化工原理第四章第5节2014
- 格式:ppt
- 大小:691.50 KB
- 文档页数:29
第四章多组分系统热力学4.1有溶剂A与溶质B形成一定组成的溶液。
此溶液中B的浓度为c B,质量摩尔浓度为b B,此溶液的密度为。
以M A,M B分别代表溶剂和溶质的摩尔质量,若溶液的组成用B的摩尔分数x B表示时,试导出x B与c B,x B与b B之间的关系。
解:根据各组成表示的定义4.2D-果糖溶于水(A)中形成的某溶液,质量分数,此溶液在20 C时的密度。
求:此溶液中D-果糖的(1)摩尔分数;(2)浓度;(3)质量摩尔浓度。
解:质量分数的定义为4.3在25 C,1 kg水(A)中溶有醋酸(B),当醋酸的质量摩尔浓度b B介于和之间时,溶液的总体积。
求:(1)把水(A)和醋酸(B)的偏摩尔体积分别表示成b B的函数关系。
(2)时水和醋酸的偏摩尔体积。
解:根据定义当时4.460 ︒C时甲醇的饱和蒸气压是84.4 kPa,乙醇的饱和蒸气压是47.0 kPa。
二者可形成理想液态混合物。
若混合物的组成为二者的质量分数各50 %,求60 ︒C 时此混合物的平衡蒸气组成,以摩尔分数表示。
解:质量分数与摩尔分数的关系为求得甲醇的摩尔分数为根据Raoult定律4.580 ︒C是纯苯的蒸气压为100 kPa,纯甲苯的蒸气压为38.7 kPa。
两液体可形成理想液态混合物。
若有苯-甲苯的气-液平衡混合物,80 ︒C时气相中苯的摩尔分数,求液相的组成。
解:根据Raoult定律4.6在18 ︒C,气体压力101.352 kPa下,1 dm3的水中能溶解O2 0.045 g,能溶解N2 0.02 g。
现将 1 dm3被202.65 kPa空气所饱和了的水溶液加热至沸腾,赶出所溶解的O2和N2,并干燥之,求此干燥气体在101.325 kPa,18 ︒C下的体积及其组成。
设空气为理想气体混合物。
其组成体积分数为:,解:显然问题的关键是求出O2和N2的Henry常数。
18 C,气体压力101.352 kPa下,O2和N2的质量摩尔浓度分别为这里假定了溶有气体的水的密度为(无限稀溶液)。
《化工原理》内容提要第四章吸收1. 基本概念1)吸收的目的:①回收或捕获气体混合物中的有用组分;②除去有害成分。
2)吸收的依据:气体混合物中各组分间某种物理和化学性质的差异。
3)吸收操作必须解决的问题:①选择合适的溶剂;②提供适当的传质设备;③溶剂的再生。
4)物理吸收:吸收时,溶质与溶剂不发生明显的化学反应。
5)化学吸收:吸收时,溶质与溶剂或溶液中的其它物质发生化学反应。
6)吸收分类:单组分吸收/多组分吸收;等温吸收/非等温吸收。
7)溶解度:气液两相处于平衡状态时,溶质在液相中的平衡含量。
8)溶解度曲线:确定温度下,溶质在气相中的分压p e与液相中的摩尔分数x 的关联曲线。
9)对吸收过程:(y-y e)为以气相摩尔分数差表示的吸收传质推动力;(x e-x)为以液相摩尔分数差表示的吸收传质推动力。
10)吸收过程物质传递的三个步骤:①溶质由气相主体传递到两相界面即气相内的物质传递;②溶质在相界面上的溶解,由气相转入液相,即界面上发生的溶解过程。
③溶质自界面被传递至液相主体,即液相内的物质传递。
相界面上的溶解推动力很小,可认为其推动力为零,则相界面上气、液组成满足相平衡关系。
11)吸收过程物质传递的机理包括两种:①分子扩散;②对流传质。
12)主体流动:气相主体与界面之间产生微小压差,压差促使混合气体向界面的流动。
扩散流是分子微观运动的宏观结果,它所传递的是纯组分A 或纯组分B。
13)扩散系数与体系物性、体系的温度、总压或浓度有关。
14)对气体物系,D与绝对温度T的1.81次方成正比,与压强p成反比。
15)对很稀的非电解溶液,D与T成正比,与μ成反比。
16)对流传质:流动流体与相界面之间的物质传递。
17)化学吸收:通常指溶质气体A溶于溶液后,即与溶液中不挥发的反应剂B组分进行化学反应的过程。
18)常用解吸方法:气提解吸(载气解吸);减压解吸;加热解吸。
19)填料塔的结构:气体出口;液体进口;液体分布器;填料压板;填料(塔壁);液体再分布器;填料支承板;气体进口;液体出口(除沫器)。
化工原理第四章第五节讲稿1. 引言本章第五节主要介绍了化工过程中的反应堆设计和反应工程原理。
反应堆是化工过程中核心的装置之一,其设计合理与否直接影响到反应速率、收率、选择性以及能源消耗等方面的因素。
因此,深入了解反应堆设计原理对于化工工程师来说是非常重要的。
2. 反应堆的分类根据反应物在反应器中的流动方式,反应堆可以分为两类:批式反应器和连续流动反应器。
2.1 批式反应器批式反应器是最简单的反应器类型之一,其特点是反应物在反应过程中被困在反应器中进行反应,不断生成产物。
批式反应器适合于小规模试验以及产物目标不明确的反应过程。
2.2 连续流动反应器连续流动反应器是反应物以连续的方式流入反应器,同时产生的产物以连续的方式流出。
连续流动反应器适合于大规模生产以及对产物目标清晰的反应过程。
3. 反应速率与反应机理反应速率是指单位时间内反应物消失或产物生成的量。
反应速率与反应物浓度、温度、反应物质的物理性质以及反应机理密切相关。
了解反应机理有助于优化反应条件,提高反应速率和选择性。
常用的反应机理模型有无机反应、催化反应、酶促反应等。
4. 反应堆设计原则为了高效地控制反应速率、提高产物收率以及选择性,反应堆的设计应遵循以下原则:4.1 温度控制反应过程中需要控制温度的关键原因是:温度的升高可以提高反应速率,但过高的温度会导致产物的降解或其它副反应的发生。
因此,合理地控制反应温度可以最大限度地提高反应效率。
4.2 反应物浓度控制反应物浓度的控制对于反应速率的影响同样非常大。
通常情况下,增加反应物浓度可以提高反应速率,但过高的浓度也可能导致副反应的发生,甚至发生爆炸等安全问题。
因此,在反应堆的设计中需要合理控制反应物浓度。
4.3 反应物的混合与传质反应速率也受限于反应物的混合程度和传质效果。
良好的混合可以提高反应物相互碰撞的机会,从而加快反应速率。
反应物的传质效果也对反应速率有着直接的影响。
因此,在反应堆设计中需要考虑合理地设计混合和传质设备。