焊接热影响区名词解释
- 格式:doc
- 大小:10.54 KB
- 文档页数:1
1.试述熔化焊接、钎焊和粘接在本质上有何区别?熔化焊接:使两个被焊材料之间(母材与焊缝)形成共同的晶粒针焊:只是钎料熔化,而母材不熔化,故在连理处一般不易形成共同的晶粒,只是在钎料与母材之间形成有相互原于渗透的机械结合。
粘接:是靠粘结剂与母材之间的粘合作用,一般来讲没有原子的相互渗透或扩散。
2.怎样才能实现焊接,应有什么外界条件?从理论来讲,就是当两个被焊好的固体金属表面接近到相距原子平衡距离时,就可以在接触表面上进行扩散、再结晶等物理化学过程,从而形成金属键,达到焊接的目的。
然而,这只是理论上的条件,事实上即使是经过精细加工的表面,在微观上也会存在凹凸不平之处,更何况在一般金属的表面上还常常带有氮化膜、油污和水分等吸附层。
这样,就会阻碍金属表面的紧密接触。
为了克服阻碍金属表面紧密接触的各种因素,在焊接工艺上采取以下两种措施:1)对被焊接的材质施加压力目的是破坏接触表面的氧化膜,使结合处增加有效的接触面积,从而达到紧密接触。
2)对被焊材料加热(局部或整体) 对金属来讲,使结合处达到塑性或熔化状态,此时接触面的氧化膜迅速破坏,降低金属变形的阻力,加热也会增加原于的振动能,促进扩散、再结晶、化学反应和结晶过程的进行。
3.焊条的工艺性能包括哪些方面? (详见:焊接冶金学(基本原理)p84)焊条的工艺性能主要包括:焊接电弧的稳定性、焊缝成形、在各种位置焊接的适应性、飞溅、脱渣性、焊条的熔化速度、药皮发红的程度及焊条发尘量等4.低氢型焊条为什么对于铁锈、油污、水份很敏感?(详见:焊接冶金学(基本原理)p94)由于这类焊条的熔渣不具有氧化性,一旦有氢侵入熔池将很难脱出。
所以,低氢型焊条对于铁锈、油污、水分很敏感。
5.焊剂的作用有哪些?隔离空气、保护焊接区金属使其不受空气的侵害,以及进行冶金处理作用。
6.能实现焊接的能源大致哪几种?它们各自的特点是什么?见课本p3 :热源种类7.焊接电弧加热区的特点及其热分布?(详见:焊接冶金学(基本原理)p4)热源把热能传给焊件是通过焊件上一定的作用面积进行的。
焊接热影响区名词解释
焊接热影响区是指在焊接过程中,热输入会引起金属的显微组织和性能发生变化的区域。
焊接热影响区一般可分为三个不同的区域:
•熔化区:焊接电弧或激光束直接作用的区域,金属在此区域会被熔化。
•热影响区(HAZ):相对于熔化区来说,没有被完全熔化的区域,但温度升高,在此区域内会发生组织和性能的变化。
•熔合区(FZ):熔化的金属与母材之间的交界区域,其组织由母材与熔化金属相互混合形成。
焊接热影响区的形成主要受到焊接过程中的热输入和冷却速率的影响。
热影响区的组织分布(1)完全淬火区:焊接时热影响区处于AC3以上的区域,由于这类钢的淬硬倾向较大,故焊后得到淬火组织(马氏体)。
在靠近焊缝附近(相当于低碳钢的过热区),由于晶粒严重长大,故得到粗大的马氏体,而相当于正火区的部位得到细小的马氏体。
根据冷却速度和线能量的不同,还可能出现贝氏体,从而形成了与马氏体共存的混合组织。
这个区在组织特征上都是属同一类型(马氏体),只是粗细不同,因此统称为完全淬火区。
(2)不完全淬火区:母材被加热到AC1~AC3温度之间的热影响区,在快速加热条件下,铁素体很少溶入奥氏体,而珠光体、贝氏体、索氏体等转变为奥氏体。
在随后快冷时,奥氏体转变为马氏体。
原铁素体保持不变,并有不同程度的长大,最后形成马氏体-铁素体的组织,故称不完全淬火区。
如含碳量和合金元素含量不高或冷却速度较小时,也可能出现索氏体和体素体。
如果母材在焊前是调质状态,那么焊接热影区的组织,除在上述的完全淬火和不完全淬火区之外,还可能发生不同程度的回火处理,称为回火区(低于AC1 以下的区域)。
总括以上,金属在焊接热循环的作用下,热影响区的组织分布是不均匀的。
熔合区和过热区出现了严重的晶粒粗化,是整个焊接接头的薄弱地带。
对于含碳高、合金元素较多、淬硬倾向较大的钢种,还出现淬火组织马氏体,降低塑性和韧性,因而易于产生裂纹。
在当今社会生产中,金属材料的应用是十分广泛的,尤其是钢铁材料,在工业。
农业。
交通运输。
建筑以及国防等各方面都离不开他。
随着现代化工农业以及科学技术的发展,人们对金属材料的性能要求越来越高。
为满足这一点,一般可以采取两种方法:研制新材料和对金属材料进行热处理。
后者是最广泛,最常用的方法。
热处理是一种综合工艺。
热处理工艺学就是研究这种综合工艺的原理及规律的一门学科。
热处理工艺在我国已有悠久的历史,早在商代就已经有了经过再结晶退火的金箔饰物,在洛阳出土的战国时代的铁锛,系由白口铁脱碳退火制成。
在战国时代燕都遗址出土的大量兵器,向人们展示了在当时钢件已经采用了淬火,正火,渗碳等工艺。
焊缝和热影响区冲击功
焊缝是焊接过程中形成的连接部分,而热影响区(Heat-Affected Zone,简称HAZ)则是焊缝周围由于受到加热引起温度和力学性能发生改变的区域。
这两个部分的特性和性质在焊接工艺、材料性能、质量控制等方面都具有重要的意义。
冲击功是评价材料韧性和抗冲击性能的一个重要参数。
在焊接过程中,焊接接头的冲击功变化是检验焊接质量好坏的一个重要指标。
一般来说,冲击功越高,表示材料的韧性越好,抗冲击性能也越好,焊接质量也越高。
具体来说,在焊接中,焊缝和热影响区的冲击功往往比母材低,这是由于焊接过程中焊缝和热影响区的组织结构发生改变,导致材料的性能下降。
因此,为了确保焊接可靠性和机械强度,需要对焊接接头的冲击功进行评估和控制。
同时,在焊接材料的选择和设计中也需要考虑焊接接头的冲击功特性,以保证其满足实际使用要求。
钢筋焊接的热影响区大小的依据!!!2008-3-28 9:49:22《钢筋焊接及验收规程》(JGJ18—2003)条文说明,对此有规定:2.0.10 熔合区和2.0.11热影响区:焊接接头一般由焊缝、熔合区。
热影响区、母材四部分组成。
“焊缝”和“母材”易于理解,故只列入“熔合区”和“热影响区”二个术语。
热影响区又可分为过热区、正火区(又称重结晶区)、不完全相变区(不完全重结晶区)和再结晶区四部分。
再结晶区只有在冷处理钢筋焊接时才存在。
钢筋焊接接头热影响区宽度主要决定于焊接方法;其次,为热输入。
当采用较大热输入时,对不同焊接接头进行测定,其热影响区宽度如下,供参考:1 钢筋电阻点焊焊点:0.5d:2 钢筋闪光对焊接头:0.7d;3 钢筋电弧焊接头:6~10mm;4 钢筋电渣压力焊接头:0.8d;5 钢筋气压焊接头:1.0d;6 预埋件钢筋埋弧压力焊接头:0.8d。
注:d为钢筋直径(mm)。
《铁路混凝土与砌体工程施工规范》TB10210-2001对热影响区的定义是:按接头每边0.75d计算无论带肋或是光圆:标距同为5d钢筋原材平行长度:Lc≥L。
+d/2 总长度:Lt≥Lc+4d弯曲性能HRBF500 28~40 7d>40~50 8d有较高要求的抗震结构适用牌号为:在表1中已有牌号后加E(例如:HRB400E、HRBF400E)的钢筋。
该类钢筋除应满足以下a)、b)、c)的要求外,其他要求与相应的已有牌号钢筋相同。
a)钢筋实测抗拉强度与实测屈服强度之比R°m/R°e l不小于1.25。
b)钢筋实测屈服强度与表6规定的屈服强度特征值之比R°e l/R e l不大于1.30。
c)钢筋的最大力总伸长率A gt不小于9%。
注:R°m为钢筋实测抗拉强度;R°e l为钢筋实测屈服强度。
钢筋公称直径试样夹具之间的最小自由长度d≤2535025<d≤32 40032<d≤50500A.1.2 原始标距的标记和测量在试样自由长度范围内,均匀划分为10mm或5mm的等间距标记,标记的划分和测量应符合GB/T228的有关要求。
金工试题库一.填空题:1.工程材料的力学性能指标包括(强度)、(硬度)、(塑性)、(韧性)和疲劳强度。
s2.淬火钢和工具钢常用(洛氏硬度)、退火钢常用(布氏硬度)来测试其硬度。
3.金属材料承受无限次重复交变载荷而不断裂的最大应力称为(疲劳强度)。
4.承受冲击载荷的零件要求(冲击韧性)一定要高。
5.金属材料在拉断前所能承受的最大应力叫(抗拉强度),而产生塑性变形而不被破坏的能力叫(塑性)。
6、金属的结晶包括(晶核的形成)和(晶核的长大)两个过程。
7.常见金属的晶格有(体心立方晶格)、(面心立方晶格)和(密排六方晶格)。
8.普通热处理工艺包括(退火)、(正火)、(淬火)、(回火),淬火后高温回火的热处理合称为(调质处理)。
9.钢在加热时,影响奥氏体转变的因素有(加热温度)、(加热速度)、(含碳量)、(原始组织)和(合金元素)。
10.影响奥氏体晶粒长大的因素有(加热温度)、(保温时间)和(化学成分)。
11. 亚共析钢一般进行(完全)退火,过共析钢一般进行(球化)退火,铸钢件一般进行(扩散)退火,为消除毛坯件的残余应力,一般需进行(去应力)退火。
12.钢的回火分为(低温回火)、(中温回火)、(高温回火)。
13.钢的表面淬火分为(火焰加热)表面淬火和(感应加热)表面淬火。
14.钢的淬火分为(单液淬火)、(双液淬火)、(分级淬火)、(等温淬火)。
15. 丝锥要求又硬又韧,应进行(等温淬火)热处理,45钢轴要求综合机械性能好,应进行(调质)热处理,60钢弹簧要求弹性好,应进行(淬火+中温回火)热处理,T12钢锉刀要求高硬度,应进行(淬火+低温回火)热处理。
16.铜合金按加入元素分为(黄铜)、(青铜)和(白铜)三类。
17.变形铝合金按性能特点与用途分为(防锈铝)、(硬铝)、(超硬铝)和(锻铝)四种。
18.铸造铝合金分为(铝硅系合金)、(铝铜系合金)、(铝镁系合金)和(铝锌系合金)。
19.塑料按热性能分为(热塑性塑料)和(热固性塑料)两种。
焊接热影响区概述焊接热影响区的形成凡是通过局部加热来达到连接金属的焊接方法,不论是熔焊或固态焊接(如电阻对焊、摩擦焊),由于其加热的瞬时性和局部性使焊缝附近的母材都经受了一种特殊热循环的作用。
其特点为升温速度快,冷却速度快。
例如在板厚为20mm 的低碳钢上用16kJ/cm热输入进行手工电弧堆焊时,由室温加热到峰值温度为1100℃所需时间仅4s左右,冷却到200℃仅需1min左右。
因此,凡是与扩散有关的过程都很难充分进行。
焊接加热的另一特点为热场分布不均匀,紧靠焊缝的高温区内接近于熔点,远离焊缝的低温区内接近于室温。
而且,峰值温度愈高的部位,加热速度愈快,冷却速度愈大。
因此,焊接过程中,在形成焊缝的同时不可避免地使其附近的母材经受了一次特殊的热处理,形成了一个组织和性能极不均匀的焊接热影响区;使一些部位的组织和性能变得很坏(如过热区),成为整个焊接接头中的最薄弱环节,对焊接质量起着控制作用。
很多焊接结构的破坏事故都与其焊接热影响区的性能恶化有关。
影响焊接热影响区组织和性能的主要因素由于焊接热影响区是焊缝附近母材受到焊接热循环作用后形成的一个组织和性能不同于母材的特殊热处理区,因此它取决于材料本身的特性和工艺条件两个方面。
影响其组织和性能的主要冶金和工艺因素为:被焊金属与合金系统的特点这是决定各种材料法律界热影响区形成特点的根本因素,因为焊接热影响区的组织变化和性能变化首先取决于母材本身在不同加热和冷却条件下的物理冶金特点。
例如对加热和冷却时无相变的金属和合金来说,其焊接热影响区非常简单。
反之,有相变材料的焊接热影响区就很复杂。
焊前母材的原始状态材料焊前的原始状态也会影响到焊接热影响区的组织变化和性能变化。
例如材料焊前处于冷作硬化状态或热处理强化状态,则焊后热影响区内会出现淬火的硬化区。
焊接工艺方法和工艺参数如前所述,焊接热影响区是由于焊接时的热作用引起的,因此它与焊接时所采用的热源特点和焊接工艺参数密切相关。
焊接热影响区名词解释
焊接热影响区是指焊缝两侧处于固态的母材受到焊接热循环作用后,发生组织和性能变化的区域。
该区域受到高温和高压的作用,会使母材的晶粒粗化,组织和性能发生变化,从而导致整个焊接接头的薄弱地带。
焊接热影响区的宽度和深度会根据母材的材质、焊接工艺和冷却速度等因素而有所不同。
焊接热影响区的组织和性能变化会影响焊接接头的力学性能、塑性和韧性等性能。
如果焊接热影响区的性能不符合要求,可能会出现裂纹等质量问题。
因此,在焊接过程中,需要控制焊接热影响区的宽窄和深度,以保证焊接接头的质量和性能。
焊接热影响区的研究和探讨是焊接领域的重要课题之一。
随着焊接技术的不断发展,人们对焊接热影响区的研究也越来越深入,包括焊接热影响区的组织演变、性能变化、影响因素等方面的问题。
通过对焊接热影响区的研究和探讨,可以更好地掌握焊接技术,提高焊接接头的质量和性能,为工业发展做出贡献。