统总动量为零;②动量守恒或某方向动量守恒.2.常用结论设人走动时船的速度大小为v 船,人的速度大小为v 人,以船运动的方向为正方向,则m 船v 船-m 人v 人=0,可得m 船v 船=m 人v 人;因人和船组成的系统在水平方向动量始终守恒,故有m 船v 船t =m 人v 人t ,即:m 船x 船=m 人x 人,由图可看出x 船+x 人=L ,可解得:x 人=m 船m 人+m 船L ;x 船=m 人m 人+m 船L3.类人船模型类型一类型二类型三类型四类型五1有一条捕鱼小船停靠在湖边码头,小船又窄又长(估计一吨左右),一位同学想用一个卷尺粗略测定它的质量,他进行了如下操作:首先将船平行码头自由停泊,轻轻从船尾上船,走到船头后停下来,而后轻轻下船,用卷尺测出船后退的距离为d ,然后用卷尺测出船长L ,已知他自身的质量为m ,则渔船的质量()A.m (L +d )dB.md (L -d )C.mL dD.m (L -d )d2如图所示,滑块和小球的质量分别为M 、m 。
滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点O 由一不可伸长的轻绳相连,轻绳长为L ,重力加速度为g 。
开始时,轻绳处于水平拉直状态,小球和滑块均静止。
现将小球由静止释放,下列说法正确的是( )。
A.滑块和小球组成的系统动量守恒B.滑块和小球组成的系统水平方向动量守恒C.滑块的最大速率为2m 2gLM (M +m )D.滑块向右移动的最大位移为mM +mL二、反冲和爆炸模型1.对反冲现象的三点说明(1)系统内的不同部分在强大内力作用下向相反方向运动,通常用动量守恒来处理。
(2)反冲运动中,由于有其他形式的能转变为机械能,所以系统的总机械能增加。
人船模型之一“人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.对“人船模型”及其典型变形的研究,将直接影响着力学过程的发生,发展和变化,在将直接影响着力学过程的分析思路,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷。
1、“人船模型” 质量为M 的船停在静止的水面上,船长为L ,一质量为m 的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于水面移动的距离?分析:“人船模型”是由人和船两个物体构成的系统;该系统在人和船相互作用下各自运动,运动过程中该系统所受到的合外力为零;即人和船组成的系统在运动过程中总动量守恒。
解答:设人在运动过程中,人和船相对于水面的速度分别为ν和u ,则由动量守恒定律得:m v =Mu由于人在走动过程中任意时刻人和船的速度ν和u 均满足上述关系,所以运动过程中,人和船平均速度大小u ν 和 也应满足相似的关系,即m ν=M u而x tν=,yut=,所以上式可以转化为:mx=My又有,x+y=L,得:Mx Lm M=+my Lm M=+以上就是典型的“人船模型”,说明人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。
该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。
2、“人船模型”的变形变形1:质量为M的气球下挂着长为L的绳梯,一质量为m的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离?分析:由于开始人和气球组成的系统静止在空中,竖直方向系统所受外力之和为零,即系统竖直方向系统总动量守恒。
得:mx=Myx+y=L这与“人船模型”的结果一样。
变形2:如图所示,质量为M 的14圆弧轨道静止于光滑水平面上,轨道半径为R ,今把质量为m 的小球自轨道左测最高处静止释放,小球滑至最低点时,求小球和轨道相对于地面各自滑行的距离?分析:设小球和轨道相对于地面各自滑行的距离为x 和y ,将小球和轨道看成系统,该系统在水平方向总动量守恒,由动量守恒定律得:mx=Myx+y=L这又是一个“人船模型”。
重难点 人船模型1.“人船模型”问题两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒。
在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比。
这样的问题即为“人船模型”问题。
2.人船模型的特点(1)两物体满足动量守恒定律:m 1v 1-m 2v 2=0。
(2)运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 1x 2=v 1v 2=m 2m 1。
(3)应用x 1x 2=v 1v 2=m 2m 1时要注意:v 1、v 2和x 1、x 2一般都是相对地面而言的。
方法讲解例1(第一个层次)如图所示,长为L 、质量为M 的小船停在静水中,质量为m 的人从静止开始从船头走到船尾,不计水的阻力,则船和人相对地面的位移各为多少?解析:因为动量守恒,当人向左运动时,船向右运动。
设任一时刻人与船的速度大小分别为v 1、v 2,作用前都静止。
因整个过程中动量守恒,所以有mv 1=Mv 2设整个过程中的平均速度大小为v -1、v -2,则有m v -1=M v -2上式两边乘以时间t ,有m v -1t =M v -2t ,即mx 1=Mx 2且x 1+x 2=L ,解得x 1=M m +M L ,x 2=m m +M L 。
答案:m m +M L M m +ML方法讲解例2(第二个层次)如图所示,船长为2L 、质量为M 的小船停在静水中,在船中央有一个旗杆,质量为m 的人从静止开始从船头走到船尾,不计水的阻力,则船和人相对地面的位移各为多少?解析:因为动量守恒,当人向左运动时,船向右运动。
设任一时刻人与船的速度大小分别为v 1、v 2,作用前都静止。
因整个过程中动量守恒,所以有mv 1=Mv 2设整个过程中的平均速度大小为v -1、v -2,则有m v -1=M v -2前半和后半程是一样的;上式两边乘以时间t ,有m v -1t =M v -2t ,即mx 1=Mx 2且x 1+x 2=2L ,解得x 1=2M m +M L ,x 2=2m m +M L 。
高考物理建模之人船模型
在动量守恒定律应用上,人船模型是经典的特例,在近几年高考物理里极为常见,区分度较高。
因此在复习中,人船模型是高中物理专题复习里不容忽视的知识点。
人船模型特点
系统原来处于静止状态,总动量为0,一人(物)或两人(物)运动,会引起另一物体(人)发生相对运动。
系统遵循动量守恒定律,同时两物体的位移存在某种关系。
人船模型规律
设人的质量为m,速度为v1,位移为s1,船的质量为M,速度为v2,位移为s2。
船的长度为L,在水平方向上遵循动量守恒。
1、由动量守恒定律得:
0=mv1-Mv2
化简得:
mv1=Mv2
两边同时乘以t得:
ms1=Ms2
2、两位移存在关系式:
s1+s2=L
联立上述两式得:
s1=ML/(M+m)
s2=mL/(M+m)
常见人船模型
人船模型两个重要推论
1、系统动量守恒时,任意时间内平均动量也守恒;
2、系统动量守恒时,系统质心保持原来静止或匀速直线运动状态不变。
阅读本文的人还阅读:
1、高考物理建模之子弹打穿木块模型
2、高考物理建模之碰撞模型。
模型组合讲解——人船模型
申健
[模型概述]
“人船”模型极其应用如一人(物)在船(木板)上,或两人(物)在船(木板)上等,在近几年的高考中极为常见,分值高,区分度大,如果我们在解题中按照模型观点处理,以每题分布给分的情况来看还是可以得到相当的分数。
[模型讲解]
例. 如图1所示,长为L 、质量为M 的小船停在静水中,质量为m 的人从静止开始从船头走到船尾,不计水的阻力,求船和人对地面的位移各为多少?
图1
解析:以人和船组成的系统为研究对象,在人由船头走到船尾的过程中,系统在水平方向不受外力作用,所以整个系统在水平方向动量守恒。
当人起步加速前进时,船同时向后做加速运动;人匀速运动,则船匀速运动;当人停下来时,船也停下来。
设某时刻人对地的速度为v ,船对地的速度为v',取人行进的方向为正方向,根据动量守恒定律有:0'=-Mv mv ,即M
m v v =' 因为人由船头走到船尾的过程中,每一时刻都满足动量守恒定律,所以每一时刻人的速度与船的速度之比,都与它们的质量之比成反比。
因此人由船头走到船尾的过程中,人的平
均速度v 与船的平均速度v 也与它们的质量成反比,即
M m v
v =,而人的位移t v s =人,船的位移t v s =船,所以船的位移与人的位移也与它们的质量成反比,即><=1M m s s 人船 <1>式是“人船模型”的位移与质量的关系,此式的适用条件:原来处于静止状态的系统,在系统发生相对运动的过程中,某一个方向的动量守恒。
由图1可以看出:><=+2L s s 人船
由<1><2>两式解得L m
M m s L m M M s +=+=
船人,
[模型要点]
动力学规律:由于组成系统的两物体受到大小相同、方向相反的一对力,故两物体速度大小与质量成反比,方向相反。
这类问题的特点:两物体同时运动,同时停止。
动量与能量规律:由于系统不受外力作用,故而遵从动量守恒定律,又由于相互作用力做功,故系统或每个物体动能均发生变化:力对“人”做的功量度“人”动能的变化;力对“船”做的功量度“船”动能的变化。
两个推论:①当系统的动量守恒时,任意一段时间内的平均动量也守恒;
②当系统的动量守恒时,系统的质心保持原来的静止或匀速直线运动状态不变。
适用范围:动量守恒定律虽然是由牛顿第二定律推导得到的,但它的适用范围比牛顿第二定律更广泛,它既适用于宏观也适用于微观,既适用于低速也适用于高速。
[误区点拨]
动量守恒的研究对象是一个系统,对一个物体就不能谈动量守恒问题。
动量守恒定律是一个矢量表达式;动量守恒定律是一个状态量表达式,它只与系统的初末状态有关;动量守恒定律具有相对性,表达式中的速度应是对应同一参照系的速度;动量守恒定律具有同时性,表达式中的初状态的动量应该是指同一时刻的各个物体动量的矢量和,末状态也是如此。
[模型演练]
如图2所示,质量为M 的小车,上面站着一个质量为m 的人,车以v 0的速度在光滑的水平地面上前进,现在人用相对于小车为u 的速度水平向后跳出后,车速增加Δv ,则计算Δv 的式子正确的是:( )
图2
A. mu v v M v m M -∆+=+)()(00
B. )()()(000v u m v v M v m M --∆+=+
C. )]([)()(000v v u m v v M v m M ∆+--∆+=+
D. )(0v u m v M ∆--∆=
答案:CD。