《齿轮零件测量》
- 格式:pptx
- 大小:4.87 MB
- 文档页数:53
齿轮零件公法线长度偏差的测量
1实验目的
1. 了解齿轮参数测量常用的仪器及工作原理;
2. 掌握齿轮传动各项指标的测量方法及其综合评定。
2 实验仪器设备
1.公法线千分尺
2 实验内容及实验步骤
渐开线圆柱齿轮是机器、仪器中使用最多的传动零件,主要用来传递运动和动力。
对齿轮的使用要求可归纳为以下几个方面:
1 )传递运动的准确性;2)传动的平稳性;3)载荷分布的均匀性;4)侧隙的合理性
因此,齿轮的综合测量应包含上述四个方面的内容。
本实验要求查出齿轮各项公差值,并通过测量齿轮的公法线长度评定齿轮零件侧隙的合理性。
实验步骤
(1) 根据齿轮几何参数及其要求选择合适的测量仪器。
(2) 了解测量仪器的构造和测量原理。
(3) 按仪器的测量方法进行齿轮公法线长度的测量。
(4) 分析齿轮测量结果,并将测量值与极限偏差值进行比较,判断所测量齿轮工件侧隙的合理性。
(5) 写出实验报告
齿轮公法线长度偏差的测量。
齿轮测绘是机械零部件测绘的重要组成部分,测绘前,首先要了解被测齿轮的应用场合、负荷大小、速度高低、润滑方式、材料与热处理工艺和齿面强化工艺等。
因为齿轮是配对使用的,因而配对齿轮要同时测量。
特别是当测绘的齿轮严重损坏时,一些参数无法直接测量得到,需要根据其啮合中心距a和齿数z,重新设计齿形及相关参数,从这个意义上讲,齿轮测绘也是齿轮设计。
齿轮测绘主要是根据齿轮及齿轮副实物进行几何要素的测量,如齿数z,齿顶圆直径da,齿根圆直径df、齿全高h、公法线长度Wk、中心距a、齿宽b、分度圆弦齿厚s及固定弦齿厚sc、齿轮副法向侧隙n及螺旋角β、分锥角δ、锥距R 等,经过计算和分析,推测出原设计的基本参数,如模数m、齿形角α、齿顶高系数ha*、顶隙系数C*等,并据此计算出齿轮的几何尺寸,如齿顶圆直径da、分度圆直径d及齿根圆直径df等,齿轮的其它部分结构尺寸按一般测绘原则进行,以达到准确地恢复齿轮原设计的目的。
由于齿轮的特殊性,齿轮测绘有别于其它一般零件。
首先,齿轮通常精度较高,测量时要选用比较精密的量具,有条件时可借助于精密仪器测量,其次,齿轮的许多参数都己标准化,测绘中必须与其标准值进行比较;再则,齿轮的许多参数都是互相关联的,必须经过计算获得。
齿轮测绘的一般步骤为:1. 首先对要测绘的齿轮进行结构和工艺分析。
2. 画出齿轮的结构草图和必须的参数表,并画出所需标注尺寸的尺寸界线及尺寸线。
3. 数出被测齿轮的齿数z1、z2,测量出齿顶圆直径da、齿根圆直径df、齿宽b、全齿高h、公法线长度L、基圆齿距Pb、中心距a、斜齿轮齿顶圆螺旋角βa、锥齿轮锥距R等。
4. 计算出模数m,并根据标准模数系列选取与计算值相近的标准模数;对于斜齿轮应根据基圆齿距Pb或全齿高h计算出法面模数mn ,然后根据标准模数系列选取与计算值相近的标准模数;对于锥齿轮应先根据测量值计算分锥角δ,再计算大端端面模数mt,根据计算的端面模数mt查标准模数系列表选取接近的标准值。
齿轮零件磨削烧伤的危害、检测和预防作者:许红平鲁建锋吴伟明徐嘉军来源:《专用汽车》 2019年第1期齿轮类零件作为机构中的重要零部件,在渗碳淬火后往往要进行磨削加工。
在磨削加工工艺中,砂轮与零件的接触区会因摩擦产生大量热量,而大部分热量会通过传导进入零件浅表层,容易导致表层金相组织的变化。
若磨削参数设置和砂轮选择不当,在加工的过程中,会引起表层金相组织改变,并出现较大的残余应力,形成“磨削烧伤”。
零件磨削烧伤会使零件表层的耐磨性、耐腐蚀性和接触疲劳强度降低,使用寿命大大降低,严重的情况下会出现裂纹,从而引发质量问题。
本文通过研究淬火类齿轮的磨削烧伤现象,总结和分析了磨削烧伤的种类和危害,提出了针对不同种类烧伤的不同检测方法,并在此基础上探讨了磨削烧伤的预防措施。
1.磨削烧伤的种类齿轮零件磨削加工的过程中,接触区域的瞬时高温(可达looooc)使得零件表面的金相组织产生局部变化。
根据磨削烧伤表面组织结构的不同,可以将磨削烧伤分成两类。
1.1回火烧伤当磨削接触区表面层温度显著超过马氏体转变温度,而低于相变临界温度Acl的时候,零件表面马氏体产生回火,转变成硬度较低的索氏体和屈氏体,这种烧伤称为“回火烧伤”,如图l(a)所示。
此时该表面的硬度一般为HRC51~57。
1.2二次淬火烧伤淬火钢的马氏体组织在7500C~8000C以上的磨削高温下转变成奥氏体。
如果冷却速度较低,则会重新变为马氏体,零件表层比原淬火硬度稍有提高,一般在HRC63左右。
但此变质层性能稳定性较差,脆性较高,二次淬火烧伤区域周围通常伴有一圈严重的回火层,如图1(b)所示。
2.磨削烧伤和磨削裂纹磨削烧伤的变质层内存在较大的残余应力,当残余应力超过材料的极限强度时,容易导致裂纹的出现。
磨削烧伤不一定伴随磨削裂纹出现,但是磨削裂纹通常都伴随磨削烧伤产生。
磨削裂纹的方向一般与砂轮的轴向进给方向垂直,如图2(a)所示。
齿面存在裂纹后,润滑油会侵入裂纹。
齿轮钢锻件等温正火质量检验规范1. 目的与范围1.1目的为正确评定渗碳齿轮钢钢制锻件及毛坯粗车零件的等温正火硬度均匀性及正火组织级别等相关质量物性,规范和完善公司对齿轮钢锻件等温正火零件的质量检验,特制定本评定规范。
1.2 范围本规定适用于公司及外协等温正火供应商。
2. 具体描述2.1等温正火质量要求2.1.1渗碳齿轮钢的等温正火硬度要求根据不同的钢材其等温正火硬度要求一般可参照下表1的范围,具体要求须按各工厂制造供应商签定的《零〔部〕件检验标准》执行,但须满足切削加工及热冷变形要求。
表1 公司常用齿轮钢零件的等温正火硬度要求2.1.2渗碳齿轮钢的等温正火金相组织要求按与锻件供应商签订的《零〔部〕件检验标准》或相关文件要求执行,如无相关文件要求则按GB/T13320执行,正火金相组织≤3级评定为合格。
2.2检验内容与方法2.2.1零件状态检查2.2.1.1公司内等温正火检验部门人员以抽查的方式,核对零件名称、材料牌号、操作记录纸的有关内容,以了解生产过程中的工艺执行情况,并作好相关的检查记录。
2.2.1.2外协等温正火检验部门人员核对零件名称、材料牌号、钢的冶炼炉号、钢材质保书及供应商对零件材料的化学成份(要求参见2.3表2),淬透性、低倍组织等复检报告和对零件的金相组织、硬度检测报告等本批产品相关内容,以了解外协正火零件的材料、金相组织及硬度情况,并做好相关的检查记录。
注:对于己批产的产品,其零件锻件的下料规格必须唯一,锻造供应商不得任意更改,但有变更必须向需方提交申请并得到批准后才可执行。
2.2.2外观检查零件正火后并经表面清理,表面应不得残留未脱落的氧化皮,不能有明显的变形弯曲及其它可见缺陷。
2.2.3硬度检验2.2.3.1正火硬度要求常用的齿轮钢参照表2.1.1表1执行,当有特殊要求的以工艺图纸规定为准。
正火硬度均匀性要求,若另有其它要求可按与锻件供应商签订的《零〔部〕件检验标准》执行。
齿轮类零件设计资料一、齿轮类零件概述:经过多年的设计制造,在齿轮类方面有了一定经验,但对于某些概念各有不同的理解,特作本节予以解释和统一。
1.齿轮分类:1)圆柱齿轮类:直齿圆柱齿:Spur Gear;斜齿圆柱齿:Helix Gear;内直齿圆柱齿:Internal Gear;2)锥齿类:普通锥齿:Bevel Gear;格林森锥齿:Glinson Gear;皇冠齿:Crown Gear3)螺纹类:蜗杆:Worm Gear;螺纹:Screw;4)特殊类:钟表齿:Clock Gear;摆线齿:Cycloidal Gear;同步带轮:Pulley;齿条:Rack链轮:Chain Wheel;2.齿轮类零件图的标注:齿轮类零件图必须标出齿轮参数及测量参数项目,如下所示:皇冠齿圆柱直齿圆柱斜齿3.基本公式:n m :法向模数 t m :端面模数 β:螺旋角 j s :圆弧齿厚 *ha :齿顶高系数:1.0 *c :齿顶隙系数:0.25h :全齿高 k :跨齿数 W :跨齿厚 p :齿距 z p :斜齿导程 X :变位量 d L :蜗杆导程D :节圆直径 m :模数 Da :齿顶圆直径 x :变位系数fD:齿根圆直径 α:压力角 Z :齿数以上是圆柱直齿或斜齿齿轮的部分基本计算公式,齿轮类其他类型的计算公式较多且复杂,这里暂不一一列出。
4.综合测量(参见附表1-10) 4.1全齿啮合误差:被测齿轮与标准齿轮双面啮合时,在被测齿轮转一周内,双面啮合中心距的最大变动量又称径向综合误差(符号Fi ″)。
4.2单齿啮合误差:被测齿轮与标准齿轮又面啮合时,在被测齿轮转一个齿角内,双啮合中心距的最大变动量又称一齿径向综合误差(符号fi ″)。
4.3公法线长度变动:在齿轮一周范围内,实际公法线长度最大值与最小值之差(符号Fw ),公法线长度又称跨齿厚。
4.4齿圈径向跳动:在齿轮转一周范围内,测头在齿槽内,与齿高中部的齿面双面接触,测头相对于齿轮轴线的最大变动量(符号Fr )。
常用设备检测方法一、齿轮的硬度检测方法齿轮的硬度检测一般是在热处理后的齿面上进行。
由于齿面受条件的限制,用洛氏法难于测量,可用里氏硬度或E型肖氏硬度计测量。
如技术条件许可,可在齿轮两侧端面靠近齿的圆弧表面用维氏或洛氏硬度法测定。
二、弹簧的硬度检测方法弹簧制件的硬度检测一般用洛氏硬度C标尺,在每个弹簧式样上测三点,两点合格则认定合格。
测试时硬度差不得大于5个硬度单位。
对热卷弹簧硬度检测时,需磨去0.5mm,消除表面脱碳层的影响。
冷卷弹簧经淬火(不超过两次),回火后其硬度值在44-52HRC范围内。
特殊情况硬度允许到55HRC。
热卷弹簧经淬火,回火处理后硬度应在40-50HRC范围内。
特殊情况可到55HRC。
三、活塞环的硬度检测方法活塞环的硬度检测一般用洛氏B标尺。
检测点距环开口处5-7mm,距开口90。
和开口处对面等三处测定(如右图)。
每处检测3点取平均值。
油环在相邻的实体部位测量测点距边缘≮1mm。
活塞环硬度检测点位置测定结果:合金铸铁环直径D≤150mm 98-108HRBD>150mm 94-105HRB。
乌合金铸铁环:96—106HRB。
同一片环上硬度值差≯3 HRB。
四、焊接接头的硬度检测方法焊接接头及堆焊金属的硬度实验GB2654-89规定:焊接件硬度可用布氏、洛氏、维氏硬度试验方法检测。
试样检测面与支承面应经加工磨平。
厚度小于3mm的焊接接头允许在其表面测定硬度。
测定位置按下图焊接件硬度的测定位置标线进行。
测试时应注意避开焊接缺陷处。
焊接件硬度的测定位置标线五、金属覆盖层检测方法金属覆盖层主要有电沉积层,自催化气度层、喷涂层(包括爆炸喷涂和等离子喷涂层)以及铝材阳极氧化腹膜层等。
1、检测方法覆盖层硬度检测通常是应用显微和小负荷维氏硬度检测方法。
压头除维氏压头外,有时还应选用努普氏压头。
2、检测技术要求检测力大小应慎重选用,因为覆盖层一般都比较薄,如果检测力过大硬度值会受基体材料硬度的影响;如果检测力选用过小,容易引入较大误差,都会影响检测的准确性。