第5章 参数检验与非参数检验
- 格式:ppt
- 大小:1.72 MB
- 文档页数:73
参数检验和非参数检验参数检验和非参数检验是统计学中两种常用的假设检验方法。
参数检验假设总体服从其中一种特定的概率分布,而非参数检验则不对总体的概率分布进行特定的假设。
本文将分析和比较这两种假设检验方法,并讨论它们的优缺点和适用范围。
参数检验的基本思想是假设总体的概率分布属于一些已知的参数化分布族,例如正态分布或泊松分布。
然后根据样本数据计算出统计量的观察值,并基于它们进行假设检验。
常见的参数检验方法有t检验、F检验和卡方检验等。
以t检验为例,它适用于研究两个样本均值之间是否存在显著差异的情况。
假设我们有两组样本数据,分别服从正态分布。
可以使用t检验来计算两组样本均值的差异是否显著。
t检验基于样本均值和标准差来估计总体均值的差异,并通过计算t值和查表或计算p值来判断差异是否显著。
参数检验的优点是它们对总体概率分布的假设比较明确,计算方法相对简单,适用于数据符合特定分布的情况。
此外,参数检验通常具有较好的效率和统计性质。
然而,参数检验也有一些限制和缺点。
首先,参数检验通常对数据的分布假设要求较高,如果数据不符合指定的分布假设,则结果可能不可靠。
另外,参数检验对样本大小的要求较高,需要较大的样本才能获得可靠的检验结果。
此外,参数检验对异常值和离群值比较敏感,这可能会导致统计结论的错误。
与参数检验相比,非参数检验更加灵活,不需要对总体的概率分布做出特定的假设。
它适用于更广泛的数据类型和样本分布。
常见的非参数检验方法有Wilcoxon符号秩检验、Mann-Whitney U检验和Kruskal-Wallis检验等。
以Wilcoxon符号秩检验为例,它适用于比较两个相关样本的差异。
这个检验不要求样本数据满足正态分布的假设,它基于样本差值的秩次来判断差异是否显著。
非参数检验的优点在于其适用范围广泛,不需要对总体分布做出特定假设,对数据平均性和对称性的要求较低,对异常值和离群值的鲁棒性较好。
此外,非参数检验对样本大小的要求较低,可以在较小的样本情况下获得可靠的结果。
参数检验与非参数检验的区别与应用统计学中的参数检验和非参数检验是两种常用的假设检验方法。
本文将详细介绍参数检验和非参数检验的区别以及它们在实际应用中的具体场景。
一、参数检验参数检验是建立在对总体分布形态有所假定的基础上,通过对样本数据进行统计推断,来对总体参数进行假设检验。
它通常要求总体分布服从特定的概率分布,如正态分布。
参数检验的常见方法有:1. 单样本t检验:用于检验样本均值是否与已知总体均值有显著差异。
2. 独立样本t检验:用于比较两个独立样本的均值是否存在显著差异。
3. 配对样本t检验:用于比较同一组样本在不同条件下的均值是否存在显著差异。
4. 方差分析:用于比较多个样本组之间的均值是否存在显著差异。
参数检验的优势在于其具有较高的效率和灵敏度,适用于对总体分布形态有所了解的情况。
但它也有一些限制,如对分布形态的假设可能不成立,以及对样本量和数据类型的要求较高。
二、非参数检验非参数检验是对总体分布形态没有具体假设的情况下,通过对样本数据进行统计推断,来对总体参数进行假设检验。
非参数检验不少于参数检验的分析方法,常见的包括:1. Wilcoxon符号秩检验:用于比较两个相关样本的差异是否存在显著差异。
2. Mann-Whitney U检验:用于比较两个独立样本的中位数是否存在显著差异。
3. Kruskal-Wallis检验:用于比较多个样本组的中位数是否存在显著差异。
非参数检验的优势在于对总体分布形态没有具体要求,适用于对总体分布了解较少或不了解的情况。
它相对于参数检验来说更具广泛的适用性,但由于其推断效果较差,需要更大的样本量才能达到相同的检验效果。
三、参数检验与非参数检验的区别1. 假设要求:参数检验对总体分布形态有假设要求,如正态分布假设,而非参数检验对总体分布形态没有具体要求。
2. 统计量选择:参数检验基于已知概率分布,可以选择特定的统计量如t值、F值等;而非参数检验使用秩次统计量,如秩和、秩和秩二样序差等。
第五章假设检验本章介绍假设检验的基本概念以及参数检验与非参数检验的主要方法。
通过学习,要求:1.掌握统计检验的基本概念,理解该检验犯两类错误的可能;2.熟练掌握总体均值与总体成数指标的各种检验方法;包括:z 检验、t 检验和p-值检验;4.掌握基本的非参数检验方法,包括:符号检验、秩和检验与游程检验;5.能利用Excel 进行假设检验。
第一节假设检验概述一、假设检验的基本概念假设检验是统计推断的另一种方式,它与区间估计的差别主要在于:区间估计是用给定的大概率推断出总体参数的范围,而假设检验是以小概率为标准,对总体的状况所做出的假设进行判断。
假设检验与区间估计结合起来,构成完整的统计推断内容。
假设检验分为两类:一类是参数假设检验,另一类是非参数假设检验。
本章分别讨论这两类检验方法。
进行假设检验,首先要对总体的分布函数形式或分布的某些参数做出假设,然后再根据样本数据和“小概率原理”,对假设的正确性做出判断。
这种思维方法与数学里的“反证法”很相似,“反证法”先将要证明的结论假设为不正确的,作为进一步推论的条件之一使用,最后推出矛盾的结果,以此否定事先所作的假设。
反证法所认为矛盾的结论,也就是不可能发生的事件,这种事件发生的概率为零,该事件是不能接受的现实。
其实,我们在日常生活中,不仅不肯接受概率为0的事件,而且对小概率事件,也持否定态度。
比如,虽然偶尔也有媒体报导陨石降落的消息,但人们不必担心天空降落的陨石会砸伤自己。
所谓小概率原理,即指概率很小的事件在一次试验中实际上不可能出现。
这种事件称为“实际不可能事件”。
小概率的标准是多大?这并没有绝对的标准,一般我们以一个所谓显著性水平α(0<α<1)作为小概率的界限,α的取值与实际问题的性质有关。
所以,统计检验又称显著性检验。
下面通过一个具体例子说明假设检验是怎样进行的。
【例5-1】消费者协会接到消费者投诉,指控品牌纸包装饮料存在容量不足,有欺骗消费者之嫌。
统计学中各种检验的核心内容参数检验与非参数检验统计检验可分为两大类:参数检验和非参数检验。
参数检验假设数据来自具有特定分布的总体,例如正态分布。
非参数检验则无需此假设。
假设检验大多数统计检验涉及假设检验。
假设检验遵循以下步骤:设定零假设和备择假设计算检验统计量确定临界值根据检验统计量和临界值做出决策统计检验的类型t检验用于比较两个独立样本的均值参数检验,假设数据来自正态分布 ANOVA(方差分析)用于比较多个样本的均值参数检验,假设数据来自正态分布卡方检验用于检验分类变量之间的关联非参数检验Wilcoxon秩和检验用于比较两个独立样本的中位数非参数检验Mann-Whitney U检验用于比较两个独立样本的均值非参数检验Kruskal-Wallis检验用于比较多个样本的中位数非参数检验相关性分析用于度量两个变量之间的线性关系皮尔逊相关系数:用于度量连续变量之间的相关性(-1到1)斯皮尔曼等级相关系数:用于度量序数变量之间的相关性(-1到1)回归分析用于预测一个变量(因变量)基于另一个变量(自变量)线性回归:因变量是自变量的线性函数Logistic回归:因变量是自变量的逻辑函数,用于二分类问题显著性水平显著性水平(α)是犯第一类错误(拒绝真实零假设)的概率通常设定为0.05或0.01显著性水平越小,犯第一类错误的可能性越小,但犯第二类错误(接受虚假零假设)的可能性越大检验统计量检验统计量是用于计算检验结果的度量不同检验使用不同的检验统计量,例如t值、卡方值或U值临界值临界值是检验统计量的阈值,用于做出决策如果检验统计量大于或等于临界值,则拒绝零假设临界值通过查表或使用统计软件确定决策基于检验统计量和临界值,做出以下决策之一:拒绝零假设接受零假设拒绝零假设表明备择假设更有可能是真的,而接受零假设表明没有足够的证据拒绝它注意事项统计检验只是做出明智决策的工具,不能替代对数据的批判性思考了解检验的假设和限制对于正确解释结果至关重要有时可能需要执行多个检验来全面了解数据。
非参数检验相比于参数检验的缺点
1. 较低的功效:在样本容量较小或者总体分布相对简单的
情况下,非参数检验的功效通常会比参数检验低。
这意味着非参数检验可能会更难发现存在的显著差异。
2. 需要更多的数据:为了能够产生可靠的结果,非参数检验可能需要比参数检验更多的样本数据。
3. 难以确定效应大小:与参数检验相比,非参数检验往往难以确定效应的大小。
当我们使用参数检验时,我们可以根据参数的估计值计算效应大小。
但是,在非参数检验中,我们通常需要使用基于排名或任意单位的统计量,这使得效应大小的确定更加困难。
4. 不适用于某些问题:一些问题可能需要特定类型的参数
检验。
例如,当我们需要测量两个总体均值之间的差异时,T检验或方差分析通常比非参数检验更适合。
5. 理解和解释结果可能更困难:与参数检验相比,非参数检验可能更难理解和解释其结果。
这是因为非参数检验通常使用一些非常抽象的统计量,这些统计量难以解释其实际意义。
在这种情况下,解释结果可能需要更深入的统计知识和分析
技能。
非参数检验的名词解释
非参数检验是一种统计方法,用于在数据不满足正态分布或其他假设条件的情况下进行统计推断。
与参数检验相比,非参数检验不需要对总体参数做出假设,而是直接利用样本数据进行推断。
以下是相关名词解释:
1. 非参数:指在进行统计推断时,不对总体的分布形式或参数做出特定的假设。
非参数方法依赖于具体的样本数据,不依赖于总体的分布特征。
2. 假设检验:统计推断的一种方法,用于通过对样本数据进行分析来得出关于总体参数或总体分布的结论。
假设检验通常涉及对某个假设的拒绝或接受。
3. 正态分布:也称为高斯分布,是一种连续概率分布,常用于描述许多自然现象和随机变量的分布。
参数检验通常基于对总体数据服从正态分布的假设。
4. 参数检验:通过对总体参数的估计和假设进行统计推断的
方法。
参数检验通常要求数据满足特定的假设条件,如正态分布、独立性和方差齐性等。
5. 统计显著性:在假设检验中,用于评估观察到的差异或效应是否显著。
统计显著性通常以p值表示,若p值小于预设的显著性水平(如0.05),则可以拒绝零假设。
非参数检验在实际应用中具有灵活性和广泛适用性,特别适合处理样本数据不满足假设条件的情况。
它们不依赖于总体分布的形式,因此更加鲁棒,并可以应用于各种类型的数据集。
参数检验与非参数检验一、参数检验与非参数检验的区别(1)参数检验:一般是数据的总体分布已知的情况下,对数据分布的参数是否落在相应范围内进行检验。
是对参数平均值、方差进行的统计检验,是推断统计的重要组成部分。
适用条件:当总体分布已知(如总体为正态分布),根据样本数据对总体分布的统计参数进行推断。
此时,总体的分布形式是给定的或是假定的,只是其中一些参数的取值或范围未知,分析的主要目的是估计参数的取值,或对其进行某种统计检验。
这类问题往往用参数检验来进行统计推断。
它不仅仅能够对总体的特征参数进行推断,还能够实现两个或多个总体的参数进行比较。
(2)非参数检验:一般是在不知道数据总体分布的前提下,检验数据的分布情况。
适用条件:在数据分析过程中,由于种种原因,往往无法对总体分布形态作简单假定,此时参数检验不再适用。
非参数检验正是基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。
二、参数检验方法及适用条件三、非参数检验方法及适用条件四、使用方法当分析某个因素对变量的影响差异时,即检验该因素分类的若干个样本差异:(1)如果因素为两个,使用独立样本T-检验,来分析两个总体平均数相等的显著性;结果判定:先看方差齐性F检验结果,再看均值相等性的t检验结果,即a.如果方差齐性显著性>0.05,则表明方差齐性显著,再看第一行的检验统计值t及显著性p(p<0.05表示差异明显);b.如果方差齐性显著性<=0.05,则表明方差显著不齐,再看第二行的检验统计值t及显著性p(p<0.05表示差异明显);(2)如果因素为多个,使用单因素方差检验(即F检验),来分析该因素的影响差异。
结果判定:方差齐性显著则看ANOVA的检验统计值F及其显著性p。