应用统计学卡方检验和非参数检验
- 格式:pptx
- 大小:563.06 KB
- 文档页数:41
卡方检验名词解释
卡方检验属于非参数检验,由于非参检验不存在具体参数和总体正态分布的假设,所以有时被称为自由分布检验。
参数和非参数检验最明显的区别是它们使用数据的类型。
非参检验通常将被试分类,如民主党和共和党,这些分类涉及名义量表或顺序量表,无法计算平均数和方差。
卡方检验分为拟合度的卡方检验和卡方独立性检验。
我们用几个例子来区分这两种卡方检验:
•对于可口可乐公司的两个领导品牌,大多数美国人喜欢哪一种?•公司采用了新的网页页面B,相较于旧版页面A,网民更喜欢哪一种页面?
以上两个例子属于拟合度的卡方检验,原因在于它们都是有关总体比例的问题。
我们只是将个体分类,并想知道每个类别中的总体比例。
它检验的内容仅涉及一个因素多项分类的计数资料,检验的是单一变量在多项分类中实际观察次数分布与某理论次数是否有显著差异。
拟合度的卡方检验定义:
主要使用样本数据检验总体分布形态或比例的假说。
测验决定所获得的的样本比例与虚无假设中的总体比例的拟合程度如何。
拟合度的卡方检验又叫最佳拟合度的卡方检验,为何取名“最佳拟合”?这是因为最佳拟合度的卡方检验的目的是比较数据(实际频数)与虚无假设。
确定数据如何拟合虚无假设指定的分布,因此取名“最佳拟合”。
关于拟合度的卡方检验有一些翻译上的区别,其实表达的是一个意思:
拟合度的卡方检验=卡方拟合优度检验=最佳拟合度卡方检验
以下统称:卡方拟合优度检验
卡方统计的公式:卡方卡方=χ2=Σ(fo−fe)2fe
公式中O代表observation,即实际频数;E代表Expectation,即期望频数。
分类资料组间比较的统计方法选择与应用在统计学中,分类资料组间比较是指对不同分类资料组之间的差异进行统计分析。
分类资料是指将个体按其中一种特征分组,而分类资料组是指这些不同特征组成的组。
此时,为了确定不同组之间的差异,我们需要选择适当的统计方法进行比较。
下面介绍几种常用的分类资料组间比较的统计方法选择与应用。
1.基本原则:在选择分类资料组间比较的统计方法时,需要根据变量的测定水平来确定,通常可以根据资料的测定水平来进行分类资料分析的方法选择。
对于分类资料,我们可以采用卡方检验分析,对于有序分类资料,我们可以采用秩和检验分析。
2.卡方检验:卡方检验适用于分类资料的比较,其基本思想是比较实际观测频数与理论频数之间的差异。
卡方检验有两种形式:独立性检验和拟合优度检验。
独立性检验用于检验两个或多个分类变量之间是否存在关联;拟合优度检验用于检验观测频数与理论频数之间的差异是否显著。
3.秩和检验:对于有序分类资料,我们可以采用秩和检验进行比较。
秩和检验的基本思想是将不同组之间的观测值按顺序排列,并将其转化为秩次,然后将秩次相加得到秩和,通过比较秩和的大小来判断不同组之间的差异是否显著。
4.t检验:当分类资料分为两个组进行比较时,可以采用t检验。
t检验的基本思想是通过比较两个组的均值差异来判断两个组之间的差异是否显著。
但是需要注意的是,t检验要求数据满足正态分布的假设,所以在进行t检验之前需要进行正态分布检验。
5.方差分析:当分类资料包含多个组时,可以使用方差分析进行比较。
方差分析的基本思想是比较组间方差与组内方差之间的差异,通过计算F值来判断不同组之间的差异是否显著。
方差分析也需要满足正态分布的假设。
6.非参数检验:如果数据不满足正态分布假设,或者样本量较小,可以使用非参数检验。
非参数检验不依赖于总体分布形式的假设,比如Mann-Whitney U检验适用于两个独立样本的比较,Kruskal-Wallis H检验适用于多个独立样本的比较。
卡方检验与非参数检验卡方检验与非参数检验是统计学中常用的两种假设检验方法。
它们在样本数据不满足正态分布或方差齐性等假设条件的情况下,仍可以进行假设检验,因此被称为非参数检验方法。
本文将详细介绍卡方检验与非参数检验的原理、应用以及比较。
一、卡方检验卡方检验是一种用于检验两个或多个分类变量之间是否存在相关性的统计方法。
它将实际观察到的频数与期望的频数进行比较,从而判断两个分类变量是否存在相关性。
卡方检验主要包括卡方拟合度检验、卡方独立性检验和卡方配对检验等。
1.卡方拟合度检验卡方拟合度检验适用于比较观察到的频数与理论上期望的频数是否有显著差异。
例如,我们可以通过卡方拟合度检验来判断一组骰子的点数是否是均匀分布的。
该方法首先根据理论假设计算每个类别的期望频数,然后计算观察频数与期望频数的差异,并根据差异的大小判断是否有显著差异。
2.卡方独立性检验卡方独立性检验适用于比较两个分类变量之间是否存在相关性。
例如,我们可以使用卡方独立性检验来判断性别与喜好类别之间是否存在相关性。
该方法首先根据理论假设计算每个类别的期望频数,然后计算观察频数与期望频数的差异,并根据差异的大小判断是否有显著差异。
3.卡方配对检验卡方配对检验适用于比较同一组体在两个时间点或处理条件下的观测值是否有差异。
例如,我们可以使用卡方配对检验来判断一种药物在服药前后对疾病症状的治疗效果。
该方法通过比较观察值和期望值之间的差异来判断是否有显著差异。
非参数检验是一种不依赖于总体分布的统计方法,它不对总体的分布形态做出任何假设,因此适用于任何类型的数据。
常见的非参数检验方法包括Wilcoxon符号秩检验、Mann-Whitney U检验、Kruskal-Wallis H检验等。
1. Wilcoxon符号秩检验Wilcoxon符号秩检验适用于比较两组配对样本数据是否存在差异。
例如,我们可以使用Wilcoxon符号秩检验来判断一种药物在服药前后对患者血压的影响。