人教版高中数学必修二考点练习:由直观图确定三视图
- 格式:doc
- 大小:1.78 MB
- 文档页数:9
一、选择题1.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O 是其中心,则正视图(等腰三角形)的腰长等于( )A 5B .2C 3D 22.已知正方体1111ABCD A B C D -,E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则EF 和BD 所成的角的大小是( ) A .30B .45C .60D .903.设1l 、2l 、3l 是三条不同的直线,α、β、γ是三个不同的平面,则下列命题是真命题的是( )A .若1//l α,2//l α,则12l l //B .若1l α⊥,2l α⊥,则12l l ⊥C .若12//l l ,1l α⊂,2l β⊂,3l αβ⋂=,则13//l lD .若αβ⊥,1l αγ=,2l βγ⋂=,则12l l //4.已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,则点1B 到平面1A BC 的距离为( ) A .2217B .22121C .77D .7215.如图,在正四棱锥P ABCD -中,设直线PB 与直线DC 、平面ABCD 所成的角分别为α、β,二面角P CD B --的大小为γ,则( )A .,αβγβ>>B .,αβγβ><C .,αβγβ<>D .,αβγβ<<6.在我国古代,将四个角都是直角三角形的四面体称为“鳖臑”.在“鳖臑”ABCD 中,AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==,若该四面体的体积为43,则该四面体外接球的表面积为( )A .8πB .12πC .14πD .16π7.如图,圆锥的母线长为4,点M 为母线AB 的中点,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,这条绳子的长度最短值为25,则此圆锥的表面积为( )A .4πB .5πC .6πD .8π8.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .679.《九章算术》是古代中国乃至东方的第一步自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 10.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .211.某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该三棱锥的体积为( )A .43 B .83C .3D .412.αβ是两个不重合的平面,在下列条件中,可判定平面α与β平行的是( )A .m 、n 是α内的两条直线,且//m β,βn//B .α、β都垂直于平面γC .α内不共线三点到β的距离相D .m 、n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α二、填空题13.在正三棱锥O ABC -中,已知45AOB ∠=︒,记α为二面角--A OB C 的大小,cos =m n αm ,n 为整数,则以||n ,||m ,||m n +分别为长、宽、高的长方体的外接球直径为__________.14.如图在菱形ABCD 中,2AB =,60A ∠=,E 为AB 中点,将AED 沿DE 折起使二面角A ED C '--的大小为90,则空间A '、C 两点的距离为________;15.在三棱锥P ABC -中,P 在底面ABC 的射影为ABC 的重心,点M 为棱PA 的中点,记二面角P BC M --的平面角为α,则tan α的最大值为___________.16.如图,已知四棱锥S ABCD -的底面为等腰梯形,//AB CD ,1AD DC BC ===,2AB SA ==,且SA ⊥平面ABCD ,则四棱锥S ABCD -外接球的体积为______.17.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =1cos 3BAC ∠=,若三棱锥D ABC -27,则此三棱锥的外接球的表面积为______18.已知ABC 是等腰直角三角形,斜边2AB =,P 是平面ABC 外的一点,且满足PA PB PC ==,120APB ∠=︒,则三棱锥P ABC -外接球的表面积为________.19.已知点O 为圆锥PO 底面的圆心,圆锥PO 的轴截面为边长为2的等边三角形PAB ,圆锥PO 的外接球的表面积为______.20.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,π2DPA ∠=,23AD =2AB =,PA PD =,则四棱锥P ABCD -的外接球的体积为________.三、解答题21.如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:DE ⊥平面PAH ;(2)若2PA AD ==,求直线PD 与平面PAH 所成线面角的正弦值. 22.在棱长为2的正方体1111ABCD A B C D -中,O 是底面ABCD 的中心.(1)求证:1B O//平面11DA C ; (2)求点O 到平面11DA C 的距离.23.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA ⊥底面ABCD ,PA AB =,点M 是棱PD 的中点.(1)求证://PB 平面ACM ; (2)求三棱锥P ACM -的体积.24.在四棱锥P ABCD -中,四边形ABCD 为正方形,平面PAB ⊥平面,ABCD PAB 为等腰直角三角形,,2PA PB AB ⊥=.(1)求证:平面PBC ⊥平面PAC ;(2)设E 为CD 的中点,求点E 到平面PBC 的距离.25.如图,四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,平面AEB ⊥平面ABCD ,4EBA π∠=,2EB =,F 为CE 上的点,BF CE ⊥.(1)求证:BF ⊥平面ACE ; (2)求点D 到平面ACE 的距离.26.我市论语广场准备设置一些多面体形或球形的石凳供市民休息,如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是3160dm 3.(Ⅰ)求正方体石块的棱长;(Ⅱ)若将图(2)的正方体石块打磨成一个球形的石凳,求此球形石凳的最大体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===,1333xOE CE ==,即可求出x ,进而求出腰长. 【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC ,由三视图可知5AB AC AD ===,45AEC ∠=, 设底面边长为2x ,则DE x =,则25AE x =-,则在等腰直角三角形AOE 中,2522x AO OE -===, O 是底面中心,则133xOE CE ==, 则2532x x-=,解得3x =, 则1AO =,底面边长为23, 则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.2.C【分析】作出图形,连接1AD 、11B D 、1AB ,推导出1//EF AB ,11//BD B D ,可得出异面直线EF 和BD 所成的角为11AB D ∠,分析11AB D 的形状,即可得出结果. 【详解】如下图所示,连接1AD 、11B D 、1AB ,设正方体1111ABCD A B C D -的棱长为1,则11112AD AB B D ===, 所以,11AB D 为等边三角形,则1160AB D ∠=,因为E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则E 、F 分别是11B D 、1AD 的中点,所以,1//EF AB ,在正方体1111ABCD A B C D -中,11//BB DD 且11BB DD =, 所以,四边形11BB D D 为平行四边形,则11//BD B D , 所以,异面直线EF 和BD 所成的角为1160AB D ∠=. 故选:C. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.3.C解析:C 【分析】利用已知条件判断1l 与2l 的位置关系,可判断AD 选项的正误;利用线面垂直的性质定理可判断B 选项的正误;利用线面平行的性质定理可判断C 选项的正误. 【详解】对于A 选项,若1//l α,2//l α,则1l 与2l 平行、相交或异面,A 选项错误; 对于B 选项,若1l α⊥,2l α⊥,由线面垂直的性质定理可得12//l l ,B 选项错误; 对于C 选项,12//l l ,1l α⊂,2l β⊂,α、β不重合,则1l β⊄,1//l β∴,1l α⊂,3l αβ⋂=,13//l l ∴,C 选项正确;对于D 选项,若αβ⊥,1l αγ=,2l βγ⋂=,则1l 与2l 相交或平行,D 选项错误.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.4.A解析:A 【分析】根据题意,将点1B 到平面1A BC 的距离转化为点A 到平面1A BC 的距离,然后再利用等体积法11A A BC A ABC V V --=代入求解点A 到平面1A BC 的距离. 【详解】已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,所以可得11==A B AC 1A BC 为等腰三角形,所以1A BC ,由对称性可知,111--=B A BC A A BC V V ,所以点1B 到平面1A BC 的距离等于点A 到平面1A BC 的距离,所以11A A BC A ABC V V --=,又因为1122=⨯=A BC S △122ABCS =⨯=111233⨯⨯=⨯⨯A BC ABC S h S △△,即7h == 故选:A.【点睛】一般关于点到面的距离的计算,一是可以考虑通过空间向量的方法,写出点的坐标,计算平面的法向量,然后代入数量积的夹角公式计算即可,二是可以通过等体积法,通过换底换高代入利用体积相等计算.5.A解析:A【分析】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,根据正棱锥的性质可知,PCE α∠=,PCO β∠=,PEO γ∠=,再比较三个角的正弦值可得结果.【详解】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,如图:因为//AB CD ,所以PBA α∠=,又因为四棱锥P ABCD -为正四棱锥,所以PCE α∠=,由正四棱锥的性质可知,PO ⊥平面ABCD ,所以PCO β∠=,易得OE CD ⊥,PE CD ⊥,所以PEO γ∠=, 因为sin PE PC α=,sin PO PCβ=,且PE PO >,所以sin sin αβ>,又,αβ都是锐角,所以αβ>,因为sin PO PE γ=,sin PO PCβ=,且PC PE >,所以sin sin γβ>,因为,βγ都是锐角,所以γβ>. 故选:A【点睛】关键点点睛:根据正棱锥的性质,利用异面直线所成角、直线与平面所成角、二面角的平面角的定义得到这三个角是解题关键,属于中档题.6.B解析:B【分析】由题意计算2,AB BD CD ===分析该几何体可以扩充为长方体,所以只用求长方体的外接球即可.【详解】因为AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==, 43A BCD V -=, 而114323A BCD V BD CD AB -=⨯⨯⨯=,所以2AB BD CD ===, 所以该几何体可以扩充为正方体方体,所以只用求正方体的外接球即可.设外接球的半径为R ,则23R =所以外接球的表面积为2412S R ππ==故选:B【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.7.B解析:B【分析】根据圆锥侧面展开图是一个扇形,且线段25MB =.【详解】设底面圆半径为r ,由母线长4l ,可知侧面展开图扇形的圆心角为22r r l ππα==, 将圆锥侧面展开成一个扇形,从点M 拉一绳子围绕圆锥侧面转到点B ,最短距离为BM ; 如图,在ABM 中,25,2,4MB AM AB ===,所以222AM AB MB +=,所以2MAB π∠=, 故22rππα==,解得1r =,所以圆锥的表面积为25S rl r πππ=+=,故选:B【点睛】关键点点睛:首先圆锥的侧面展开图为扇形,其圆心角为2r lπα=,其次从点M 拉一绳子围绕圆锥侧面转到点B ,绳子的最短距离即为展开图中线段MB 的长,解三角即可求解底面圆半径r ,利用圆锥表面积公式求解.8.D解析:D【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解.【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-=,所以几何体的高为7.所以几何体的体积为11(24)676732⋅+⋅⋅=. 故选:D【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解. 9.D解析:D【分析】过点F 作//FG AE 交AB 于点G ,连接CG ,则异面直线AE 与CF 所成角为CFG ∠或其补角,然后在CFG △中求解.【详解】如下图所示,在平面ABFE 中,过点F 作//FG AE 交AB 于点G ,连接CG , 则异面直线AE 与CF 所成角为CFG ∠或其补角,设1EF =,则3AB =,2BC CF AE ===,因为//EF AB ,//FG AE ,所以,四边形AEFG 为平行四边形,所以,2FG AE ==,1AG =,2BG =,由于2ABC π∠=,由勾股定理可得2222CG BC BG =+=所以,222CG CF FG =+,则2CFG π∠=.故选:D.【点睛】 思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.10.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112 =221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.11.A解析:A【分析】首先由三视图还原几何体,然后由几何体的空间结构特征求解三棱锥的体积即可.【详解】由三视图可知,在棱长为2的正方体中,其对应的几何体为棱锥P ABC-,该棱锥的体积:11142223323V Sh ⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭. 故选:A.【点睛】 方法点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解. 12.D解析:D【分析】取a αβ⋂=,且//m a ,//n a ,利用线面平行的判定定理可判断A 选项;根据αγ⊥,βγ⊥判断平面α与β的位置关系,可判断B 选项;设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,判断出A 、B 、C 三点到平面β的距离相等,可判断C 选项;过直线n 作平面γ,使得a αγ⋂=,利用线面平行、面面平行的判定定理可判断D 选项.【详解】对于A 选项,若a αβ⋂=,且//m a ,//n a ,m β⊄,n β⊄,则//m β,βn//,但α与β相交;对于B 选项,若αγ⊥,βγ⊥,则α与β平行或相交;对于C 选项,设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,如下图所示:D 、E 分别为AB 、AC 的中点,则//DE BC ,DE β⊂,BC β⊄,//BC β∴,所以,点B 、C 到平面β的距离相等,由于D 为AB 的中点,则点A 、B 到平面β的距离相等,所以,点A 、B 、C 三点到平面β的距离相等,但平面α与平面β相交;对于D 选项,如下图所示:由于//n α,过直线n 作平面γ,使得a αγ⋂=,则//a n ,//n a ,a β⊄,n β⊂,//a β∴,//m β,m a A =,m α⊂,a α⊂,//αβ∴.故选:D.【点睛】方法点睛:证明或判断两个平面平行的方法有:①用定义,此类题目常用反证法来完成证明;②用判定定理或推论(即“线线平行”⇒“面面平行”),通过线面平行来完成证明; ③根据“垂直于同一条直线的两个平面平行”这一性质进行证明;④借助“传递性”来完成.二、填空题13.【分析】过作垂足为连接则为二面角的平面角即在中利用余弦定理结合为整数求出的值进而可得外接球直径【详解】如图过作垂足为连接则为二面角的平面角即不妨设因为所以所以所以在中因为为整数所以则设以为长宽高的长 解析:6【分析】过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α,在AHC 中,利用余弦定理结合m ,n 为整数,求出m ,n 的值,进而可得外接球直径.【详解】如图,过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α.不妨设2OC a =,因为45AOB ∠=︒,所以===CH a AH OH , 所以21)=HB a ,所以22222(422)=+=-=BC HB HC a AC .在AHC 中,222cos 2+-==⋅⋅HA HC AC HA HC α2222(422)212+--==a a a m n a因为m ,n 为整数,所以1m =-,2n =,则||1m =,||2n =,||1m n +=. 设以||m ,||n ,||m n +为长、宽、高的长方体的外接球半径为R ,则2222(2)||||||6=+++=R m n m n 6.6【点睛】关键点点睛:本题考查二面角的应用,考查几何体的外接球,考查解三角形,解决本题的关键点是利用定义法找出二面角的平面角,在AHC 中,利用余弦定理结合已知条件求出m ,n 的值,考查学生空间想象能力,考查计算能力,属于中档题.14.【分析】由二面角的大小为可得平面平面得到平面由勾股定理可得答案【详解】连接所以是等边三角形所以因为为中点所以所以即所以因为平面平面平面平面所以平面平面所以所以故答案为:【点睛】对于翻折问题解题时要认 解析:22【分析】由二面角A ED C '--的大小为90,可得平面A ED '⊥平面EDCB ,得到A E '⊥平面EDCB ,由勾股定理可得答案.【详解】连接DB CE 、,2AB AD ==,60A ∠=,所以ABD △、CBD 是等边三角形, 所以2AD BD CD ===,因为E 为AB 中点,1AE A E '==,所以DE AB ⊥,DE A E ⊥',3DE =, 30EDB ∠=,所以90EDC ∠=,即DE CD ⊥,所以222347EC ED CD =+=+=,因为平面A ED '⊥平面EDCB ,DE A E ⊥',平面A ED '平面EDCB DE =, 所以A E '⊥平面EDCB ,EC ⊂平面EDCB ,所以A E EC '⊥, 所以221722A C A E EC ''=+=+=.故答案为:22.【点睛】对于翻折问题,解题时要认真分析图形,确定有关元素间的关系及翻折前后哪些量变了,哪些量没有变,根据线线、线面、面面关系正确作出判断,考查了学生的空间想象力.. 15.【分析】取中点为过分别作底面的垂线根据题中条件得到;过分别作的垂线连接由二面角的定义结合线面垂直的判定定理及性质得到为二面角的平面角;为二面角的平面角得出令进而可求出最值【详解】取中点为过分别作底面解析:34【分析】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,根据题中条件,得到AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,由二面角的定义,结合线面垂直的判定定理及性质,得到MHN ∠为二面角M BC A --的平面角;PGO ∠为二面角A BC P --的平面角,得出tan 4tan PGO MHN ∠=∠,()23tan tan tan 14tan MHN PGO MHN MHNα∠=∠-∠=+∠,令tan 0x MHN =∠>,进而可求出最值.【详解】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN , 则O 为ABC 的重心,MN ⊥平面ABC ;PO ⊥平面ABC ; 由于点M 为棱PA 的中点,所以有AN NO OE ==,2PO MN =; 过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG , 因为BC ⊂平面ABC ,所以MN BC ⊥,同理PO BC ⊥; 又MN NH N ⋂=,MN ⊂平面MNH ,NH ⊂平面MNH , 所以BC ⊥平面MNH ;因为MH ⊂平面MNH ,所以BC MH ⊥, 所以MHN ∠为二面角M BC A --的平面角;同理BC PG ⊥,所以PGO ∠为二面角A BC P --的平面角, 所以tan PO PGO OG ∠=,tan MN MHN HN∠=, 因为NO OE =,//OG NH ,所以12OG NH =; 因此2tan 4tan 12PO MN PGO MHN OG HN ∠===∠, 所以()2tan tan 3tan tan tan 1tan tan 14tan PGO MHN MHN PGO MHN PGO MHN MHN α∠-∠∠=∠-∠==+∠⋅∠+∠, 令tan 0x MHN =∠>,则2333tan 1444x x x x α=≤=+, 当且仅当214x =,即12x =时,等号成立. 故答案为:34. 【点睛】关键点点睛:求解本题的关键在于确定二面角MBC A --、A BC P --以及P BC M --三者之间的关系,由题中条件得出二面角A BC P --是二面角M BC A --的4倍,进而可求得结果.16.【分析】取AB 中点连接根据平行四边形性质可得为等腰梯形ABCD 的外心取SB 中点O 连接则可得O 是四棱锥的外接球球心在中求得r=OA 即可求得体积【详解】取AB 中点连接则所以四边形为平行四边形所以同理所以 解析:823π【分析】取AB 中点1O ,连接11,O C O D ,根据平行四边形性质,可得1O 为等腰梯形ABCD 的外心,取SB 中点O ,连接1,,,OA OC OD OO ,则可得O 是四棱锥S ABCD -的外接球球心,在Rt SAB 中,求得r=OA ,即可求得体积. 【详解】取AB 中点1O ,连接11,O C O D ,则1//CD O A , 所以四边形1ADCO 为平行四边形, 所以1=1CO ,同理1=1O D ,所以1111=O A O B O C O D ==,即1O 为等腰梯形ABCD 的外心, 取SB 中点O ,连接1,,,OA OC OD OO ,则1//OO SA ,因为SA ⊥平面ABCD ,所以1OO ⊥平面ABCD ,又2AB SA ==, 所以=OA OB OC OD ==,又SA AB ⊥,所以OA OS =,即O 是四棱锥S ABCD -的外接球球心, 在Rt SAB 中,2AB SA ==, 所以122OA SB == 所以34822)33V ππ=⨯=, 故答案为:823π. 【点睛】解决外接球的问题时,难点在于找到球心,可求得两个相交平面的外接圆圆心,自圆心做面的垂线,垂线交点即为球心,考查空间想象,数学运算的能力,属中档题.17.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案. 【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC中,由正弦定理得2sin BC r BAC ==∠r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =.所以11sin 34223ABC S AB AC BAC =⋅⋅∠=⨯⨯⨯=△因为11333D ABC ABC V S AD AD -=⋅⋅=⨯=△,所以4AD =.连接1OO ,又1//OO AD ,所以四边形1EAO O 为平行四边形,1128EA OO AD ===,所以R ===所以该三棱锥的外接球的表面积224π4π20πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.18.【分析】在平面的投影为的外心即中点设球半径为则解得答案【详解】故在平面的投影为的外心即中点故球心在直线上设球半径为则解得故故答案为:【点睛】本题考查了三棱锥的外接球问题意在考查学生的计算能力和空间想 解析:163π【分析】P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,设球半径为R ,则()22211R CO R PO =+-,解得答案.【详解】PA PB PC ==,故P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,故球心O 在直线1PO 上,1112CO AB ==,1133PO ==, 设球半径为R ,则()22211R CO R PO =+-,解得23R =21643S R ππ==. 故答案为:163π.【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.19.【分析】由题意知圆锥的轴截面为外接球的最大截面即过球心的截面且球心在上由等边三角形性质有即求得外接球的半径为R 进而求外接球的表面积【详解】设外接球球心为连接设外接球的半径为R 依题意可得在中有即解得故 解析:163π【分析】由题意知圆锥PO 的轴截面为外接球的最大截面,即过球心的截面且球心在PO 上,由等边三角形性质有Rt AO O '△,即222O A AO O O ''=+求得外接球的半径为R ,进而求外接球的表面积. 【详解】设外接球球心为O ',连接AO ',设外接球的半径为R ,依题意可得1AO =,3PO =,在Rt AO O '△中,有222O A AO O O ''=+,即)22213R R =+,解得3R =, 故外接球的表面积为24164433S R πππ==⋅=.故答案为:163π. 【点睛】本题考查了求圆锥体的外接球面积,由截面是等边三角形,结合等边三角形的性质求球半径,进而求外接球面积,属于基础题.20.【分析】由矩形的边长可得底面外接圆的半径再由为等腰直角三角形可得其外接圆的半径又平面平面可得底面外接圆的圆心即为外接球的球心由题意可得外接球的半径进而求出外接球的体积【详解】解:取矩形的对角线的交点 解析:323π【分析】由矩形的边长可得底面外接圆的半径,再由PAD △为等腰直角三角形可得其外接圆的半径,又平面PAD ⊥平面ABCD 可得底面外接圆的圆心即为外接球的球心,由题意可得外接球的半径,进而求出外接球的体积. 【详解】解:取矩形的对角线的交点O 和AD 的中点E ,连接OE ,OP ,OE , 则O 为矩形ABCD 的外接圆的圆心,而2DPA π∠=,23AD =,2AB =,PA PD =,则//OE AB ,112OE AB ==, 132PE AD ==, 所以E 为PAD △的外接圆的圆心,因为平面PAD ⊥平面ABCD , 所以O 为外接球的球心,OP 为外接球的半径,在POE △中,222222(3)14R OP PE OE ==+=+=,所以2R =, 所以外接球的体积343233V R ππ==, 故答案为:323π.【点睛】本题考查四棱锥的棱长与外接球的半径的关系及球的体积公式,属于中档题.三、解答题21.(1)证明见解析;(2)105. 【分析】(1)由PA ⊥底面ABCD ,得PA DE ⊥,由Rt ABH Rt DAE ≌△△,得DE AH ⊥,可得答案.(2)由可知DE ⊥平面PAH ,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角,在Rt PDG △中,由sin DPG ∠可得答案. 【详解】(1)因为PA ⊥底面ABCD ,DE ⊂底面ABCD ,所以PA DE ⊥,因为E ,H 分别为正方形ABCD 的边AB ,BC 的中点,,,AB DA BH AE HBAEAD ,所以Rt ABH Rt DAE ≌△△,所以BAH ADE ∠=∠,由90AED ADE ∠+∠= 所以90BAH AED ∠+∠=,所以DE AH ⊥, 因为PA ⊂平面PAH ,AH ⊂平面PAH ,PA AH A ⋂=,所以DE ⊥平面PAH .(2)由(1)可知DE ⊥平面PAH ,设AH DE G ⋂=,如图,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角, 因为2PA AD ==,所以22PD =,5DE =, 在Rt DAE 中,由于AG DE ⊥,所以2AD DG DE =⋅, 所以45DG =⋅,所以5DG =, 所以在Rt PDG △中,105sin 522DG DPG PD ∠===,即直线PD 与平面PAH 所成线面角的正弦值为105.【点睛】本题主要考查线面垂直的证明、线面角的求法,对于线面角的求法的步骤,作:作(或找)出斜线在平面上的射影,证:证明某平面角就是斜线与平面所成的角;算:通常在垂线段、斜线段和射影所组成的直角三角形中计算. 22.(1)证明见解析;(2)23. 【分析】(1)连接11B D ,设11111B D AC O ⋂=,连接1DO ,证明11B O DO 是平行四边形,再利用线面平行的判定定理即可证明.(2)由题意可得平面11DA C ⊥平面11B D DB ,过点O 作1OH DO ⊥于H ,在矩形11B D DB 中,连接1OO ,可得1O OD OHD ∽△△,由三角形相似,对应边成比例即可求解. 【详解】(1)证明:连接11B D ,设11111B D AC O ⋂=,连接1DO .11//O B DO 且11O B DO =, 11B O DO ∴是平行四边形.11//B O DO ∴.又1DO ⊂平面11DA C ,1B O ⊂/平面11DA C ,1//B O ∴平面11DA C .(2)1111A C B D ⊥,111AC BB ⊥,且1111BB B D B ⋂=,11A C ∴⊥平面11B D DB .∴平面11DA C ⊥平面11B D DB ,且交线为1DO .在平面11B D DB 内,过点O 作1OH DO ⊥于H ,则OH ⊥平面11DA C , 即OH 的长就是点O 到平面11DA C 的距离.在矩形11B D DB 中,连接1OO ,1O OD OHD ∽△△,则11O D ODO O OH=, 22236OH ⨯∴==即点O 到平面11DA C 的距离为233. 【点睛】关键点点睛:本题考查了线面平行的判定定理,点到面的距离,解题的关键是过点O 作1OH DO ⊥于H ,得出OH 的长就是点O 到平面11DA C 的距离,考查了计算能力.23.(1)证明见解析;(2)23. 【分析】(1)连接BD 交AC 于点O ,由中位线定理得//OM PB ,从而得证线面平行; (2)由M 是PD 中点,得12M ACD P ACD V V --=,求出三棱锥P ACD -的体积后可得. 【详解】(1)如图,连接BD 交AC 于点O ,连接OM ,则O 是BD 中点,又M 是PD 中点, ∴//OM PB ,又PB ⊄平面ACM ,OM ⊂平面ACM , 所以//PB 平面ACM ; (2)由已知12222ACDS=⨯⨯=,11422333P ACD ACD V S PA -=⋅=⨯⨯=△,又M 是PD 中点,所以1223M ACD P ACD V V --==, 所以23P ACM P ACD M ACD V V V ---=-=.【点睛】思路点睛:本题考查证明线面平行,求三棱锥的体积.求三棱锥的体积除掌握体积公式外,还需要注意割补法,不易求体积的三棱锥(或一个不规则的几何体)的体积可通过几个规则的几何体(柱、锥、台等)的体积加减求得.三棱锥的体积还可通过转化顶点,转移底面利用等体积法转化为求其他三棱锥的体积,从而得出结论. 24.(1)证明见解析;(2)22. 【分析】(1)利用面面垂直的性质先证明出BC ⊥面PAB ,得到PA BC ⊥,再由PA PB ⊥,结合线面垂直的判定定理可知PA ⊥面PBC ,又PA ⊂面PAC ,然后证得平面PBC ⊥平面PAC ;(2)先计算三棱锥P BCE -的体积,然后再计算PBC 的面积,利用等体积法P BCE E PBC V V --=求解.【详解】解:(1)证明:∵面PAB ⊥面ABCD ,且平面PAB ⋂平面ABCD AB =,BC AB ⊥,BC ⊂面ABCD BC ∴⊥面PAB , 又PA ⊂面PAB PA BC ∴⊥又因为由已知PA PB ⊥且PB BC B ⋂=,所以PA ⊥面PBC ,又PA ⊂面PAC ∴面PAC ⊥面PBC .(2)PAB △中,PA PB =,取AB 的中点O ,连PO ,则PO AB ⊥ ∵面PAB ⊥面ABCD 且它们交于,AB PO ⊂面PABPO ∴⊥面ABCD由1133BCEEPBC P BCE PBC BCE PBCSPOV V S h S PO h S--=⇒=⇒=,由已知可求得1PO =,1BCES=,2PBCS=,所以22h =. 所以点E 到平面PBC 的距离为22.【点睛】(1)证明面面垂直的核心为证明线面垂直,要证明线面垂直只需郑敏面外的一条弦和面内的两条相交线垂直即可;(2)点到面的距离求解一般采用等体积法求解,也可采用空间向量法求解. 25.(1)证明见解析;(223【分析】(1)先由面面垂直的性质,得到CB ⊥平面ABE ,推出CB AE ⊥,根据题中条件,得到AE BE ⊥,利用线面垂直的判定定理,得到AE ⊥平面BCE ;得出AE BF ⊥,再次利用线面垂直的判定定理,即可证明结论成立;。
空间几何体的三视图与直观图(提高训练)1、平行投影与中心投影之间的区别就是_____________;答案:平行投影的投影线互相平行,而中心投影的投影线相交于一点2、直观图(如右图)中,四边形O′A′B′C′为菱形且边长为2cm,则在xoy坐标中四边形ABCD为 _ ____,面积为______cm2、答案:矩形、83、等腰梯形ABCD,上底边CD=1, 腰AD=CB=2 , 下底AB=3,按平行于上、下底边取x轴,则直观图A′B′C′D′的面积为________、答案:14、(12分)将一个直三棱柱分割成三个三棱锥,试将这三个三棱锥分离、解析:如右图直三棱柱ABC- A′B′C′,连结A′B,BC,CA′、C'B' A'CB A则截面A′CB与面A′CB′,将直三棱柱分割成三个三棱锥即A′-ABC,A′-BCB′,C-A′B′C′、5、(14分)画正五棱柱的直观图,使底面边长为3cm侧棱长为5cm、解析:先作底面正五边形的直观图,再沿平行于Z轴方向平移即可得、作法:(1)画轴:画X′,Y′,Z′轴,使∠X′O′Y′=45°(或135°),∠X′O′Z′=90°、(2)画底面:按X′轴,Y′轴画正五边形的直观图ABCDE、(3)画侧棱:过A、B、C、D、E各点分别作Z′轴的平行线,并在这些平行线上分别截取AA′,BB′,CC′,DD′,EE′、(4)成图:顺次连结A′,B′,C′,D′,F′,加以整理,去掉辅助线,改被遮挡的部分为虚线。
点评:用此方法可以依次画出棱锥、棱柱、棱台等多面体的直观图、6、(14分)根据给出的空间几何体的三视图,用斜二侧画法画出它的直观图、正视图侧视图俯视图解析:由几何体的三视图知道,这个几何体就是一个上面小而底面大的圆台,我们可以先画出上、下底面圆,再画母线、画法:(1)画轴如下图, 画x轴、y轴、z轴, 三轴相交于点O,使∠xOy=45°,∠xOz=90°、z y′ A′B′A′B′ x′yA B x A B(2)画圆台的两底面画出底面⊙O 假设交x轴于A、B两点,在z轴上截取O′,使OO′等于三视图中相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′利用O′x′与O′y′画出底面⊙O′,设⊙O′交x′轴于A′、B′两点、(3)成图连接A′A、B′B,去掉辅助线, 将被遮挡的部分要改为虚线,即得到给出三视图所表示的直观图、点评:做这种类型的题目,关键就是要能够瞧懂给定的三视图所表示的空间几何体的形状,然后才能正确地完成、。
A CB图 1.1.4-2人教B版数学必修2:投影与直观图、三视图同步练习1、在画水平放置的平面图形时,在原来的图形中,若两条线段平行且相等则在直观图中对应的两条线段( )A.平行且相等.B.平行不相等.C.相等不平行.D.既不平行也不相等.2、若一个三角形,采用斜二侧画法作其直观图时,其直观图的面积是原三角形面积的( ) A.21倍 B.2倍 C.22倍 D.2倍主视图左视图俯视图4.一个水平放置的四边形的斜二侧直观图是一个底角是45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( )A.2+2B.1+2C.1+22125、如图1.1.4-3所示的直观图所表示的平面图形是A.正三角形.B.锐角三角形.C.钝角三角形.D.6、如图所示:水平放置在平面α内的直观图,(1)RtΔABC,(2)(3)正方形ABCD,其中正确个数是( )A.0B.1C.2D.3A A C Bα B C αB C α D A 7.下面是由六个相同的长方体堆成的物体,如图1.1.4-5 ①.图1.1.4-1D图1.1.4-3图 1.1.4-4俯视图(1)画出这个物体的正视图.(2)改变视图的形状使它的俯视图如图1.1.4-5②,试画出它的左视图.8.在由实物图到三视图的过程中,实物上的某些点的位置又是如何变化的呢?如图所示,在右侧两个视图上确定A、B、C、D9.一个物体由几块正方体叠成,它的三视图如图.试问:(1)该物体有几层高?(2)该物体最长的地方有多长?(3)最低部分位于哪里?10.下面是一些立体图形的视图,如图图 1.1.4-9,但是观察的方向不同,试说11. 把10个相同的小正方形,按如图所示的位置堆放,它的外表含有若干小正方形.如果将图中标有A的一个小正方体搬去,这时外表含有的小正方形个数与搬去前相比( )A.不增不减 B.减少1个 C.减少2个 D.减少3个图 1.1.4-8①②③图1.1.4-9①图1.1.4-6 图1.1.4-7参考答案1.A2.A3.D4.A5. B6. C7. 解 (1)如图1.1.4-6.(2)如图①、②、③、④、⑤、⑥.8. 解 (1)2层. (2)左边一纵最长,长为3个正方形的边长.(3)右纵与横第二行的交叉处是空的,最低.正视图① ②③④ ⑤⑥ 图1.1.4-7。
专题28 空间几何体的直观图与三视图一、单选题(本大题共12小题,共60分)1.已知一个几何体的正视图和侧视图如图(1)所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图(2)所示),则此几何体的体积为()A. 1B. √2C. 2D. 2√22.正方形O′A′B′C′的边长为1cm,它是水平放置的一个平面图形的直观图(如图),则原图形的周长是()A. 6cmB. 8cmC. (2+3√2)cmD. (2+2√3)cm3.一个几何体的三视图如图所示,则该几何体的表面积为()A. 3π2+1+√32B. 3π+12+√32C. 3π+1+√32D. 3π+1+√324.某几何体的三视图如图所示,则该几何体的表面积为()A. 3π+4+√3B. 3π+5+√3C. 52π+6+√3 D. 52π+4+√35.已知某几何体的一条棱长为l,该棱在正视图中的投影长为√2020,在侧视图与俯视图中的投影长为a与b,且a+b=2√1011,则l的最小值为()A. √20212B. √40422C. √2021D. 20216.已知一几何体的三视图如图所示,则该几何体的表面积为()A. √24π+72B. √24π+4 C. 1+√24π+72D. 1+√24π+47.某圆柱的正视图是如图所示的边长为2的正方形,圆柱表面上的点A,B,C,D,F在正视图中分别对应点A,B,C,E,F.其中E,F分别为AB,BC的中点,则异面直线AC与DF所成角的余弦值为()A. 13B. √23C. √33D. √638.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. 22π3B. 28π3C. 34π3D. 40π39.如图,网络纸上小正方形的边长为1,粗实线画出的某几何体的三视图,则该几何体的体积是()A. 18πB. 21πC. 27πD. 36π10.如图所是某一容器三视图,现容中匀速注水,容器中的度h随时间变可能图象是()A. B. C. D.11.如图是一个四棱锥的三视图,则该几何体的体积为()A. 403B. 323C. 163D. 28312.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A. 64−8√2π3B. 64−4√2π3C. 64−8π3D. 64−4π3二、单空题(本大题共4小题,共20分)13.某组合体的正视图和侧视图如图(1)所示,它的俯视图的直观图是图(2)中粗线所表示的平面图形,其中四边形O′A′B′C′为平行四边形,D′为C′B′的中点,则图(2)中平行四边形O′A′B′C′的面积为___________.14.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和附视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_____________(写出符合求的一组答案即可).15.在棱长为1的正方体ABCD−A1B1C1D1中,点M,N分别是棱B1C1,C1D1的中点,过A,M,N三点作正方体的截面,将截面多边形向平面ADD1A1作投影,则投影图形的面积为.16.把平面图形α上的所有点在另一个平面上的射影所构成的图形β称为图形α在这个平面上的射影,如图所示,在三棱锥A−BCD中,BC⊥DC,AD⊥DC,BC⊥AB,BC= CD=4,AC=4√3,则△ADB在平面ABC上的射影的面积是________.三、解答题(本大题共2小题,共20分)13.设某几何体的三视图如图(尺寸的长度单位为cm),(1)用斜二测画法画出该几何体的直观图(不写画法);(2)求该几何体最长的棱长.14.设一正方形纸片ABCD边长为4厘米,切去阴影部分所示的四个全等的等腰三角形,剩余为一正方形纸片和四个全等的等腰三角形,沿虚线折起,恰好能做成一个正四棱锥,O为正四棱锥底面中心.,(粘接损耗不计),图中AH PQ(1)若正四棱锥的棱长都相等,请求出它的棱长并画出它的直观图示意图;(2)设等腰三角形APQ的底角为x,试把正四棱锥的侧面积表示为x的函数,并求S范围.专题28 空间几何体的直观图与三视图一、单选题(本大题共12小题,共60分)17.已知一个几何体的正视图和侧视图如图(1)所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图(2)所示),则此几何体的体积为()A. 1B. √2C. 2D. 2√2【答案】B【解析】解:根据直观图可得该几何体的俯视图是一个直角边长分别是2和√2的直角三角形,根据三视图可知该几何体是一个三棱锥,且三棱锥的高为3,所以体积V=13×(12×2×√2)×3=√2.故选B.18.正方形O′A′B′C′的边长为1cm,它是水平放置的一个平面图形的直观图(如图),则原图形的周长是()A. 6cmB. 8cmC. (2+3√2)cmD. (2+2√3)cm【答案】B【解析】解:如图,OA=1cm,在Rt△OAB中,OB=2√2 cm,∴AB=√OA2+OB2=3cm.∴四边形OABC的周长为8cm.故选B.19.一个几何体的三视图如图所示,则该几何体的表面积为()A. 3π2+1+√32B. 3π+12+√32C. 3π+1+√32D. 3π+1+√32【答案】C【解析】解:由三视图可知几何体上部为三棱锥,下部为半球,三棱锥的底面和2个侧面均为等腰直角三角形,直角边为1,另一个侧面为边长为√2的等边三角形,半球的直径2r=√2,故r=√22.∴S表面积=12×1×1×2+√34×(√2)2+12×4π×(√22)2+π×(√22)2−12×1×1=12+√32+3π2.故选:C.20.某几何体的三视图如图所示,则该几何体的表面积为()A. 3π+4+√3B. 3π+5+√3C. 52π+6+√3 D. 52π+4+√3【答案】A【解析】解:由已知中的三视图可得:该几何体是一个半圆柱和三棱锥的组合体半圆柱的半径为1高2,所以该组合体的面积故选A.21.已知某几何体的一条棱长为l,该棱在正视图中的投影长为√2020,在侧视图与俯视图中的投影长为a与b,且a+b=2√1011,则l的最小值为()A. √20212B. √40422C. √2021D. 2021【答案】C【解析】解:如图所示:设长方体中AB=m,BD为正投影,BE为侧投影,AC为俯视图的投影.故:BD=√2020,BE=a,AC=b,设AE=x,CE=y,BC=z,则:x2+y2+z2=l2,x2+y2=b2,y2+z2=a2,x2+z2=2020,所以2(x2+y2+z2)=a2+b2+2020,故:2l2=a2+b2+2020,因为a2+b2≥(a+b)22=2022,所以2l2≥2022+2020,则l≥√2021.故l的最小值为√2021.故选C.22.已知一几何体的三视图如图所示,则该几何体的表面积为()A. √24π+72B. √24π+4 C. 1+√24π+72D. 1+√24π+4【答案】D【解析】解:几何体左边为四分之一圆锥,圆锥的半径为1,高为1,右边为三棱锥,三棱锥底面是直角边长为1和2的直角三角形,高为1,所以几何体的表面积为:+12×(2+1)×1+12×√2×√(√5)2−(√22)2,故选D.23.某圆柱的正视图是如图所示的边长为2的正方形,圆柱表面上的点A,B,C,D,F在正视图中分别对应点A,B,C,E,F.其中E,F分别为AB,BC的中点,则异面直线AC与DF所成角的余弦值为()A. 13B. √23C. √33D. √63【答案】D【解析】解:如图所示,连结DE,EF,易知EF//AC,所以异面直线AC与DF所成角为∠DFE,由正视图可知,DE⊥平面ABC,所以DE⊥EF.由于AB=BC=2,所以EF=√2,又DE=1,所以DF=√3,在RtΔEFM中,cos∠DFE=√2√3=√63,故选D.24.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. 22π3B. 28π3C. 34π3D. 40π3【答案】C【解析】解:根据几何体得三视图转换为几何体为:该几何体是由一个底面半径为2,高为3的半圆柱和一个半径为2的半球组成,故:V=12⋅π×22×3+12×43×π×23=34π3.故选C.25.如图,网络纸上小正方形的边长为1,粗实线画出的某几何体的三视图,则该几何体的体积是()A. 18πB. 21πC. 27πD. 36π【答案】A【解析】解:该几何体是一个四分之一的圆和圆锥的组合体,如图:有题意知该圆的直径为6cm,圆锥的高为3cm,则该几何体的体积为13×π×32×3+1 4×43π×33=18π,故选A.26.如图所是某一容器三视图,现容中匀速注水,容器中的度h随时间变可能图象是()A. B. C. D.【答案】B【解析】解:三视图表示的容器倒的圆锥,下细,上面,刚开始度增加的相快些.曲越竖直”,后,高度增加来越慢,图越平稳.故B.27.如图是一个四棱锥的三视图,则该几何体的体积为()A. 403B. 323C. 163D. 283【答案】A【解析】解:由三视图得到其直观图(下图所示),则体积为:13×[12(1+4)×4]×4=403,故选A .28.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A. 64−8√2π3B. 64−4√2π3C. 64−8π3D. 64−4π3【答案】A【解析】解:这是一个有一条侧棱垂直于底面的四棱锥内部挖去了一个八分之一的球,四棱锥的底面边长和高都等于4,八分之一球的半径为2√2,,故选A .二、单空题(本大题共4小题,共20分)29. 某组合体的正视图和侧视图如图(1)所示,它的俯视图的直观图是图(2)中粗线所表示的平面图形,其中四边形O ′A ′B ′C ′为平行四边形,D ′为C ′B ′的中点,则图(2)中平行四边形O ′A ′B ′C ′的面积为___________.【答案】3√2【解析】解:由正视图和侧视图可得俯视图如下:∴|O′A′|=4,|O′C′|=32,∠A′O′C′=45°,∴S ΔA′O′C′=12|O′A′|·|O′C′|·sin∠A′O′C′ =12×4×32×√22=3√22, ∴S ▱O′A′B′C′=2S △A′O′C′=3√2, 故答案为3√2.30.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和附视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_____________(写出符合求的一组答案即可).【答案】②⑤或③④【解析】解:由高度可知,侧视图只能为②或③,侧视图为②,如图(1)平面PAC⊥平面ABC,PA=PC=√2,BA=BC=√5,AC=2,俯视图为⑤;侧视图为③,如图(2),PA⊥平面ABC,PA=1,AC=AB=√5,BC=2,俯视图为④.故答案为②⑤或③④.31.在棱长为1的正方体ABCD−A1B1C1D1中,点M,N分别是棱B1C1,C1D1的中点,过A,M,N三点作正方体的截面,将截面多边形向平面ADD1A1作投影,则投影图形的面积为.【答案】712【解析】解:直线MN分别与直线A1D1,A1B1交于E,F两点,连接AE,AF,分别与棱DD1,BB1交于G,H两点,连接GN,MH,得到截面五边形AGNMH,向平面ADD1A1作投影,得到五边形AH1M1D1G,由点M,N分别是棱B1C1,C1D1的中点,可得D1E=D1N=12,由△D1EG∽△DAG,可得DG=2D1G=23,同理BH=2B1H=23,则AH1=2A1H1=23,A1M1=D1M1=12,则S AH1M1D1G =1−S A1H1M1−S ADG=1−12×12×13−12×1×23=712,故答案为:712.32.把平面图形α上的所有点在另一个平面上的射影所构成的图形β称为图形α在这个平面上的射影,如图所示,在三棱锥A−BCD中,BC⊥DC,AD⊥DC,BC⊥AB,BC= CD=4,AC=4√3,则△ADB在平面ABC上的射影的面积是________.【答案】8√2【解析】解:因为BC⊥DC,AD⊥DC,BC⊥AB,BC=CD=4,AC=4√3,把三棱锥A−BCD放入如图所示的棱长为4的正方体中,过点D作CE的垂线DF,垂足为F,连接AF,BF,因为BC⊥平面CE,DF⊂平面CE,故BC⊥DF又BC∩CE=C,BC,CE⊂平面ABC则DF⊥平面ABC,故△ADB在平面ABC上的射影为△AFB,因为AB=√42+42=4√2,×4×4√2=8√2,所以△AFB的面积为12即△ADB在平面ABC上的射影的面积为8√2.故答案为8√2.三、解答题(本大题共2小题,共20分)13.设某几何体的三视图如图(尺寸的长度单位为cm),(1)用斜二测画法画出该几何体的直观图(不写画法);(2)求该几何体最长的棱长.【答案】(1)答案见解析;(2)4cm.【解析】(1)(2)如下图,SE⊥面ABC,线段AC中点为D2,3,1,4,2,=1======,BD AC SE cm AE cm CE cm AC cm AD DC cm DE cm⊥,=,3BD cm在等腰ABC中,AB AC=在Rt SEA△中,SA=在Rt SEC△中,SC△中,BE==在Rt BDE∴⊥SE⊥面ABC,SE BE在Rt SEB△中,SB=<==<<,在三梭锥S-ABC中,SC AB AC SA SB AC所以最长的棱为AC ,长为4cm14.设一正方形纸片ABCD 边长为4厘米,切去阴影部分所示的四个全等的等腰三角形,剩余为一正方形纸片和四个全等的等腰三角形,沿虚线折起,恰好能做成一个正四棱锥(粘接损耗不计),图中AH PQ ⊥,O 为正四棱锥底面中心.,(1)若正四棱锥的棱长都相等,请求出它的棱长并画出它的直观图示意图;(2)设等腰三角形APQ 的底角为x ,试把正四棱锥的侧面积表示为x 的函数,并求S 范围.【答案】(1),画图见解析;(2)161tan 2tan S x x=++,()0,4.【解析】(1)由题意,设正四棱锥的棱长为a,则AH =,2a AC a +===(2)设PH b =,则tan AH b x =,由2tan 2a x a ⋅+=a =,从而22116tan 442tan 2(tan 1)APQ x S S PQ AH a x x ==⋅⋅⋅==+△,其中(tan 1),x ∈+∞,∴16(0,4)1tan 2tan S x x=∈++。
人教版高中数学必修第二册8.2立体图形的直观图同步精练【考点梳理】考点一水平放置的平面图形的直观图的画法用斜二测画法画水平放置的平面图形的直观图的步骤考点二空间几何体直观图的画法立体图形直观图的画法步骤(1)画轴:与平面图形的直观图画法相比多了一个z 轴,直观图中与之对应的是z ′轴.(2)画底面:平面x ′O ′y ′表示水平平面,平面y ′O ′z ′和x ′O ′z ′表示竖直平面,按照平面图形的画法,画底面的直观图.(3)画侧棱:已知图形中平行于z 轴(或在z 轴上)的线段,在其直观图中平行性和长度都不变.(4)成图:去掉辅助线,将被遮挡的部分改为虚线.【题型归纳】题型一:斜二测画法辨析1.(2021·广东·仲元中学高一期中)如图所示,A B C '''V 是ABC 的直观图,其中A C A B ''''=,那么ABC 是()A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形2.(2021·安徽合肥·高一期末)以下说法正确的有个()①三角形的直观图是三角形②平行四边形的直观图是平行四边形③正方形的直观图是正方形④菱形的直观图是菱形A.1B.2C.3D.43.(2021·山西临汾·高一期末)利用斜二测画法得到:①水平放置的三角形的直观图是三角形;②水平放置的平行四边形的直观图是平行四边形;③水平放置的正方形的直观图是菱形;④水平放置的菱形的直观图是菱形.以上结论正确的是()A.①②B.②③C.①②③D.②④题型二:平面图形的直观图的画法A B C的直观图,4.(2022·内蒙古·呼和浩特市教学研究室高一期末)如图,用斜二测画法作水平放置的正三角形111则正确的图形是()A.B.C .D .5.(2021·浙江·高一单元测试)下面每个选项的2个边长为1的正△ABC 的直观图不是全等三角形的一组是()A .B .C .D .6.(2022·全国·高一)如图,已知点()1,1A -,()1,3B ,()3,1C ,用斜二测画法作出该水平放置的四边形ABCO 的直观图,并求出面积.题型三:空间几何体的直观图7.(2021·全国·高一课时练习)用斜二测画法画棱长为2cm 的正方体ABCD A ′B ′C ′D ′的直观图.8.(2022·湖南·高一课时练习)画出下列图形的直观图:(1)棱长为4cm 的正方体;(2)底面半径为2cm ,高为4cm 的圆锥.9.(2022·湖南·高一课时练习)画出图中简单组合体的直观图(尺寸单位:cm ).题型四:直观图的还原与计算10.(2021·全国·高一课时练习)如图,A B C '''是斜二测画法画出的水平放置的ABC 的直观图,D '是B C ''的中点,且//A D y '''轴,//B C x '''轴,2A D ''=,2B C ''=,那么()A .AD 的长度大于AC 的长度B .BC 的长度等于AD 的长度C .ABC 的面积为1D .A B C '''的面积为211.(2020·全国·高一课时练习)如图,菱形ABCD 的一边长为2,45A ∠=︒,且它是一个水平放置的四边形利用斜二测画法得到的直观图,请画出这个四边形的原图形,并求出原图形的面积.12.(2020·全国·高一课时练习)如图所示,梯形1111D C B A 是平面图形ABCD 的直观图.若11//A D O y '',1111//A B C D ,1111223A B C D ==,1111A D O D '==.如何利用斜二测画法的规则画出原四边形?【双基达标】一、单选题13.(2021·全国·高一课时练习)长方形的直观图可能为下图中的哪一个()A .①②B .①②③C .②⑤D .③④⑤14.(2021·陕西师大附中高一阶段练习)对于用斜二侧画法画水平放置的图形的直观图来说,下面说法错误的是()A .原来平行的边仍然平行B .原来垂直的边仍然垂直C .原来是三角形仍然是三角形D .原来是平行四边形的可能是矩形15.(2021·全国·高一课时练习)如图所示是水平放置的三角形的直观图,D '是A B C '''V 中B C ''边的中点,且A D ''平行于y '轴,那么,,A B A D A C ''''''三条线段对应原图形中的线段,,AB AD AC 中()A .最长的是AB ,最短的是ACB .最长的是AC ,最短的是AB C .最长的是AB ,最短的是AD D .最长的是AD ,最短的是AC16.(2021·全国·高一课时练习)已知一个△ABC 利用斜二测画法画出直观图如图所示,其中B ′O ′=2,O ′C ′=5,O ′A ′=3,则原△ABC 的面积为()A .21B .212C .2122D .212417.(2021·全国·高一课时练习)若水平放置的四边形AOBC 按“斜二测画法”得到如图所示的直观图,其中//A C O B '''',A C B C ''''⊥,1A C ''=,2B C ''=,2O B ''=,则原四边形AOBC 的面积为()A .12B .6C .32D .32218.(2021·全国·高一课时练习)一个菱形的边长为4cm ,一个内角为60︒,将菱形水平放置并且使较长的对角线成横向,则此菱形的直观图的面积为().A .283cm B .243cm C .226cm D .26cm 【高分突破】一:单选题19.(2021·北京顺义·高一期末)用斜二测画法画水平放置的平面图形的直观图时,有下列结论:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.其中,正确结论的序号是()A .①②B .①③C .①④D .②④20.(2021·湖南长沙·高一期末)水平放置的ABC 的直观图如图,其中B 'O '=C 'O '=1,A 'O '=32,那么原△ABC 是一个()三角形.A .等边B .三边互不相等的C .三边中只有两边相等的等腰D .直角21.(2021·安徽省涡阳第一中学高一阶段练习)如图,A B C '''V 是水平放置的ABC 的直观图,其中A B '',A C ''所在直线分别与x '轴,y '轴平行,且A B A C ='''',那么ABC 是()A .等腰三角形B .钝角三角形C .等腰直角三角形D .直角三角形22.(2021·浙江温州·高一期中)如图所示,正方形''''O A B C 的边长为2cm ,它是水平放置的一个平面图形的直观图,则原图形的周长是()A .16cmB .82cmC .8cmD .443+cm23.(2021·湖南·武冈市第二中学高一阶段练习)如图,平行四边形O A B C ''''是水平放置的一个平面图形的直观图,其中5O A ''=,2O C ''=,30A O C '''∠=︒,则原图形的面积是()A .4B .42C .102D .624.(2022·内蒙古·呼和浩特市第十四中学高一期末)如图所示,梯形A B C D ''''是平面图形ABCD 用斜二测画法得到的直观图,22A D B C ''''==,1A B ''=,则平面图形ABCD 的面积为()A .32B .2C .22D .325.(2021·广东东莞·高一期末)如图是水平放置的△ABO 的斜二测直观图△A B O ''',D ¢是O B ''的中点,则△ABO 中长度最长的线段为()A .OAB .OBC .AD D .AB26.(2021·山东聊城·高一期末)如图,A B C '''V 是ABC 用斜二测画法画出的直观图,则ABC 的周长为()A .12B .()225+C .()412+D .()2225++二、多选题27.(2021·江苏·扬州大学附属中学东部分校高一期中)利用斜二测画法得到的下列结论中正确的是()A .三角形的直观图是三角形B .正方形的直观图是正方形C .菱形的直观图是菱形D .平行四边形的直观图是平行四边形28.(2021·浙江丽水·高一期中)如图,'''A B C 表示水平放置的ABC 根据斜二测画法得到的直观图,''A B 在'x 轴上,''B C 与'x 轴垂直,且''2B C =,则下列说法正确的是()A .ABC 的边AB 上的高为2B .ABC 的边AB 上的高为4C .AC BC >D .AC BC<29.(2021·全国·高一课时练习)如图为一平面图形的直观图,则此平面图形不可能是选项中的()A .B .C .D .30.(2021·浙江·高一期末)如图,A B C '''是水平放置的ABC 的直观图,2,5A B A C B C ''=''=''=,则在原平面图形ABC 中,有()A .AC BC=B .2AB =C .25AC =D .42ABC S =△三、填空题31.(2022·湖南·高一课时练习)如图所示,一个水平放置的正方形ABCO ,它在直角坐标系xOy 中,点B 的坐标为(2,2),则用斜二测画法画出的正方形的直观图中,顶点B ′到x ′轴的距离为______.32.(2022·陕西西安·高一阶段练习)如图,矩形O A B C ''''是平面图形OABC 斜二测画法的直观图,且该直观图的面积为8,则平面图形OABC 的面积为___________.33.(2021·全国·高一课时练习)如图,△A'O'B'表示水平放置的△AOB 的直观图,B'在x'轴上,A'O'和x'轴垂直,且A'O'=2,则△AOB 的边OB 上的高为____34.(2021·全国·高一)如图,四边形ABCD 是一水平放置的平面图形的斜二测直观图,//AB CD ,AD CD ⊥,且BC 与y 轴平行,若6AB =,4CD =,22BC =,则原平面图形的实际面积是________.35.(2021·浙江温州·高一期末)如图,已知梯形''''A B C D 是水平放置的四边形ABCD 斜二测画法的直观图,梯形''''A B C D 的面积为3,'''45D A B ∠=︒,则原四边形ABCD 的面积为__________.四、解答题36.(2022·湖南·高一课时练习)用斜二测画法画出下列水平放置的平面图形的直观图:(1)边长为3cm 的正三角形;(2)边长为4cm 的正方形;(3)边长为2cm 的正八边形.37.(2022·全国·高一)用斜二测画法画出下列平面图形水平放置的直观图.38.(2021·全国·高一课时练习)如图,矩形O A B C ''''是水平放置的一个平面图形的直观图,其中6,3,//O A O C B C x =='''''''轴,求原平面图形的面积.39.(2022·全国·高一)如图所示,梯形1111D C B A 是一平面图形ABCD 的直观图.若11A D O x ''⊥,1111//A B C D ,1111223A B C D ==,1111A D O D '==.试画出原四边形.40.(2021·全国·高一课时练习)如图,四边形ABCD 是一个梯形,//,1CD AB CD AO ==,三角形AOD 为等腰直角三角形,O 为AB 的中点(1)画出梯形ABCD 水平放置的直观图(2)求这个直观图的面积.【答案详解】1.B【详解】根据题意,,2AB AC AC AB ⊥=,所以ABC 是直角三角形.故选:B.2.B【详解】由斜二测画法可得:①三角形的直观图是三角形,②平行四边形的直观图是平行四边形,③正方形的直观图是平行四边形,④菱形的直观图是平行四边形,综上可得,说法正确的是①②.故选:B.3.A【详解】对于①,由斜二测画法规则知,水平放置的三角形的直观图还是三角形,①正确;对于②,根据平行性不变知,平行四边形的直观图是平行四边形,②正确;对于③,由平行于一轴的线段长度不变,平行于y 轴的线段长度减半知,正方形的直观图不是菱形,③错误;对于④,因为45x O y '''∠=︒,所得直观图的对角线不垂直,所以直观图不可能为菱形,④错误.故选:A4.A【解析】【分析】由斜二侧画法的规则分析判断即可【详解】先作出一个正三角形111A B C ,然后以11B C 所在直线为x 轴,以11B C 边上的高所在的直线为y 轴建立平面直角坐标系,画对应的'',x y 轴,使夹角为45 ,画直观图时与x 轴平行的直线的线段长度保持不变,与y 轴平行的线段长度变为原来的一半,得到的图形如图,然后去掉辅助线即可得到正三角形的直观图如图,故选:A5.C【解析】【分析】根据两个三角形在斜二测画法下所得的直观图,底边与底边上的高是否改变,判断即可.【详解】对于A 、B 、D 选项,两个三角形在斜二测画法下所得的直观图中,底边AB 不变,底边上的高变为原来的12,如图:选项A :选项B:选项D:所以两个图形的直观图全等;对于C中,第一个三角形在斜二测画法下所得的直观图中,底边AB不变,底边上的高变为原来的12,第二个三角形在斜二测画法下所得的直观图中,底边AB变为原来的12,底边上的高OC不变,如图:所以这两个图形的直观图不全等.故选:C.6.图见解析,322【解析】【分析】首先根据斜二测画法的规则,画出四边形的直观图,再结合面积公式,即可计算.【详解】由斜二测画法可知,在直观图中,21A O '=,21O B '=,23C O '=,222B C =,2112A A =,2132B B =,2112C C =,121212A A B B C C ∥∥,1212245A A O B B C '∠=∠=︒,所以122112211221111 A A B B C C B B A A O O C C A B C O S S S S S '''=+--△△()()121222121222122122sin 45sin 45sin 45sin 452222A AB B A BC C B B C B A A A O C C C O +⋅⋅︒+⋅⋅︒''⋅⋅︒⋅⋅︒=+--1321321212221332222222222222222⎛⎫⎛⎫+⨯⨯+⨯⨯⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭=+--=.7.见解析【解析】【分析】分三步进行:一、建立坐标系;二、利用斜二测画法作出下底面的直观图;三、从下底面各顶点处作长度与棱长相等且平行于z 的线段,连接各顶点即可.【详解】画法:(1)画轴.如图①,画x 轴、y 轴、z 轴,三轴相交于点O ,使∠xOy =45°,∠xOz =90°.(2)画底面.以点O 为中心,在x 轴上取线段MN ,使OM =ON =1cm ;在y 轴上取线段PQ ,使PQ =1cm .分别过点M 和N 作y 轴的平行线,过点P 和Q 作x 轴的平行线,设它们的交点分别为A 、B 、C 、D ,四边形ABCD 就是正方体的底面ABCD .(3)画侧棱.过A 、B 、C 、D 各点分别作z 轴的平行线,并在这些平行线上分别截取2cm 长的线段AA ′、BB ′、CC ′、DD ′.(4)成图.顺次连接A ′、B ′、C ′、D ′,并加以整理(去掉辅助线,将被遮挡的部分改为虚线),就得到正方体的直观图(如图②).【点睛】利用斜二测画法作直观图,主要注意两点:一是与x 轴平行的线段仍然与与'x 轴平行且相等;二是与y 轴平行的线段仍然与'y 轴平行且长度减半.8.(1)画法见解析,;(2)画法见解析,【解析】【分析】根据要求用斜二测法画出符合要求的直观图(1)如下图所示,按如下步骤完成:第一步:作水平放置的正方形ABCD 的直观图,使得AB =4cm ,BC =2cm ,且∠DAB =45°,取平行四边形ABCD 的中心O ,作x 轴∥AB ,y 轴∥BD ,第二步:过点O 作∠xOz =90°,过点A 、B 、C 、D 分别作1111,,,AA BB CC DD 等于4cm ,顺次连接1111D C B A ,第三步:去掉图中的辅助线,就得到棱长为4的正方体的直观图.(2)如下图所示,按如下步骤完成:第一步:作水平放置的圆的直观图O ',使4A B ''=cm ,2D C ''=cm.第二步:过O '作z '轴,使90x O z '''∠=︒,在z '上取点V ',使O 'V '=4cm ,连接A V '',B V ''.第三步:去掉图中的辅助线,就得到所求圆锥的直观图.9.详见解析【解析】【分析】利用斜二测画法求解.【详解】如图所示:10.D【解析】【分析】把斜二测画出的三角形的直观图还原原图形,即可判断.【详解】把斜二测画出的三角形的直观图还原原图形如图,据此分析选项:对于A ,AD BC ⊥,则有AC AD >,A 错误;对于B ,2BC B C =''=,24AD A D =''=,B 错误;对于C ,ABC 的面积142S BC AD =⨯⨯=,C 错误;对于D ,A B C '''的面积224S S '==,D 正确.故选:D .11.图形见解析,8【解析】在菱形ABCD 中,分别以AB ,AD 所在的直线为x '轴、y '轴建立坐标系x O y ''',根据斜二测画法的性质得到原图形,再计算面积得到答案.【详解】①画轴.在菱形ABCD 中,分别以AB ,AD 所在的直线为x '轴、y '轴建立坐标系x O y '''(A 与O '重合),如图1,另建立平面直角坐标系xOy ,如图2.②取点.在坐标系xOy 中,分别在x 轴y 轴上取点B ',D ¢,使A B AB ''=(A '与O 重合),2A D AD ''=.过点D ¢作//D C x ''轴,且D C DC ''=.③成图.连接B C '',得到的矩形A B C D ''''即为这个四边形的原图形.原图形的面积248S =⨯=.【点睛】本题考查了斜二测画法,意在考查学生对于斜二测画法的理解和掌握.12.见解析【解析】【分析】根据斜二测画法前后的边与角的关系画图即可.【详解】如图,建立直角坐标系xOy ,在x 轴上截取11OD O D '==,12OC O C '==.在过点D 的y 轴的平行线上截取1122DA D A ==.在过点A 的x 轴的平行线上截取112AB A B ==.连接BC ,即得到了原图形.【点睛】本题主要考查了根据直观图画原图像的方法,属于基础题型.13.C【解析】【分析】根据斜二测画法的定义即可求解.【详解】由斜二测画法知,长方形的直观图应为平行四边形,且锐角为45°,故②⑤正确.故选:C.14.B【解析】【分析】根据斜二测画法的特点对四个选项逐一分析,即可得解【详解】由斜二侧画法可知,平行的线段仍然平行,三角形的直观图仍然是一个三角形,平行四边形的可能是矩形,原来垂直的直线不一定垂直.故选:B15.C【解析】【分析】利用斜二测画法还原图形,得到△ABC 为等腰三角形,即可判断出,,AB AD AC 的大小.【详解】由题中的直观图可知,//A D y '''轴,//B C x '''轴,根据斜二测画法的规则可知,在原图形中AD ∥y 轴,BC ∥x 轴.又因为D 为BC 的中点,所以△ABC 为等腰三角形,且AD 为底边BC 上的高,则有AB =AC >AD 成立.故选:C16.A【解析】【分析】根据直观图的做法确定原△ABC 的顶点位置,由此求其面积.【详解】由已知B ′O ′=2,O ′C ′=5,O ′A ′=3,∴2BO =,5CO =,6OA =,且B ,C 在x 轴上,A 在y 轴上,O 为坐标原点,∴△ABC 的面积1212S BC OA =⨯⨯=,故选:A.17.B【解析】【分析】通过“斜二测画法”将直观图还原,即可求解【详解】解:由斜二测画法的直观图知,//A C O B '''',A C B C ''''⊥,1A C ''=,2B C ''=,2O B ''=;所以原图形OACB 中,//AC OB ,OA OB ⊥,1AC =,2OB =,22224AO A O ''==⨯⨯=,所以梯形OACB 的面积为()112462S =+⨯=.故选:B .18.C【解析】【分析】根据斜二测画法的规则,求出对角线的长度,根据图形,求直观图的面积.【详解】由条件可知,较长的对角线的长度是2244244cos12044cm +-⨯⨯⨯=,较短的对角线的长度是2244244cos604cm +-⨯⨯⨯=,根据斜二测画法的规则可知,43AC =,2BD =,菱形直观图的面积21243226cm 22S =⨯⨯⨯=故选:C19.A【解析】【分析】本题可根据斜二测画法的规则得出结果.【详解】由斜二测画法规则可知,相交关系不变,①正确;平行关系不变,②正确;正方形的直观图是平行四边形,③错误;平行于y 轴的线段长减半,平行于x 轴的线段长不变,④错误,故选:A.20.A 【解析】【分析】根据直观图还原原图,再计算.【详解】解:由图形知,在原ABC 中,AO BC ⊥,32A O ''=3AO ∴=1B O C O ''=''=,2BC ∴=222AB AC AO OC ∴==+=ABC ∴为正三角形.故选:A .21.D【解析】【分析】根据斜二测画法的原则,可得原图中AB AC ⊥,且2AC AB =即可判断ABC 的形状.【详解】因为A B C '''V 中,A B '',A C ''所在直线分别与x '轴,y '轴平行,所以ABC 中AB ,AC 所在直线分别与分别与x 轴,y 轴平行,所以AB AC⊥因为A B A C ='''',所以2AC AB =,即AB AC ≠,所以ABC 是直角三角形,故选:D.22.A【解析】【分析】由直观图确定原图形中平行四边形中线段的长度与关系,然后计算可得.【详解】由斜二测画法,原图形是平行四边形,2OA O A ''==,又22O B ''=,242OB O B ''==,OB OA ⊥,所以222(42)6AB =+=,周长为2(26)16+=.故选:A .23.C【解析】【分析】先求出平行四边形O A B C ''''面积,再根据斜二测画法的原图形面积与直观图面积比为22:1计算即可.【详解】在平行四边形O A B C ''''中,作C M O A '''⊥.在Rt C O M ''△中,sin 301C M O C '''=︒=.所以平行四边形O A B C ''''面积为1=515S O A C M '''⋅=⨯=.所以原图形面积为1=22=102S S .故选:C24.D【解析】【分析】根据斜二测画法的规则确定原图形形状,结构得出面积.【详解】由三视图知原几何图形是直角梯形ABCD ,如图,2,2,1AB AD BC ===,面积为1(21)232S =⨯+⨯=.故选:D .25.D【解析】【分析】根据斜二测法,判断△ABO 的形状,进而确定其最长线段.【详解】由斜二测直观图△A B O '''知:△ABO 是直角三角形且OA OB ⊥,∴斜边AB 是△ABO 中长度最长的线段.故选:D26.C【解析】【分析】作出ABC 的直观图,计算出该三角形三边边长,即可得解.【详解】作出ABC 的直观图如下图所示:由图可得222222AB BC ==+=,4AC =,因此,ABC 的周长为442+.故选:C.27.AD【解析】【分析】根据平面图形的直观图的画法规则,逐项判定,即可求解.【详解】根据斜二测画法的规则可知,平行于坐标轴的直线平行性不变,平行于x 轴的线段长度不变,平行于y 轴的线段长度减半.对于A 中,三角形的直观图中,三角形的高于底边的夹角为45或135,长度减少为原来的一半,依然是三角形,所以A 正确;对于B 中,正方形的直角,在直观图中变为45或135,不是正方形,所以B 错误;对于C 中,菱形的对角线互相垂直平分,在直观图中对角线的夹角变为45,所以菱形的直观图不是菱形,所以C 错误;对于D 中,根据平行线不变,可知平行四边形的直观图还是平行四边形,所以D 正确.故选:AD.28.BD【解析】【分析】过'C 作''C D ‖'y 轴,交'x 于'D ,即可求出相关量,画出原图,即可判断【详解】解:如图,'C 作''C D ‖'y 轴,交'x 于'D ,则可得'''45C D B ∠=︒,因为'''C B x ⊥轴,且''2B C =,所以''''2,2B D C D ==,则在原图中,CD AB ⊥,且4CD =,即ABC 边AB 上的高为4,因为点A 在BD 上,所以AC BC <,故选:BD29.ABD【解析】【分析】根据直观图,画出原图形,即可得出答案.【详解】根据该平面图形的直观图,该平面图形为一个直角梯形,且在直观图中平行于'y 轴的边与底边垂直,原图形如图所示:即可判断不可能的为A ,B ,D.故选:ABD.30.BD【解析】【分析】将直观图A B C '''还原为原平面图形ABC 即可求解.【详解】解:在直观图A B C '''中,过C '作C D A B ''''⊥于D ¢2,5A B A C B C ''=''=''=,∴221,2A D C D A C A D ''''''''==-=,又45C O D '''∠=,所以2O D ''=,1O A ''=,22O C ''=,所以利用斜二测画法将直观图A B C '''还原为原平面图形ABC ,如图42,1,2OC OA AB ===,故选项B 正确;又222233,41AC OA OC AC OB OC =+==+=,故选项A 、C 错误;112424222ABC S AB OC =⨯⨯=⨯⨯=,故选项D 正确;故选:BD.31.22【解析】【分析】作出直观图,结合斜二测画法概率计算【详解】如图,1B C ''=,B '到x '轴的距离为21sin 452⨯︒=.故答案为:22.32.162【解析】【分析】根据直观图形和原图形面积之间的比例关系求解即可.【详解】根据直观图与原图的面积比值为定值24,可得平面图形OABC 的面积为816224=.故答案为:162.33.42【解析】【分析】利用直观图与原图的面积之比为定值求解即可.【详解】不妨设直观图和原图面积分别为1S ,2S ,△AOB 的边OB 上的高为h ,由直观图''||O B 与原图形中边||OB 长度相同,且2122S S =,A'O'和x'轴垂直,A'O'=2,故''11||222||22OB h O B =⨯⨯,从而42h =.故答案为:42.34.202【解析】【分析】根据实际图形与斜二测直观图的关系得原平面图形是直角梯形,再根据几何关系求解面积即可得答案.【详解】解:由斜二测直观图的作图规则知,原平面图形是直角梯形,且AB ,CD 的长度不变,仍为6和4,高42BC =,故所求面积1(46)422022S =⨯+⨯=.故答案为:20235.26【解析】【分析】根据题意和斜二侧画法可知四边形ABCD 为直角梯形,且90DAB ∠=︒,从而可求出原图形的面积【详解】解:设梯形''''A B C D 的高为h ,因为水平放置的平面图形的直观图''''A B C D 的面积为3,所以''''1()32C D A B h +=,因为梯形''''A B C D 中,'''45D A B ∠=︒,所以四边形ABCD 为直角梯形,且90DAB ∠=︒,'''',CD C D AB A B ==,''2AD A D =,''2A D h =,所以原四边形ABCD 的面积为''''''''1()21()222122()222326CD AB AD C D A B h C D A B h +⋅=+⋅=⨯+=⨯=故答案为:2636.(1)作图见解析(2)作图见解析(3)作图见解析【解析】【分析】(1)根据斜二测画法,作出平面图形,建立平面直角坐标系,画出对应斜二测坐标系,确定多边形各顶点在直观图中对应的顶点,连线可得直观图;(2)根据斜二测画法,作出平面图形,建立平面直角坐标系,画出对应斜二测坐标系,确定多边形各顶点在直观图中对应的顶点,连线可得直观图;(3)根据斜二测画法,作出平面图形,建立平面直角坐标系,画出对应斜二测坐标系,确定多边形各顶点在直观图中对应的顶点,连线可得直观图.(1)解:如图①所示,以BC 边所在的直线为x 轴,以BC 边的高线AO 所在直线为y 轴,建立平面直角坐标系,画对应的x '轴、y '轴,使45x O y '''∠=,在x '轴上截取 1.5cm O B O C OB OC ''''====,在y '轴上截取12O A OA ''=,连接A B ''、A C ''、B C '',则A B C '''V 即为等边ABC 的直观图,如图③所示.(2)解:如图④所示,以AB 、AD 边所在的直线分别为x 轴、y 轴建立如下图所示的平面直角画对应的x '轴、y '轴,使45x A y '''∠=,在x '轴上截取4cm A B AB ''==,在y '轴上截取12cm 2A D AD ''==,作//D C x '''轴,且4cm D C ''=,连接B C '',则平行四边形A B C D ''''即为正方形ABCD 的直观图,如图⑥所示.(3)解:如图⑦所示,画正八边形OABCDEFG ,以点O 为坐标原点,OA 、OE 所在直线分别为x 轴、y 轴建立平面直角坐标系xOy ,设点B 、G 在x 轴上的射影点分别为M 、N ,画对应的x '轴、y '轴,使45x O y '''∠=,在x '轴上截取2cm O A OA ''==,A M AM ''=,O N ON ''=,在y '轴上截取12O E OE ''=,作//E D x '''轴且2cm E D ''=,作//M B y '''轴,且12M B MB ''=,作//N G y '''轴,且12N G NG ''=,作//B C y '''轴,且1cm B C ''=,作//G F y '''轴,且1cm G F ''=,连接O A ''、A B ''、B C ''、C D ''、D E ''、E F ''、F G ''、G O '',则八边形O A B C D E F G ''''''''为正八边形OABCDEFG 的直观图,如图⑨所示.37.详见解析【解析】【分析】利用斜二测画法即得.(1)如图所示,画出坐标系x O y ''',使45x O y '''∠=,在x '轴作线段1A O O B ''''==,过A '作//A C y '''轴,且112A C AC ''==,连接B C '',则A B C '''V 即为ABC 的直观图;(2)如图所示,画出坐标系x O y ''',使45x O y '''∠=,在x '轴作线段2O B OB ''==,在y '轴作线段1122O A OA ''==,再作出点,C D '',连接,,B C C D D A '''''',即可得出该平面图形的直观图.38.362.【解析】【分析】计算平面直观图的面积,根据原图形与它的直观图面积比为22,计算即可.【详解】解:平面直观图是矩形O A B C '''',且6O A ''=,3O C ''=,所以矩形O A B C ''''的面积为6318S '=⨯=,所以原平面图形的面积为22362S S ='=.故答案为:362.39.图见解析.【解析】【分析】根据斜二测画法可得在原图形中,11AB A B =,AB x ∕∕轴,CD 的位置不变,11,OD O D OC O C ''==,OB 的位置不变,12OB O B '=,画出图形即可.【详解】解:如图,建立直角坐标系xOy ,在x 轴上截取11OD O D '==,12OC O C '==,12O B '=,在y 轴上截取22OB =,再过点B 与x 轴平行的直线上截取112AB A B ==,连接BC ,AD ,便得到了原图形(如图).40.(1)答案见解析;(2)328.【解析】【分析】(1)利用斜二测画法,画出梯形ABCD 的直观图;(2)过点D ¢作D E A B ''''⊥于点E ',利用梯形的面积公式求解.【详解】(1)在梯形ABCD 中,2,1AB OD ==,画出梯形ABCD 的直观图,如图中梯形A B C D ''''所示,(2)过点D ¢作D E A B ''''⊥于点E '.易得1122O D OD ''==,所以梯形A B C D ''''的高24D E ''=,所以梯形A B C D ''''的面积为()123212248⨯+⨯=,即梯形ABCD 水平放置的直观图的面积为328.。
§1.2空间几何体的三视图和直观图一、 基础知识1.光由一点向外散射形成的投影叫做 ;在一束平行光线照射下形成的投影叫做 .2.三视图的主视图、侧视图、俯视图分别是从几何体的 、 、观察几何体画出的轮廓线,画三视图的基本要求是 和 高度一样; 和 长度一样 ; 和 宽度一样. 3.斜二测画法的规则是:(1)在已知图形中建立直角坐标系xoy ,画直观图 时,它们分别对应x '和y ' 轴,两轴交于点o ',使='''∠y o x ,它们确定的平面表示水平平面. (2) 已知图形中平行于x 轴或y 轴的线段,在直观图中分别画成 (3)已知图形中平行于x 轴的线段的长度 ,在直观图中 ;平行于 y 轴的线段,在直观图中 二.基础练习1.下列说法正确的是( ) A.矩形的中心投影 一定是矩形B.两条相交直线 的平行投影不可能平行C.梯形的中心投影一定是梯形D.平行四边形的中心投影一定是梯形2.如图,水平放置的圆柱形物体的三视图是( )3.以下说法正确的是( )A.任何物体的三视图都与物体的摆放位置有关B.任何物体的三视图都与于物体的摆放位置无关C.有的物体的三视图与物体的摆放位置无关D.正方体的三视图一定是三个全等的正方形4.两条不平行的直线,其平行投影不可能是()A.两条平行直线B.一点和一条直线C.两条相交直线D.两个点5.下面的说法正确的是()A.水平放置的正方形的直观图可能是梯形B.两条相交直线的直观图可能是平行直线;C.互相垂直的两条直线的直观图仍然互相垂直;D.平行四边形的直观图仍然是平行四边形6.圆柱的正视图和侧视图都是,俯视图是;圆锥的正视图和侧视图都是,俯视图是;圆台的正视图和侧视图都是,俯视图是;球的三视图都是(参考答案:1.B 2.A 3.C 4.D5.D 6矩形,圆;等腰三角形,圆和点;等腰梯形,同心圆;圆)三.典型例题例1 螺栓是棱柱和圆柱的组合体如图,画出它的三视图.例2 根据三视图,想像物体原型,并画出物体的实物草图:(1)三视图如图(a)(2)三视图如图(b)(a) (b)例3已知正三角形ABC 的边长为a ,求ABC ∆的平面直观图C B A '''∆的面积.四.自我测评1.如图所示为一平面图形的直观图,则此平面图形可能是( )2.给出下列命题:①如果一个几何体的三视图是完全相同的,则这个几何体是正方体;②如果一个几何体的正视图和俯视图都是矩形,则这个几何体是长方体; ③如果一个几何体的三视图都是矩形,则这个几何体是长方体;④如果一个几何体的正视图和侧视图都是等腰梯形,则这个几何体是圆台A 。
空间几何体的三视图与直观图知识集结知识元投影的概念与绘制知识讲解中心投影和平行投影1.投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,把光线叫做投影线,把留下物体影子的屏幕叫做投影面.2.中心投影与平行投影投影定义特征分类中心投影光由一点向外散射形成的投影投影线交于一点平行投影在一束平行光线照射下形成的投影投影线互相平行正投影和斜投影3(1)中心投影中投影线交于一点.(2)平行投影中:①直线或线段的投影是直线或线段或点,平行直线的投影平行或重合或为两个点.②平行于投影面的线段,它的投影与这条线段平行且等长.③与投影面平行的平面图形,它的投影与这个图形全等.4.中心投影和平行投影具有的区别(1)中心投影的投影线交于一点,平行投影的投影线互相平行.(2)在平行投影中,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;而中心投影则不同.(3)画实际效果图一般用中心投影法;画立体几何中的图形一般用平行投影法.5.判断一个几何体的投影是什么图形,先分清楚是平行投影还是中心投影,投影面的位置如何,再根据平行投影或中心投影的性质来判断.当图形中的直线或线段不平行于投影线时,平行投影具有下述性质:(1)直线或线段的平行投影仍是直线或线段.(2)平行直线的平行投影是平行或重合的直线.(3)平行于投影面的线段,它的投影与这条线段平行且等长.(4)与投影面平行的平面图形,它的投影与这个图形全等.例题精讲投影的概念与绘制例1.一条直线在平面上的正投影是()A.直线B.点C.线段D.直线或点例2.如图,E、F分别是正方体的面ADD1A1,面BCC1B1的中心,则四边形BFD1E在该正方体的面上的正射影可能是________.(要求:把可能的图的序号都填上)例3.如图,点O为正方体ABCD-A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的面上的正投影可能是________(填出所有可能的序号).例4.设四面体ABCD各棱长均相等,S为AD的中点,Q为BC上异于中点和端点的任一点,则△SQD在四面体的面BCD 上的射影可能是()A.B.C.D.根据三视图分析几何体空间结构知识讲解空间几何体的三视图1.三视图的基本概念三视图概念规律正视图光线从几何体的前面向后面正投影得到的投影图一个几何体的正视图和侧视图高度一样,正视图和俯视图长度一样,侧视图与俯视图宽度一样侧视图光线从几何体的左面向右面正投影得到的投影图俯视图光线从几何体的上面向下面正投影得到的投影图2旋转体是由某个平面图形绕着旋转轴旋转形成的,显然它是关于旋转轴对称的一类几何体.当旋转体的底面水平放置时(除球外),它的三视图比较简单,这时常见的三视图分别为:(1)圆柱的正视图和侧视图都是矩形,俯视图是圆;(2)圆锥的正视图和侧视图都是等腰三角形,俯视图是圆和圆心;(3)圆台的正视图和侧视图都是等腰梯形,俯视图是两个同心圆.例题精讲根据三视图分析几何体空间结构例1.已知某几何体的正视图和侧视图均如图所示,给出下列5个图形:其中可以作为该几何体的俯视图的图形个数是()A.5个B.4个C.3个D.2个例2.已知如图所示的正方体ABCD-A1B1C1D1,点P,Q分别在棱BB1,DD1上,且=,过点A,P,Q作截面截去该正方体的含点A1的部分,则下列图形中不可能是截去后剩下几何体的正视图的是()A .B.C.D.例3.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积S的取值范围是________.根据空间几何体绘制三视图知识讲解空间几何体的三视图1.三视图的基本概念三视图概念规律正视图光线从几何体的前面向后面正投影得到的投影图一个几何体的正视图和侧视图高度一样,正视图和俯视图长度一样,侧视图与俯视图宽度一样侧视图光线从几何体的左面向右面正投影得到的投影图俯视图光线从几何体的上面向下面正投影得到的投影图2旋转体是由某个平面图形绕着旋转轴旋转形成的,显然它是关于旋转轴对称的一类几何体.当旋转体的底面水平放置时(除球外),它的三视图比较简单,这时常见的三视图分别为:(1)圆柱的正视图和侧视图都是矩形,俯视图是圆;(2)圆锥的正视图和侧视图都是等腰三角形,俯视图是圆和圆心;(3)圆台的正视图和侧视图都是等腰梯形,俯视图是两个同心圆.例题精讲根据空间几何体绘制三视图例1.如图,下列四个几何体中,它们的三视图(正视图、俯视图、侧视图)有且仅有两个相同,而另一个不同的两个几何体是________.(1)棱长为2的正方体(2)底面直径和高均为2的圆柱(3)底面直径和高均为2的圆锥例2.'画出如图所示的几何体的三视图.'例3.已知点E,F,G分别是正方体ABCD-A1B1C1D1的棱AA1,CC1,DD1的中点,点M,N,Q,P分别在线段DF,AG,BE,C1B1上.以M,N,Q,P为顶点的三棱锥P-MNQ的俯视图不可能是()A.B.C.D.例4.'用小立方体搭成一个几何体,使它的正视图和俯视图如图所示,搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?'绘制水平放置的平面图形的直观图知识讲解空间几何体的直观图1.直观图的概念(1)定义:把空间图形(平面图形和立体图形的统称)画在平面内,使得既富有立体感,又能表达出主要部分的位置关系和度量关系的图形叫做直观图.(2)说明:在立体几何中,空间几何体的直观图是在平行投影下画出的空间图形.2.用斜二测画法画水平放置的平面图形的直观图的步骤(1)画轴:在已知图形中取互相垂直的x轴和y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴和y′轴,两轴交于O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.(2)画线:已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x’轴或y’轴的线段.(3)取长度:已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度为原来的一半.3.立体图形直观图的画法画立体图形的直观图,在画轴时,要多画一条与平面x′O′y′垂直的轴O′z′,且平行于O′z′的线段长度不变.其他同平面图形的画法.例题精讲绘制水平放置的平面图形的直观图例1.关于斜二测画法所得直观图的说法正确的是()A.直角三角形的直观图仍是直角三角形B.梯形的直观图是平行四边形C.正方形的直观图是菱形D.平行四边形的直观图仍是平行四边形例2.如图为一平面图形的直观图的大致图形,则此平面图形可能是() A.B.C.D.例3.'画边长为1 cm的正三角形的水平放置的直观图.'绘制空间几何体的直观图知识讲解空间几何体的直观图1.直观图的概念(1)定义:把空间图形(平面图形和立体图形的统称)画在平面内,使得既富有立体感,又能表达出主要部分的位置关系和度量关系的图形叫做直观图.(2)说明:在立体几何中,空间几何体的直观图是在平行投影下画出的空间图形.2.用斜二测画法画水平放置的平面图形的直观图的步骤(1)画轴:在已知图形中取互相垂直的x轴和y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴和y′轴,两轴交于O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.(2)画线:已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x’轴或y’轴的线段.(3)取长度:已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度为原来的一半.3.立体图形直观图的画法画立体图形的直观图,在画轴时,要多画一条与平面x′O′y′垂直的轴O′z′,且平行于O′z′的线段长度不变.其他同平面图形的画法.例题精讲绘制空间几何体的直观图例1.'如图所示,在平面直角坐标系中,各点坐标为O(0,0),A(1,3),B(3,1),C(4,6),D(2,5).试画出四边形ABCD的直观图.'例2.'有一个正六棱锥(底面为正六边形,侧面为全等的等腰三角形的棱锥),底面边长为3 cm,高为3 cm,画出这个正六棱锥的直观图.'例3.'一几何体的三视图如图:(1)画出它的直观图;(2)求该几何体的体积.'直观图的还原知识讲解空间几何体的直观图1.直观图的概念(1)定义:把空间图形(平面图形和立体图形的统称)画在平面内,使得既富有立体感,又能表达出主要部分的位置关系和度量关系的图形叫做直观图.(2)说明:在立体几何中,空间几何体的直观图是在平行投影下画出的空间图形.2.用斜二测画法画水平放置的平面图形的直观图的步骤(1)画轴:在已知图形中取互相垂直的x轴和y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴和y′轴,两轴交于O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.(2)画线:已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x’轴或y’轴的线段.(3)取长度:已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度为原来的一半.3.立体图形直观图的画法画立体图形的直观图,在画轴时,要多画一条与平面x′O′y′垂直的轴O′z′,且平行于O′z′的线段长度不变.其他同平面图形的画法.例题精讲直观图的还原例1.用斜二测画法画水平放置的△ABC时,若∠A的两边分别平行于x轴、y轴,且∠A=90°,则在直观图中∠A′等于()A.45°B.135°C.45°或135°D.90°例2.水平放置的△ABC的斜二测直观图如图所示,已知B′C′=4,A′C′=3,则△ABC中AB边上的中线的长度为()A.B.C.5D.例3.已知水平放置的△ABC按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′=,那么原△ABC中∠ABC的大小是()A.30°B.45°C.60°D.90°根据空间几何体的直观图进行相关计算知识讲解空间几何体的直观图1.直观图的概念(1)定义:把空间图形(平面图形和立体图形的统称)画在平面内,使得既富有立体感,又能表达出主要部分的位置关系和度量关系的图形叫做直观图.(2)说明:在立体几何中,空间几何体的直观图是在平行投影下画出的空间图形.2.用斜二测画法画水平放置的平面图形的直观图的步骤(1)画轴:在已知图形中取互相垂直的x轴和y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴和y′轴,两轴交于O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.(2)画线:已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x’轴或y’轴的线段.(3)取长度:已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度为原来的一半.3.立体图形直观图的画法画立体图形的直观图,在画轴时,要多画一条与平面x′O′y′垂直的轴O′z′,且平行于O′z′的线段长度不变.其他同平面图形的画法.例题精讲根据空间几何体的直观图进行相关计算例1.如图是利用斜二测画法画出的△ABO的直观图,已知O′B′=4,且△AOB的面积为16,A′B′∥y′轴,过A′作A′C′⊥x′轴,则A′C′=__________.例2.如图,△A′B′C′表示水平放置的△ABC在斜二测画法下的直观图,A′B′在x′轴上,B′C′⊥x′轴,且B′C′=3,则△ABC的边AB上的高为__________.例3.'在水平放置的平面α内有一个边长为1的正方形A′B′C′D′,如图,其中的对角线A′C′在水平位置,已知该正方形是某个四边形用斜二测画法画出的直观图,试画出该四边形的真实图形ABCD并求出其面积.'例4.'一个水平放置的平面图形的斜二测直观图是直角梯形ABCD,如图所示,∠ABC=45°,AB=AD=1,DC⊥BC,求原平面图形的面积.'备选题库知识讲解本题库作为知识点“空间几何体的直观图与三视图”的题目补充.例题精讲备选题库例1.某几何体的三视图如图所示,则该几何体的体积为()D.64+8πA.64+B.64+C.64+例2.已知一个几何体的三视图如图所示,其中俯视图是一个边长为2的正方形,则该几何体的表面积为()B.20 C.D.A.例3.如图,网格纸上小正方形边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A.πB.πC.πD.π例4.'某几何体的直观图如图1,其按一定比例画出的三视图如图2,三视图中的长度a对应直观图中2cm.(1)结合两个图形,试指出该几何体中相互垂直的面与相互垂直的线段,并指出相关线段的长度;(2)求AB与CD所成角的大小:(3)求二面角A-BD-C的平面角的正切值;(4)计算该几何体的体积与表面积.'例5.'ABCD是长方形,四个顶点在平面α上的射影分别为A′、B′、C′、D′,直线A′B′与C′D′不重合.①求证:A′B′C′D′是平行四边形;②在怎样的情况下,A′B′C′D′是长方形?证明你的结论.'当堂练习单选题练习1.已知一个棱长为2的正方体被两个平面所截得的几何体的三视图如图所示,则该几何体的体积是()A.B.4C.D.练习2.一个三棱锥的三视图如图所示.则该三棱椎的表面积是()A.B.C.D.练习3.如图,格纸上小正方形的边长为1,粗实线画出的是一个三棱锥的三视图,则该三棱锥的体积为()D.8A.B.C.练习4.如图是某几何体的视图,则该几何体的体积为()A.B.C.D.练习5.某四棱锥的底面为正方形,其三视图如图所示,则该四棱锥的外接球的表面积为()A.πB.2πC.3πD.4π练习1.一个几何体的三视图如图所示,则该几何体的体积为___.练习2.某几何体的三视图如图所示,则该几何体的体积是___;表面积是_____.解答题练习1.'已知某个几何体的三视图如图,根据图中标出的尺寸(单位:cm),(1)求这个几何体的体积;(2)求这个几何体的表面积.'(Ⅰ)给定线段AB=4,用斜二测画法作正方体ABCD-A1B1C1D1;(Ⅱ)设P是棱A1B1上一点,,求多面体P-BCC1B1的体积.'练习3.'一个多面体的三视图和直观图如下:(1)求证:MN∥平面CDEF;(2)求证:MN⊥AH;(3)求多面体A-CDEF的体积.'。
高三数学空间几何体的三视图与直观图试题答案及解析1.已知某锥体的三视图(单位:cm)如图所示,则该锥体的体积为.【答案】2.【解析】由已知几何体的视图可知,几何体为四棱锥,其中SA垂直于平面ABCD,SA=2,四边形ABCD为直角梯形,AD=1,BC=2,AB=2,所以四棱锥的体积为【考点】三视图求几何体的体积.2.右图为某几何体的三视图,则该几何体的体积为【答案】【解析】由三视图知,该几何体是底面半径为1,高为1的圆柱与半径为1的球体组成的组合体,其体积为=.【考点】简单几何体的三视图,圆柱的体积公式,球的体积公式3.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为()A.B.C.D.【答案】C【解析】由三视图可知:该几何体是一个如图所示的三棱锥P-ABC,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4.设其外接球的球心为O,O点必在高线PE上,外接球半径为R,则在直角三角形BOE中,BO2=OE2+BE2=(PE-EO)2+BE2,即R2=(4-R)2+(3)2,解得:R=,故选C.【考点】三视图,球与多面体的切接问题,空间想象能力4.如图是一个几何体的三视图,则该几何体的表面积是____________【答案】28+12【解析】这是一个侧放的直三棱柱,底面是等腰直角三角形,侧棱长为6故表面积为2×(×2×2)+(2+2+2)×6=28+12.【考点】三视图,几何体的表面积.5.在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.【答案】24【解析】由题意割去的两个小长方体的体积为.【考点】三视图,几何体的体积..6.某空间几何体的正视图是三角形,则该几何体不可能是()圆柱圆锥四面体三棱柱【答案】A【解析】由于圆柱的三视图不可能是三角形所以选A.【考点】三视图.7.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是________.【答案】2(π+)【解析】由三视图可知此几何体的表面积分为两部分:底面积即俯视图的面积为2;侧面积为一个完整的圆锥的侧面积,且圆锥的母线长为2,底面半径为1,所以侧面积为2π.两部分加起来即为几何体的表面积,为2(π+).8.一个锥体的主(正)视图和左(侧)视图如图所示,下面选项中,不可能是该锥体的俯视图的是()【答案】C【解析】俯视图是选项C的锥体的正视图不可能是直角三角形.另外直观图如图1的三棱锥(OP⊥面OEF,OE⊥EF,OP=OE=EF=1)的俯视图是选项A,直观图如图2的三棱锥(其中OP,OE,OF两两垂直,且长度都是1)的俯视图是选项B,直观图如图3的四棱锥(其中OP⊥平面OEGF,底面是边长为1的正方形,OP=1)的俯视图是选项D.9.如图所示,正方形O′A′B′C′的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.6B.8C.2+3D.2+2【答案】B【解析】如图,OB=2,OA=1,则AB=3.∴周长为8.10.某几何体的三视图如图所示,且该几何体的体积是2,则正(主)视图的面积等于()A.2B.C.D.3【答案】A【解析】由三视图可知该几何体是一个四棱锥,其底面积就是俯视图的面积S=(1+2)×2=3,其高就是正(主)视图以及侧(左)视图的高x,因此有×3×x=2,解得x=2,于是正(主)视图的面积S=×2×2=2.11.如图,三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥底面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,则该三棱柱的侧视图的面积为( )A. C.4 D.【答案】A【解析】侧视图也为矩形,底宽为原底等边三角形的高,侧视图的高为侧棱长,所以侧视图的面积为,故选B.【考点】三视图12.一个几何体的三视图如图所示,则该几何体内切球的体积为 .【答案】【解析】依题意可得该几何体是一个正三棱柱,底面边长为2,高为.由球的对称性可得内切球的半径为.由已知计算得底面内切圆的半径也为.所以内切球的体积为.【考点】1.三视图.2.几何体内切球的对称性.3.球的体积公式.4.空间想象力.13.已知一个正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,那么它的左视图面积的最小值是________.【答案】【解析】如图,正三棱柱中,分别是的中点,则当面与侧面平行时,左视图面积最小,且面积为.【考点】三视图.14.某几何体的三视图如图3所示,则其体积为________.【答案】【解析】原几何体可视为圆锥的一半,其底面半径为1,高为2,∴其体积为×π×12×2×=.15.已知正△ABC的边长为2,那么用斜二测画法得到的△ABC的直观图△A′B′C′的面积为()A.B.C.D.【答案】D【解析】∵正△ABC的边长为2,故正△ABC的面积S==设△ABC的直观图△A′B′C′的面积为S′则S′=S=•=故选D16.一个体积为12的正三棱柱的三视图如图所示,则这个三棱柱的侧视图的面积为()A.B.C.D.【答案】A【解析】依题意可得三棱柱的底面是边长为4正三角形.又由体积为.所以可得三棱柱的高为3.所以侧面积为.故选A.【考点】1.三视图的知识.2.棱柱的体积公式.3.空间想象力.17.某几何体的三视图如题(6)所示,其侧视图是一个边长为1的等边三角形,俯视图是两个正三角形拼成的菱形,则这个几何体的体积为()A.1B.C.D.【答案】C【解析】这是由两个三棱锥拼成的几何体,其体积为.选C.【考点】三视图及几何体的体积.18.一个四面体的顶点在空间直角坐系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为()A.B.C.D.【答案】A【解析】设O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1),将以O,A,B,C为顶点的四面体补成一正方体后,因为OA⊥BC,所以补成的几何体以zOx平面为投影面的正视图为A.19.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几体的体积为()A.6B.9C.12D.18【答案】B【解析】由三视图可知,此几何体为如图所示的三棱锥,其底面△ABC为等腰三角形且AB=BC,AC=6,AC边上的高为3,SB⊥底面ABC,且SB=3,因此此几体的体积为V=××6×3×3=920.如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为 .【答案】【解析】由三视图知,该几何体是一个圆柱,其表面积为.【考点】三视图及几何体的表面积.21.在三棱锥中,,平面ABC,.若其主视图,俯视图如图所示,则其左视图的面积为【答案】【解析】左视图是一个直角三角形,其直角边分别是2与.所以面积为.【考点】1.三视图知识.2.三角形面积的计算.22.一个几何体的三视图如图所示,则这个几何体的体积是_________.【答案】【解析】由三视图还原几何体,该几何体为底面半径为,高为的圆柱,去掉底面半径为,高为的圆锥的剩余部分,则其体积为.【考点】1、三视图;2、几何体的体积.23.棱长为2的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是( ).A.B.4C.D.3【答案】B【解析】如图,红色虚线表示截面,可见这个截面将正方体分为完全相同的两个几何体,则所求几何体的体积即是原正方体的体积的一半,.【考点】1.三视图;2.正方体的体积24.如图,一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积为()A.1B.2C.3D.4【答案】B【解析】由题设及图知,此几何体为一个四棱锥,其底面为一个对角线长为的正方形,故其底面积为,由三视图知其中一个侧棱为棱锥的高,其相对的侧棱与高及底面正方形的对角线组成一个直角三角形,由于此侧棱长为,对角线长为,故棱锥的高为,此棱锥的体积为,故选B.【考点】由三视图求面积、体积.25.已知某几何体的三视图如右图所示,其中,正视图,侧视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为()A.B.C.D.【答案】C【解析】由已知的三视图可知原几何体是上方是三棱锥,下方是半球,∴,故选C.【考点】1.三视图;2.几何体的体积.26.如图是一个组合几何体的三视图,则该几何体的体积是.【答案】36+128π【解析】由三视图还原可知该几何体是一个组合体,下面是一个圆柱,上面是一个三棱柱,故所求体积为V=×3×4×6+16π×8=36+128π.27.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为()A.B.C.D.【答案】D【解析】由三视图可知,该几何体是三分之一个圆锥,其体积为.【考点】三视图及几何体的体积.28.某几何体的三视图(图中单位:cm)如图所示,则此几何体的体积是()A.36 cm3B.48 cm3C.60 cm3D.72 cm3【答案】B【解析】由三视图可知几何体上方是一长方体,下方是一放倒的直四棱柱,且四棱柱底面是等腰梯形,上底长为2 cm,下底长为6 cm,高为2 cm,故几何体的体积是2×2×4+×(2+6)×2×4=48(cm3),故选B.29.如图是某三棱柱被削去一个底面后的直观图、侧(左)视图与俯视图.已知CF=2AD,侧视图是边长为2的等边三角形,俯视图是直角梯形,有关数据如图所示.求该几何体的体积.【答案】3【解析】解:取CF中点P,过P作PQ∥CB交BE于Q,连接PD,QD,则AD∥CP,且AD=CP.所以四边形ACPD为平行四边形,所以AC∥PD.所以平面PDQ∥平面ABC.该几何体可分割成三棱柱PDQ-CAB和四棱锥D-PQEF,所以V=V-CAB+V D-PQEFPDQ=×22sin 60°×2+××=3.30.一个几何体的三视图如图所示,则该几何体的表面积是()A.6+8B.12+7C.12+8D.18+2【答案】C【解析】该空间几何体是一个三棱柱.底面为等腰三角形且底面三角形的高是1,底边长是2 ,两个底面三角形的面积之和是2,侧面积是(2+2+2)×3=12+6,故其表面积是12+8.31. 已知四棱锥P-ABCD 的三视图如右图所示,则四棱锥P-ABCD 的四个侧面中的最大面积是( ).A .6B .8C .2D .3【答案】A【解析】四棱锥如图所示:PM =3,S △PDC =×4×=2,S △PBC =S △PAD =×2×3=3,S △PAB =×4×3=6,所以四棱锥P-ABCD 的四个侧面中的最大面积是6.32. 若某几何体的三视图如图所示,则这个几何体的直观图可以是( ).【答案】B【解析】分别从三视图中去验证、排除.由正视图可知,A 不正确;由俯视图可知,C ,D 不正确,所以选B.33. 一个几何体的三视图如图所示,已知这个几何体的体积为,则h________.【答案】【解析】依题意可得四棱锥的体积为.所以可得.解得.故填.本小题的是常见的立几中的三视图的题型,这类题型关键是要能还原几何体的直观图形.所以培养空间的思想很重要.【考点】1.三视图的识别.2.空间几何体的直观图.34.图中的网格纸是边长为的小正方形,在其上用粗线画出了一四棱锥的三视图,则该四棱锥的体积为()A.B.C.D.【答案】C【解析】由三视图知,该几何体是一个四棱锥,且其底面为一个矩形,底面积,高为,故该几何体的体积,故选C.【考点】1.三视图;2.锥体的体积35.已知某几何体的三视图如图,其中主视图中半圆直径为2,则该几何体的体积____________【答案】24-【解析】由三视图可知,该几何体是有长方体里面挖了一个半圆柱体,可知,长方体的长为4,宽为3,高为2,那么圆柱体的高位3,底面的半径为1,则可知该几何体的体积为,故答案为.【考点】由三视图求面积、体积.36.把边长为的正方形沿对角线折起,连结,得到三棱锥,其正视图、俯视图均为全等的等腰直角三角形(如图所示),则其侧视图的面积为()A.B.C.D.【答案】B【解析】在三棱锥中,在平面上的射影为的中点,∵正方形边长为,∴,∴侧视图的面积为.【考点】1.三视图;2.三角形的面积.37.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的()A.外接球的半径为B.体积为C.表面积为D.外接球的表面积为【答案】D.【解析】由题意设外接球半径为,则,A错误;外接球的表面积为,D正确;此几何体的体积为,故B错误;此几何体的表面积为,C错误.【考点】三视图及球的表面积公式.38.一个几何体的三视图如图所示,则该几何体的体积为( )A.4B.8C.D.【答案】B【解析】有三视图可以看出,该几何体是一个三棱锥,它的体积为.【考点】三视图,几何体的体积.39.如图,直三棱柱的侧棱长和底面边长均为2,正视图和俯视图如图所示,则其侧视图的面积为()A.B.C.4D.2【答案】A【解析】由题意易知,直三棱柱的底面是边长为2的正三角形.其侧视图为矩形,矩形的高为2,宽为底面正三角形的高.易知边长为2的正三角形的高为.所以面积为.【考点】三视图40.如果一个几何体的三视图如图所示(单位长度:cm),则此几何体的表面积是( )A.B.21C.D.24【答案】A【解析】还原几何体,得棱长为2的正方体和高为1的正四棱锥构成的简单组合体,如图所示,=,选A.【考点】1、几何体的表面积;2、三视图.41.某几何体的三视图如图所示,则它的表面积为()A.B.C.D.【答案】A【解析】易知该三视图的直观图是倒立的半个三棱锥,其表面积由底面半圆,侧面三角形和侧面扇形,所以,故选A.【考点】1.立体几何三视图;2.表面积和体积的求法.42.一几何体的三视图如图所示,则该几何体的体积为()A.200+9πB.200+18πC.140+9πD.140+18π【答案】A【解析】通过观察三视图,易知该几何体是由半个圆柱和长方体组成的,则半个圆柱体积;长方体的体积为,所以该几何体的最终体积,故选A.【考点】1.三视图的应用;2.简单几何体体积的求解.43.一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为( )A.B.C.D.【解析】把原来的几何体补成以为长、宽、高的长方体,原几何体四棱锥与长方体是同一个外接球,,,.【考点】1.补体法;2.几何体与外接球之间的元素换算.44.一个几何体的三视图如图所示,其中府视图为正三角形,则侧视图的面积为()A.8B.C.D.4【答案】B【解析】由三视图可知:该几何体是一个正三棱柱,高为4,底面是一个边长为2的正三角形.因此,侧视图是一个长为4,宽为的矩形,.【考点】三视图与几何体的关系、几何体的侧面积的求法能力.45.某几何体的三视图如图所示,则它的侧面积为()A.B.C.24D.【答案】A【解析】由三视图得,这是一个正四棱台,由条件,侧面积.【考点】1.三视图;2.正棱台侧面积的求法.46.一个几何体的三视图如图所示,其中正视图与侧视图都是底边长为6、腰长为5的等腰三角形,则这个几何体的全面积为()A.B.C.D.【解析】由三视图知,该几何体是一个圆锥,且圆锥的底面直径为,母线长为,用表示圆锥的底面半径,表示圆锥的母线长,则,,故该圆锥的全面积为.【考点】三视图、圆锥的表面积47.一个空间几何体的三视图如右图所示,其中主视图和侧视图都是半径为的圆,且这个几何体是球体的一部分,则这个几何体的表面积为( )A.3πB.4πC.6πD.8π【答案】B【解析】此空间几何体是球体切去四分之一的体积,表面积是四分之三的球表面积加上切面面积,切面面积是两个半圆面面积.故这个几何体的表面积是.【考点】1、几何体的三视图; 2、球的表面积公式.48.右图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为和,腰长为的等腰梯形,则该几何体的表面积是.【答案】【解析】从三视图可以看出:几何体是一个圆台,上底面是一个直径为4的圆,下底面是一个直径为2的圆,侧棱长为4.上底面积,下底面积,侧面是一个扇环形,面积为,所以表面积为.【考点】空间几何体的三视图、表面积的计算.49.某零件的正(主)视图与侧(左)视图均是如图所示的图形(实线组成半径为的半圆,虚线是等腰三角形的两腰),俯视图是一个半径为的圆(包括圆心),则该零件的体积是 ( )A.B.C.D.【解析】由题意易知该几何体为一半球内部挖去一圆锥所成,故体积为.故选C.【考点】1.体积; 2.三视图.50.某四棱台的三视图如图所示,则该四棱台的体积是 ( )A.B.C.D.【答案】B【解析】由三视图可知,该四棱台的上下底面边长分别为和的正方形,高为,故,故选B.【考点】三视图与四棱台的体积51.若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为()A.B.C.D.【答案】B【解析】由已知底面是正三角形的三棱柱的正视图,我们可得该三棱柱的底面棱长为2,高为1,则底面外接圆半径,球心到底面的球心距,则球半径,则该球的表面积,故选B.【考点】由三视图求面积、体积.点评:本题考查的知识点是由三视图求表面积,其中根据截面圆半径、球心距、球半径满足勾股定理计算球的半径,是解答本题的关键.52.如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度随时间变化的可能图像是()A. B. C. D.【答案】B【解析】由三视图可知该几何体是圆锥,顶点在下,底面圆在上,在匀速注水过程中水面高度随着时间的增大而增大,且刚开始时截面积较小,所以高度变化较快,随着水面的升高,截面圆面积增大,高度变化速度减缓,因此函数的瞬时变化率逐渐减小,导数减小,图像为B项【考点】函数导数的定义点评:本题通过高度的瞬时变化率的变化情况得到函数的导数的大小,从而通过做出的切线斜率的变化得出正确图像53.已知一个三棱锥的主视图与俯视图如图所示,则该三棱锥的侧视图面积为()A.B.C.D.【答案】B【解析】根据题意,由于三棱锥的俯视图为直角三角形,正视图为直角三角形,且斜边长为2,直角边长为,那么结合图像可知其侧视图为底面边长为1,高为的三角形,因此其面积为,故选B.【考点】三棱锥点评:解决的关键是根据三棱锥的三视图来得到底面积和高进而求解侧视图,属于基础题。
由直观图确定三视图
一、投影
1. 一条直线在平面上的平行投影是()
A.直线B.点
C.点或直线D.线段
2. 下列命题中正确的个数是( )
①直线或线段的平行投影仍是直线或线段
②与投射面平行的平面图形,它的投影与这个图形一定全等
③矩形的平行投影一定是矩形
④两条相交直线的投影可能平行
⑤如果△ABC在一投射面内的平行投影是△A′B′C′,则△AB C的重心M在投射面内的平行投影M′一定是△A′B′C′的重心
A.1
B.2
C.3
D.4
3. 如图1所示,在正方体ABCD-A1B1C1D1中,E,F分别是AA1,C1D1的中点,G是正方形BCC1B1的中心,则四边形AGFE在该正方体的各个面上的投影可能是图2中的________.(填序号)
4. 如图所示,若P为正方体AB CD-A1B1C1D1中AC1与BD1的交点,则△P AC在该正方体各个面上的射影可能是()
A .①②③④
B .①③
C .①④
D .②④
5. 如图所示,,E F 分别为正方体的面11ADD A 、面11BCC B 的中心,则四边形1BFD E 在该正方体的面上的正投影可能是___________.
④
③②
①
二、确定三视图
1. 一几何体的直观图如图所示,下列给出的四个俯视图中正确的是________.(填序号)
2. 将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )
3. 用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是( )
4. 如图,三棱柱111ABC A B C -的侧棱长和底面边长均为2,且侧棱1AA ⊥底面ABC ,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为( )
A 3
B .23
C .2
D .4
5. 沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为( )
6. 如图甲,将一个正三棱柱ABC-DEF截去一个三棱锥A-BCD,得到几何体BCDEF,如图乙,则该几何体的正视图(主视图)是()
7. 将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的侧视图为()
8. 如图,在正四棱柱ABCD -A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P -BCD 的正视图与侧视图的面积之比为()
A .1∶
1
B .2∶1
C .2∶3
D .3∶2
9. 将正三棱柱截去三个角(如图所示,,A B C 分别是CHI 三边的中点)得到几何体如图,则该几何体按图中所示方向的侧视图(或称左视图)为( )
F E
D
C
B
A
F E D I
H
G C
B
A
D
C
B
A
B
B B B
E
E
E
E
三、画三视图
1. 画出如图所示的几何体的三视图.
2. 如图是同一个圆柱的不同放置,阴影面为正面,分别画出它们的三视图.
3. 画出如图所示的几何体的三视图.
4. 下图是截去一角的长方体,画出它的三视图.
参考答案
由直观图确定三视图
一、投影
1. 答案 C
解析当投影线与该直线平行时直线的平行投影为一个点;当投影线与该直线不平行时,直线的平行投影为一条直线.
2. 答案:B
解析:命题①错误,当直线或线段与投射线平行时,其平行投影是点;命题②正确;命题③错误,如矩形的窗子被阳光投射在地面上的射影图形就可能为一个平行四边形;命题④错误,两条相交直线的投影可能是相交直线或重合的直线,不可能平行;⑤正确,重心的平行投影仍是重心.
3. 答案①②③
解析要画出四边形AGFE在该正方体的各个面上的投影,只需画出四个顶点A,G,F,E在每个面上的投影,再顺次连接即得到在该面上的投影,并且在两个平行平面上的投影是相同的.
在平面ABCD和平面A1B1C1D1上的投影是图①;在平面ADD1A1和平面BCC1B1上的投影是图②;在平面ABB1A1和平面DCC1D1上的投影是图③.
4. 解析:选C由题意,得△P AC在底面ABCD,A1B1C1D1上的射影如图①所示,△P AC在其余四个侧面上的射影如图④所示,故选C.
5. 略
二、确定三视图
1. 答案②
解析该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此填②.
2. 答案 D
解析从左往右看,主体的轮廓是一个长方形,长方体的对角线可以看见,且该对角线是从左下角往右上角倾斜的.
3. 解析:选B D选项为正视图或侧视图,俯视图中显然应有一个被遮挡的圆,所以内圆是虚线,故选B.
4. 略
5. 解析:选B给几何体的各顶点标上字母,如图1.A,E在侧投影面上的投影重合,C,G 在侧投影面上的投影重合,几何体在侧投影面上的投影及把侧投影面展平后的情形如图2所示,故正确选项为B.
6. 解析:选C由于三棱柱为正三棱柱,故平面ADEB⊥平面DEF,△DEF是等边三角形,所以CD在后侧面上的投影为AB的中点与D的连线,CD的投影与底面不垂直,故选C.
7. 答案 B
解析显然从左边看到的是一个正方形,因为割线AD1可见,所以用实线表示;而割线B1C不可见,所以用虚线表示.故选B.
8. 解析:选A根据题意,三棱锥P -BCD的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高.故三棱锥P -BCD的正视图与侧视图的面积之比为1∶1.
9. 略
三、画三视图
1. 解正四棱锥的三视图如图所示,
2. 解三视图如图所示.
(1)(2)
3. 解
4. 解:长方体截角后,截面是一个三角形,在每个视图中反映为不同的三角形.三视图如下:。